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RANKING AND SELECTION IN SIMULATTION

David Goldsman
School of Operations Research and Industrial Engineering
Cornell University
Tthaca, NY 14853

In this article, we discuss the branch of statistics known as ranking and
selection. We introduce some common ranking and selection terminology and
procedures. Additional references for more complicated procedures are given.

Applications to simulation are discussed.

1. INTRODUCTION

Over the last thirty years, a large body of
literature has been concerned with certain
statistical problems of ranking and selection.
Ranking and selection methods form a collection
of procedures which attempt to answer the
following questions (among others):

- Which of k competing populations (or policies
or drugs, etc.) is the 'best'?

Of the k competing populations, what are the
t (1 <t < k) "best' populations with (or
without) regard to order?

Can we find a (small) subset of the k
populations which contains the 'best'
population?

- Can we find a subset which contains the t
'best' populations?

- Which of the k populations are 'better' than
a certain 'control' population?

'Best' is used with regard to that population
parameter which the experimenter deems to be the
most important; e.g., the population mean or
variance. The problems of determining the
population with the largest mean, the smallest
mean, or the smallest variance could be of
interest. Following are several practical
problems in which ranking and selection
procedures might be useful:

- Find which of k computer systems has the
greatest availablity.

—~ Find the face of a biased die which will turn

up most frequently.

Find the anti-cancer drug which yields the
highest five=year survival rate.

Tdentify which drugs (if any) are better than
a certain drug currently on the market.

Determine the most precise bathroom scale.

- Pind the weed killer that yields the
agricultural plot with the fewest weeds.

When studying problems such as those described
sbove, ranking and selection is generally more
efficient in its use of observations than other
methods of 'classical' statistics. Hence, money
and time can be saved by using ranking and
selection in the appropriate situastions. We shall
also see that these procedures are both
intuitively appealing and simple to implement.
Further, it is easy to use the procedures in the
simulation enviromment. Thus, the simulation
practitioner should consider these procedures when
they would appear to be applicable.

The purpose of this paper is to famillarize the
reader with some of the common ranking and
selection terminology and procedures. Section 2
is concerned with the indifference zone approach
in ranking and selection while section 3 is
concerned with the subset approach. In section b,
we give references for additional procedures. A
framework for using these procedures in
simulations is given in section 5.

2. THE INDIFFERENCE ZONE APPROACH

To motivate this approach, due mainlf to
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Bechhofer (1954), let us comsider a simpleA
example. Suppose that we have k=5 populationmns,
denoted as Wy, Hy, ..., Nlg: Suppose that, uhknown
to us, the underlying population means,

U3, Wo, +++5 U5 have values 1.00, 1.32, 10.99,
0.99, 1.00, respectively. We denote the ordered

|

unknown Pi s by u[l] 5-“[2] < ene f'p[k]' of
course, we do not know the values of the u[i]'s
nor do wé know how the u[i]'s are paired with the
I, 's.

4

as best that Hi

wish to select the ‘population with the lengest
population meail. Tdeally, we would correctly
select Nl3. #n incorrect choice might prove
costly since N3 has by far the largest population
mean. Thus, we would wigsh to select the correct
population (H3 hete) with high probability.

We now suppose that our goal is to select

associated with UTSJ; i.e., we

Generalizing to the case of k populations,

Iis eens I 've wish #o choose that Hi which is
associated with My If the I, associated with
Wik is, in fact, chosen, we gay that a correet
selection (CS) has been -made. Suppose that we
further require that ‘the probability of a correct
selection, P{C8), be > P%*, whenever

“Tk] - “[k—l] > 8%, 'where we have pre-specified
{8%,P*}. To avold the ‘trivial procedure of -simply
choosing a Hi at random (din which ‘case PECSY=1/K).,
we require that (17/k) < P* < 1,
have 6% > 0. We call {Hqutk] -

Also, we must
> &%
[k-1] > &%} the

Ereference zone. The complément of the preference
zone is called the indifferénce zoéne for the
obvious reasons. The origin of the ‘term
'indifference zone approach' should new be cledr.

To ‘illustrate -an indifference zone procedure, we
consider the normal means problem. Suppose there
are k independent normal pepulations, Hl, cees Hk,

with dnkﬁan“means,-ul, oo Hys and ‘knbwn., common

variance, ¢2. Our goal is fo select that ome
population whiéh has the largest mean:

1. Specify {é%,P*}, with §* > 0,

2. ‘Caléulate N = r(ck P ‘oféx)2 ], where.ck;P*

(a constant depending only on k and P%) is
tabled in, for éxample, Bechhofer (1954) -and
T.7 is -the 'cdeilidg' functionm.

3. Take N independent 'observations from each
M, i=L,:..5k,.
i
4. Let X ‘be the j-th observation Ffrom H

1—1,...,k, i=1,...,N,
means:

X = (l/N)'Einj’ t=1,... k.

Calculate the sample

5. Choose -as best that Hi coérresponding to the

largest sample mean. .(Cértainly, this is.an
-intuitively appedling selection rule.)

‘Note that this is a‘single-stage 'procedure; -the
common number ' of ‘independent ‘observations, 'N, from
each’ H is determified -a priotri by the

(1/k) < px < 1.

experimenter's choice of {&§%,P%}.

Table A consists of ck Pk—values taken from-
P

Bechhofer (1954) for certain choices of k and P¥*,

k| 2 3 5 10
P% .

0.75 | 0.9539 1.4338 1.8463 2.2637
0.90 | 1.8124 2.2302 2.5997 2.9829
0,95 { 2.3262 2.7101 3,0552 3.4182
0.99 | 3.2000 3.6173 3.9196 4.2456

Table A: ¢ ‘for selected k and P*

k,P*

As an example, let us assume that k=3 and o2=2. -
Table B consists of values of N = Ikc P a/8%)2 ]
kP O,

for selected choices of {&*%,P%}.

5%| 0.1 0.5 2.0 4.0
Pk
0.75 | 412 17 2 1
0.90 | 995 40 3 a1
0.95 | 1469 59 % a
P99 | 2617 105 7 2

Table :B: N .for k=3, 02=2, and selected
{.6%,Px}

Finally, fix ¢?=2 and §*=0.1. [Table C consists of
values of N .for warious choices.of k and P3*.

k 2 3 5 10
[P X
0.75 | 182 412 682, 1025
0.90 | 657 995 1352 1780
0.95 | 1083 1469 1867 2337
0.99 | 2165 2617 3073 3606

Table C: N for 02=2, .§%=0. 1,.and selected
k and P*%

From the above tables, it is easy to.see that'N
incdreases as k, o2, or P* increéase and as &%
decreases.

3. HE SUBSET. APPROACH

We now discuss another powerful ranking and
seleétion methodelogy; wiz., the subset approach
origimally formulated by Gupta (1956). Consider
an example similar to one in section 2: Unknown
4o us, the values of the underlying means.of k=5
populatiens, My, ..., L5 are.u;=1.00, puy=1.32,
‘1g=10.99, uy=0.99, and 'ug=10:96. These .values are
‘unknown to -us. We arxe dntervested in. determining
which Hi‘is associated with,u[SJ,'the largest. mean.
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Had we used the indifference zone approach, the
'correct' choice would have been I3. In the
subset approach, 'good' choices would be only I3,
only li5, or both of NIz and N5, Im fact, the
subset approach simply dictates that we select a
non—-empty subset of {lj, ..., Hg} which contains
the 'best' population. The selected subset might
contain only one population if, e.g.,

u[k] >> ”[kr1]3 on the other hand, the subset

might contain all populations if u[k] - u[l] is

very small. In any event, the number of
populations in the selected subset is a random
variable.

Here, a correct selection (CS) is said to have

been made if and only if that Hi agsociated with

u[k] is included in the selected subset. We wish

to have P(CS) > P*, where P* ((1/k) < P* < 1) is
pre-specified by the user. Also, it is desired
to chooge as small a subset as possible (while
maintaining P(CS) > P*). This prevents us from
always trivially selecting all of the Hi's,

although, as noted above, such a selection is
possible.

Note that an indifference zone is not specified
in this approach. However, there is a trade-off
between the indifference zone and -sibset
formulations: We need only specify P%* in the
subset approach, but the number of Hi's in the

selected subset is unknown a priori.

Consider the same normal means problem as in the

previous section. That is, Hi N N(ui, g2), where
02 is known and common to all k populations. We

wish to select the Hi associated with u[k]:

1. Specify P* and n.

2. Take n independent observatiomns from each

Hi’ i=ly...,k.
: _ n
3, Calculate X, = (1/n) } X,,, i=1,...,K.
i L "4
3=1 ‘

4, Include Hi, i=1,...,k, 1f and only if:

X max X, - (e o/v/n), where c

1<i<k hl k,P* , k,P*

is again from Bechhofer (1954).

Thus, we see that although the indifference zone
and subset approaches are different, they are
nevertheless related. This relationship is not
necessarily as close for more complicated ranking
and selection problems.

We point out that Santner (1973,1975) and Gupta
and Santner (1973) formulated the so-called
restricted subset approach. The indifference
zone and subset approaches can be viewed as
special cases of the restricted subset approach.
For more details, the reader should see the above.
references or Gupta and Panchapakesan (1979).

All of these procedures are intuitively appealing
and easy to use. Indeed, the only work in
implementing these procedures (aside from data
collection) lies in looking up certain constants

in tables. We do not advocate one of the three

methodologies over the others. The experimenter
should use whichever approach would appear to be
appropriate for the problem at hand.

4. OTHER PROCEDURES,
4.1 Normal Means

As discussed previously, Bechhofer (1954) and
Gupta (1956) did pioneering work on the normal
means problem. Tamhane and Bechhofer (1977,1979)
give a two-stage procedure for -finding the normal
population with the largest mean when the
variances of the II,'s are all equal to a known
common value. ThiS procedure is superior to that
given in Bechhofer(1954) in that the total number
of observations required in this two-stage '
procedure is' always less than that required by
the single-stage procedure. This savings is a
result of the fact that, after the first stage,
the two-stage procedure eliminates from
consideration populations indicated as being
'inferior'. We only sample from the non-
eliminated populations in the second stage.
Sequential (or multi-stage) procedures are given
in Paulson (1964) and Bechhofer, Kiefer, and
Sobel (1968).

Bechhofer, Dunnett, and Sobel (1954) give a two-
stage procedure for finding the normal population
with the largest mean when the variances are
common and unknown. In the first stage, we
sample from the II,'s in order to obtain an
estimate of the variance. In the second stage of
this procedure, the estimate of the variance is
used to determine how many additional observations
must be taken from each of the populations in
order to guarantee the indifference zone
probability requirement. A two-stage elimination
procedure for this case of common unknown
variance is given by Gupta and Kim (1982). Gupta
and Kim's procedure requires fewer observations
(on the average) than does that of Bechhofer,
Dunnett, and Sobel.

Dudewicz and Dalal (1975) and Rinott (1978) give
two-stage procedures for the normal means problem
in which the values of the variances of the ni's
are completely unknown.

4.2 Normal Variances

Suppose that the researcher is interested in
selecting that normal population which has the
smallest population variance. Bechhofer and
Sobel (1954) and Gupta and Sobel (1962) addréss
this problem.

4.3 Multivariate Normal

Frequently, the normal populations with which the
statistician is working are not independent.
Thus, it is worthwhile to consider the problem of
finding the multivariate normal component with
the largest mean. This problem is of particular
import to the simulator since he may use variance
reduction techniques which induce (positive)
correlation amongst all k simulated systems. It
turns out.that such correlation induction,
coupled with the use of the correct multivariate
normal ranking and selection procedure, can
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decrease the number of observations needed in an
experimenit. Some multivariate normal procedures
are given by Gupta, Nagel, and Panchapakesan
(1973) and.Gnanadesikan (1966).

4.4 Bernoulll Parameter

Suppose that we have. k drugs, Hl’ vees nk, and
that the underlying cure rates are pl, s Ppo

respectively. We are interested in determining
which Hi is associated with the‘largest of the

p;'s. We can treat this problem as that of

finding the Bernoulli population with the largest
probability of "success'. Fundamental papers
concerning this topic are Sobel and Huyett (1957),
which uses a single-stage indifference zone
approach, and Gupta, Huyett, and Sobel (1957),
which uses a single—stage subset procedure.
Recently, Bechhofer and Rulkarni (1981,1982),
Bechhofer and Frisardi (1983), and Kulkarni and
Jennigon (1983) have given an éxtremely efficient
sequential procedure for this problem.

4,5 Multinomial Parameter

Here, we attempt to find the multinomial cell with
the largest underlying probability. The
' procedures which deal with this problem generally
call for the user to take observations from the’
multinomial system in question until one cell has
'significantly' more observations than the other
cells. That' cell is then dectlared to be the cell
with the largest underlying probability.

Bechhofer, Elmaghraby, and Morse. (1959), Cadoullos
and Sobel (1966), Bechhofer, Kiefer, and Sobel
(1968), Alam (1971), and Ramey and Alam (1979)
glve such procedures, the latter being the most
parsimonious with observations. Some érrars in
Raméy and Alam's tables are corrected by Bechhofer

. and Goldsman (1983). Gupta :and Nagel (1967) study
the problem via the subset approach.

Now, consider k. arbitrary populations le‘--y” Hk.

We wish to select that population which has the
highest probability of being the 'best', where
'best" 1s defined by the user. Suppose Hi has.

probability Py of being the 'best', i=1,...,k,
where p; = 1. We will think of I, as

corresponding to the i~th multinomial cell of a
'krnomial distribution, 1=1,...,k. Suppose we
take an observation from each of the H,6's. (This
is called taking observations vector—a%—a—thme )
Clearly, of these k observations in the vector,
one will be the 'best' according to some criterion
of goodnesa. '(Use randomization, Lf nécessary.)-’
Award one 'success' to the multinomial cell
corresponding to the H from which the 'best'

observation came. Award the -other cells zero
'suctesses'. We can thus think of the problem of
sampling from k arbitrary populations .as.one of
sampling from one k-nomifal distribution.

Therefore, the multinomial problem is actually
equlvalent to finding that one of k arbitrary
populations which has the highest probability of
being the 'best' (see also Bechhofer and Sobel
(1958)). Hence, any multinomial procedure is, in

‘

a sense, a nonparametric procedure, This has .
tremendous ramifications for the prattitioner

. since, in a simulation study of k systems, nothing

at all may be known about the underlying
distributions of the systems.

»

4.6  General References

Unfortunately, only a limited number of texts have
been written on the subject of ranking and
selection. The first, Bechhofer, Kiefer, and
Sobel (1968), is a mathematically sophisticated
monograph'rhst‘contains many general' séquential
procedures. )

Gibbons, Olkin, and Sobel (1977) is a relatively .
easy book to read. It 1s meant only as an

" introductory text., The discussion of the subset

approach is very limited. The reader should see
the review of this book given in Bechhofer (1980)

An all-purpose book is that of Gupta and
Panchapakesan (1979). Both the indifference zone
and subset formulations are thoroughly treated.
The text contains an excellent bibliography.

Dudewicz and Koo. (1982) contains a comprehensive
bibliography of the ranking and selection
literature.

The thesgis of Raskopf (1982) provides a very

clear summary of several of the normal means
procedures. Each procedure cited in this thesis
is explicitly stated. Numerical examples are also

_ given.

5. RANKING AND .SELECTION IN SIMULATION

We now describe how ranking and selection
techniques can be used by simulation practitioners,
Of course, in real-life simulation problems, the
data are ratrely normally distributed; however,
many of the aforementioned ranking and selection
procedures are robust against the normality
assumption. A more serious problem is that
simulated outputs are- frequently serially
correlated. That is, adjacent output data from a
simulation might not be independent.. It might
appear that this difficulty immediately makes the
use of ranking and selection procedures an
impossibility for the simulator Such 1s mot the

casé.

Consider a long run of output data. Under very
mild conditions (see the desé¢ription -of ‘phi~- - -
mixing' in Schruben (1982b) for further details), .
the data at the beginning of the run are virtually
independént of the data at the end of the run. In
fact, if a run is made that i1s sufficiently long,
the data can be divided into nearly independent -
'batches'. For example, in a run of 10000
observations, the experimenter may divide the
output into ten batches, each with a batch size of
1000 observations. With the exception of the
opservations cloge to the ends of adjacent
batches, the batches can be thought of as virtually
independent of each other (assuming again that tlie
run. is sufficiently long).

Now, take the sample average of all of the
observations in a particular batch -~ this is
called the batched mean of that batch. If the
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data are stationary (i.e., the data have the same
underlying distribution), it can be shown that
for sufficiently large batches, the batched means
are approximately independent and normally
distributed (although we do not necessarily know
their mean and variance). We can thus treat each
of the batched means as a single independent
normal observation; the 'usual' ranking and
selection procedures can now be applied to these
batched means. The performances of k different
simulated systems can be compared by using as
normal independent observations the batched means
of the k corrvesponding simulation runs.

Note that the same arguments can be applied to
what is called the 'method of replications'. TFor
additional material concerning the methods of
batched means and replicatioms, see Law and
Kelton (1982).

An example

We now give a simple example: Consider k
simulated systems, Hl, ey Hk’ with underlying

means ul, ey uk, none of which is known a
priori. The goal is again to select that Hi
corresponding to u[k]. Suppose that we can

choose a batch size m for each of the k systems
such that the batched means are approximately
independent and normal. We will deal with three
progressively more general cases concerning the
variances of the normal batched means; namely,
the variances are:

(a) the same for all k populations and known,

(b) the same for all k populations and
unknown, and

(c) completely unknown.

Note that (c) would most likely be the case
applicable to an actual simulation comparison
study of k systems.

Finally, suppose for convenience that there is no
initialization bias present in the output of any
of the k systems. I.e., the output from a
particular system is stationary, albeit serially
correlated. (See Schruben (1982a) for a survey
dealing with the problem of initialization bias.)

Case (a): Variances of batched means are common
and known ( = o2, say).

We use an indifference zone procedure directly
analogous to that given in section 2:

1. Specify {8*%, P*, m}, where m is the batch
size.

2. Calculate N = r(ck P o/8%)2 ], as before.

3. Take mN observations from each Hi, i=1,...,k.

Let Xij denote the j-th observation from Hi’

i=1,...,k; 3=1,...,mN.
_ mN
4, Calculate X, = (1/mN) Z X,., i=1,...,k.
i 4o1 1

5. Select as the population with the largest _
mean that Hi corresponding to the largest Xj.

Agdin, we remark that the assumptions for the
above illustrative case may be somewhat
unrealistic.

We now relax the assumptions slightly;:

Case (b): Variances of batched means are common
but unknown.

We use a procedure analogous to that of Gupta and
Kim (1982). This.two-stage elimination procedure
combines the indifference zone and subset
approaches. In the first stage, 'inferior'
populations are eliminated; the remaining
populations receive additional sampling in the
second stage, where a winner is finally chosen.

First Stage:

1.1 Specify {&*%, P*, m, no}, where m is the
batch size and oy is the number of batches

which we will sample in the first stage.

1.2 Again, let Xij be the j-th observation from
Hi, i=1l,...,k; j=1,2,... Calculate the

(first stage) batched means:

ng
X.. = (1/m) z; X.., where
it jEte-1) ij

iit is the t-th (first stage) batched mean

from Hi’ i=1,...,k; t=1,...,n0.

1.3 Calculate the first stage sample means:
mn n

=(1) _ 0 _ 05

X;” = (1/mn) ) X5 = (1/ny) tz Xipo

i L
i=1,...,k. 3=1 1

1.4 Calculate the first stage 'pooled'
variance:

k n
- - (1.2
s2= (k17" ] 10 &, X2
i=1 t=1
1.5 Find the subset I of {1,...,k} such that
I= {i|§§l) > max - ((ds//no)—s*)+},
1<j<k
where d is to be found in Gupta and Kim
(1982) and where y+ = max(0,y) for all y.

1.6 If there is only one element, say r, in I,
then stop and declare that Hr has the

largest mean. Otherwise, continue to the
second stage.

Second Stage:

2.1 Calculate N = max {no, [(hs/8%)2 |}, where
h is to be found in Gupta and Kim (1982).

2.2 For each Hi such that iel, take m(N—nO)

additional observations.

2.3 For each IIi such that ieI, compute the
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overall sample mean:

- mN
X, = (1/mN) jzlxij.

2.4 Declare that Hi associated with the

maximum 25 as having the largest mean.

Note that aside from taking data and making some
easy calculations, the above procedure requires
only that. we look up two constants.

Finally, we state yet a more genexnal procedure;

Case (c): Variances of the batched means are
completely unknown.

We now adopt a two-stage indifference zone
procedure from Dudewicz and Dalal (1975). In
the first stage, we estimate the variances of
the batched means from each Hi' These estimates

are then used to allocate ‘efficiently’
observations in the second stage.

First Stage:
1.1 Specify {é%, P*, m, nO}.

1.2 As hefore, calculate the (first stage)
batched means, Xit’ i=l,...,k; t=l,...,n0.

1.3 As before, calculate the (first stage)
sample means, iél), i=1,...,k.

1.4 Calculate the first stage sample
variances:

F®y2

i

-1 %% =
si = (n,-1) tzl Xy , i=l,... k.

Second Stage:

2,1 Calculate
n; = max {ng+1, f(siﬂ/a*)2 Th, i=1,... .k,

where H is to be found in Dudewicz and
Dalal (1975).

2.2 Take m(n, - n,) more observations from
i 0
each I, .
hd
2.3 Calculate the additdional batched means
from each Hi:

X, , i=1l,...,k; t=n

it +1,...,0

: o P
2.4 TFor each population, calculate the
'pseudoraverage':

n,
7. - W oX

i tzl aitxit’ where a formula for the
ait's can be found in Dudewicz and Dalal.

2.5 Declare that Hi associated with the

largest ?5 as having the largest mean.

Once mote, it turns out that no tedjous
calculations are required in, order to implement
the procedure.

Tf one is unwilling even to make assumptions

about the approximate normality of the batched
means, the obvious extension of a nonparametric
procedure might be useful (e.g., the multinomial
procedure of Ramey and Alam (1979)). Thus, the
point of this section is that all ranking and
selection procedures can be directly extended for
use in the simulation environment.

6. CONCLUSIONS

Tn this article, we have introduced the reader to
basic ranking and selection terminology and
procedures. The simplicity and appeal of these
procedures are to be stressed. These procedures
have many applications in computer simulation
studies. Further, the simulator will fiand that
they are easy to implement. It is hoped that the
reader will take advantage of this important
branch of statistics.
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