Proceedings of the 1983
Winter Simulation Conference
S. Roberts, J. Banks, B. Schmeiser (eds.)

325

A TUTORTAL VIEW OF SIMULATION MODEL DEVELOPMENT

Richard E. Nance
Department of Computer Science
Virginia Tech
Blacksburg, Virginia 24061

Working from the background of simulation language developments, we develop an

understanding of the current status of simulation model development.

Factors

characterizing the current status include a sghift in emphasis from program to

model, more commitment $o0 modeling +ools,

and +the lingering impedance of

simulation language isolation. Current and future needs are identified. Specific
approaches to meeting these needs are cited in an extensive description of current

research, and in summary we conclude

that the technology of simulation model

development is in a transitional period that portends more rapid changes for the

future.

1. A BRIEF HISTORY OF SIMULATION SOFIWARE

A brief chronology of simulation software
conveniently divides into five periods: the
early era of custom programs, the period of
emergence of simulation programming languages
(SPLs), the second generation of SPLs, the era of
extended features, and the current period.

During 1955-60, simulation like most computing
applications was done with custom programs, i.e.
each simulation required the development of all
software necessary for accomplishing +that task.
The late K.D. Tocher 1lay the groundwork for
changing +this with his recognition of common
functions, grouped together under the title
General Simulation Program (GSP) (Tocher and Owen
1960) . Tocher's contribution of GSP, and his
writing of +the first Tbook (Tocher 1963)
contributed much to the early realization of the
importance of software support for the simulation
task. Tocher also invented +the Wheel Chart, a
forerunner of the Entity Cycle Diagram, which
*provides a conceptual basis for symbolic modeling
underlying the program generators still in use in
the United Kingdom and elsewhere.

The first SPLs emerged during the 1960-65 time
frame. Thorough histories of both GPSS (Gordon
1981) and SIMULA (Nygaard and Dahl 1981) are
available. Control and Simulation Language
(osL), produced by Buxton and Laski (Buxton and
Laski 1963) in the UK, and the first version of
GASP was - 'developed by Kiviat (1963).
Interestingly, the software developed during this
five year time period form the foundation of the
simulation software in use today.

The second generation of SPLs followed in the
time frame 1966-70. GPSS II, ITT, %60, and V all
appeared in +this period as did several versions
of SIMSCRIPT IT ~ II.5, and ITI-Plus. SIMULA 67
superseded the earlier version, and Extended CSL
(ECSL) replaced its ancestor. Simulators like
GASP took on various new forms as well; e.g. GASP
IT, IIA, and others.

While entirely new issues of SPLs were uncommon
in the 1971-78 period, marketing strategies
emphasized the addition of features +to the
existing versions. For example SIMSCRIPT II.5
incorporated the process concept and added a
continous simulation capability. GPSS shed some
of its insularity and enabled external access to
FORTRAN and PL/I routines. In an ambitious
effort at Nordem, actually begun in the 1late
1960s, graphical abilities were added in a
version permitting limited wuser interaction,
designated as NGPSS (Norden Division 1971).° The
interactive versions of other SPLs began +to
appear toward the end of this period.

Major developments in the UK and Europe auring
the 1971-1978 period extended the ideas
introduced with Programming By Questionnaire
(Oldfather et.al. 1966, Oldfather et.al. 1967) to
the interactive production of simulation
programs. Prominent in +this work are the
original contributions of Clementson (1973) in
the development of CAPS based on BCSI, the
multiple target language capabilities of DRAFT
(Mathewson 1974), (Mathewson 1975), and the
modular design suggested with MISDES (Davies
1973). Related efforts, with more ambitious
goals in the U.S., are described in the papers by
Heidorn (1974), (1976).

Toward the end of this period, concerns for more

CH1953-9/83/0000-0325 $01.00 © 1983 IEEE

326 T Richard E. Nance

fundamental dissues in simulation modeling
appeared in the book by Zeigler (1976), which
drew together ideas published earlier in various
papers and reports. At the same time, +the heed
for a better domain for model development
appeared in the work of Nance (1977), Kleine
(1977aY, and Bren (1978). Efforts such as Nelson
and Lindstrom (1977) and Heimberger (1978) began
to illustrate the significant capabilities for
interactive model development and program
execution.

2. THE CURRENT STATUS

Simulation model development is in a transition
period: the transition in focus from programming
to model development. This transition is
reflected in +the interest and activities of
organizations ranging from marketing firms such
as Pritsker and Associates to research groups in
univergities. While several factors characterize
the transition, three are most obvious:

(1) a shift frdm +the program +to the model
view of the simulation process,

(2) interest in and commitment to the
development of support fools, and

(3) the dinfluence of a
impedance-

concépt/language

The shift in focus from program to wodel is
reflected in the inereasing concern for
conceptual problem description in opposition to
larnguage prescribed guidelines. The Graphical
Modeling eand Simulation System (GMSS) is onme
example (Austell 1981), and recent extensions of
program generators (Mathewson 1978) offer yet
another. In one sense the model view represents
a realization that executable languages o6ften are
constraining in their realization and expression
of concepts, end the "rush to code" is a poor
design strategy. Stemming from this emphasis on
conceptual modeling is the developmént ~ of
intermediate specification forms, most often not
executable in themselves. The Ship Combat System
Simulator (SCSS) (Pohoski 1981) utilizes a
network representation with combat system
elements described as nodes following a specific
syntactic format. The nodal definition and the
linkages among nddes prescribed in SCSS provide a
semantic structure closer to thé conceptual views
of the combat system engineer than can be derived
from the SIMSCRIPT II.5 code, that constitutes
the eventual (executable) representation. Other
examples can be cited to support the claim that
multiple model répresentations are becoédming more
the "standard” for large, complex models, and the
clear +trend is +toward the separation of model
description and program execution.

Increasing expectations indicated by the use of
simulation for yet larger and more complex models
and the increased focus on model description have
ushered in new concerns for tools to support the
model development process. Commercial products
now offer auxilary .data base aystems and
graphical output generators. The communication
and formatting ' capabilities of SDDL (Kleine
1977b) are being aughmented by analysis routines
that are applied to non-executable model
representations. Such. support tools will play

experimental design, the

major roles in the verification of non-executable
model representation. }

The concept/language impedance stems from the
parochialism created by slavish adherence to SPL
repregsentations of world views, see (Nance 19811b)
for further discussion of this problem. Even
more serious is the continped use of general
purpose languages, in preference to SPLs, for
simulation modeling. Despite +the optimistic
expectations of educators, no decrease is readily
apparent in the number of models in FORTRAN,
PL/I, PASCAL, etc. This fact, perhaps more than
any other single point, emphasizes the perceived
difficulties of tranaslating modeling concepts
into a correct SPL representation. Nevertheless,
the barrierg of language isolation will continue
to inhibit the development of simulation model
representation, As Kiviat (1967) aptly phrased
it so many years ago, we continue to have an
"inversion of theory and interpretation" with the
misguided view that the theory is expressed by an
SPL.

3. THE MODEL LIFE CYCLE

Figure 1, taken from Nance and Balci (1983),
characterizes the model life cycle as progressing

through chronological periods: problem
definition, model development, and decision
support. Figure 2 offers an elaboration of the

phases within each of these periods and depicts
the processes by which a modeling study
transitions from one phase to another.

The activities during the problem definition
phases principally dinvolve &he "eclient" and
project manager dialogue that hopefully results
in a precise definition of the system <to be
studied and +the objectives to be realized from
the study. Problem definition is dependent on
both technical and organizational (political)
factors, and success can be achieved only by
effective communication among the participants
and the documentation of decisions reached during
these phases.

Thé model development phases begin with the
defined gystem and the stated objectives.
Conceptual models in the minds of one or more
modelers must eventually find expresgsion in one
or more communicative models. The communicative
model represents a basis for assertions and tests
as well as the reconciliation of varying
concepts. The program model follows from a
communicative model; and, embodied within an
experimental model
produces results. Note that verification is
intended to be used wherever possible in all of
the phases. of problem definition and model
development. Validation in the traditional sense
is reserved +to the comparison of model results
with system behavior after completion of the
experimental model.

The integrated decision support period is
initiated with the acceptability of the model by
the client manager(s). Again, both technical and
organizational factors can contribute to the
acceptance decision; however, the support tools
can contribute significantly +to +the model
credibility, which is considered to be the most
crucial factor in the acceptance decision.

A Tutorial View of Simulation Model Development

DEFINITION
MODEL
DEVELOPMENT
DECISION SUPPORT
FIGURE 1. The Chronological Periods of the Model Life Cycle.
PROBLEM
DEFINITION
COMMUNICATED
PROBLEM PHASES
Problem :
Formulation |
FORMULATED
PROBLEM
Investigation t
DECISION SUPPORT of Solution |
PHASES Techniques]
DECISION PROPOSED SOLUTION
MAKERS TECHNIQUE
(Modeling)
IHTEGRATED Theestigation |
DECISION g Y MODEL DEVELOPHENT
PHASES
j SYSTEM AND OBJECTIVES
! DEFIRLTION ~. Model FormuTation
1 ’
. -
Presentation V4 CONCEPTUAL
Mode Results - MODEL
‘oce , es /" Redefinition
i / \ Hodel
I ! ' Representation|
! {
1
' MODEL COMMUNICATIVE
RESULTS MODEL(S)
X / Programming
\\Experimentation
\, PROGRAMMED
N MODEL
EXPERIMENTAL L
MODEL _.~=" Experimental
——— Design
FIGURE 2. chcaies in the Chronological Periods of the Model Life
e,

327

328 Richard E. Nance

4. FUTURE GOALS FOR SIMULATION MODEL DEVELOPMENT

The most comprehensive goal expressed Dby
researchers in simulation modellng is the
creation and consequent realization of the Model
Development Environment (MDE) The MDE would
provide an interactive setting for model ¢reation
so that the modeling actiwvities, supported by
necegsgary model development tools, contribute to
long term organization assets in the form of
models, data, experimental designs, and
expermentation results. An analyst or modeler,
within the MDE, would be supported in a
structured, more axiomatic, approach to the
modeling and experimentation activities. Model
verification, supported by such tools, would be
applied throughout the model development phases.
Emphasis in the €arly model development phases
would be on problem definition and precise
statements of system boundaries and study
objectives. Only later would the issues of
efficient execution emerge as constraints as
decision are reached regarding the implementation
of executable model representations.

A second important goal is that support be
provided throughout the model 1life cycle. of
course, this gosl is intimately linked to the
first,

5. APPROACHES TO THE IMPROVEMENT OF SIMULATION
MODEL DEVELOPMENT

The intent of this section 1is only 1o identify
approaches to improveément., References are
provided so that the interested reader can
consult them ' for details and specific
information. The approaches are categorized as
follows: (1) extension of software development
techniques, (2) extension of program generators,
(3) extension of SPL definition, (4) systen
specification languages, and (5) model-based
methodology. -

Some clain that simulation modeling is only a
minor extensioni of programmlng in software
development. Consequently, the Program
Development Environment (PDE) or Software
Engineering Environment (SEE) provide all of the
necessary tools. ! Perhaps a counter example to
this opinion is found in the necessity for
creating SDL/SDA &8s an extension of PSL/PSA
(Teichroew and Hershey 1977) for simulation
applications.

The program generator technology is widely used
in ‘the United Kingdom and elsewhere in Europe.
Some program generators such ag DRAFT and CAPRS
are now rather mature software systems.
Extensions to these generators are viewed as
providing ready communication between management
and analyst, and some capabilities for decision
support are believed to be readily achievable if
not alfeady present in current versions.

One school of thought i3 +that more formal
modeling' approaches are required to deal with the
complex challenges of simulation applications.
General systems theory is viewed as providing the
foundation for such approaches (Uren and Zeigler
1979). SPLs "based' explicitly on systems
theoretic concepts" and the "development of

conceptnal and mathematical theories for guiding
the practice of modelling and for designing
software tools ..." offer advantages over current
approaches (Uren and Zeigler 1979, P- 70). Also
within the scope of SPL extensiong, Yut differing
from the general systems theory approach is the
Entity-Attribute-Set (EAS) structure suggested by
Markowitz (1979) Utilizing the current five
levels of SIMSCRIPT II.5, Markowitz extends the
language applicability +to a data base 1level and
beyond. The result is a more powerful
descriptive mechanism but one that is still
executable.

The Delta Project (Holbaek-Hanssen et.al. 1977),
cooperatively between the Norwegian Computing
Center and the University of Aarhus, represents a
holistic view of life cycle support. While the
Delta Project cen be viewed in a narrow sense as
another system specification language, the
philogsophy advanced by Nygaard and Handlykken
(1981), (1981) reflect an intent much broader in
scope.

A final approach is the model based methodology,
Wwhich is descriptive of the Conical Methodology
(c) (Nance 1981a).
bagis for an implementation of a Model
Development Environment that is illustrated in
Figure 3, taken from (Balci 1983). The structure
of the Ada Programming Support Enviromment
(Advanced Research Projects Agency 1980) is
followed in explaining the support tools for
modeling. -) The CM emphasizes the
hierarchical decomposition through a top-down
model definition <followed by a bottom wup model
specification.

6. SUMMARY

A brief chronology of simulation software helps
to undérstand the current status, which finds
gimulation modeling in a transitional period.
Viewed in +the context of the model 1life cyecle,
the needs for more effective and efficient
simulation model development can be identified.
Some consensus is evidenit in the definition of
tools, but the approaches to improvement are
charted quite differently by researchers and
practitioners in the simulation community. At
this Jjuncture no clear directions have been
established. However one prediction can be made
without hesitation: the differences between the
simulation model development technology of today
and ‘that of fifteen years hence will be far
greater +than the differences perceived between
the current technology and that of fifteen years
in the past.

Ada is a registered trademark of +the U.S.
Department of Defense Ada Joint Program Office.

This methodology forms the

A Tutorial View of Simulation Model Development 329

Model

Model

Analyzer [Model

Translator

Generator

Command Model

Language

KMDE Verifier

Interpreter Functions

==\
=77
/// \
A(" !
' \ Source \
Assistance Hardware and \ Code !
\]
Manager Operating Systeu ! Manager {

Electronic /|
Premodels

/) Mail /
Manager

/)
’&\\\\Gystem /
/4
Y
Text \/
Editor

Project

Manager

F;\j\\\\
Minimal MDE

FIGURE 3. Layered Illustration of the Software Components
of a Model Development Environment (MDE).

330 . Richard E.

REFERENCES

Advanced Research Projéects Agency (1980),
Requirements for ADA programming support
ehvironments - STONEMAN U.S. Dept. of
Defense, Arllngton, VA. ’

Austell WP Jr (1981), Graphical modeling and
simulation system (GMSS), Simulation: Tools
andTechnlques Conference, Washlngton, De. ,

Balci O . (1983%), Reqiiirements for iiodel
development environments, Techricdl Repord
(S83022-R, Départment of Computer Science,
Virginia Téch; Blacksburg; VA.

Buxton JN, Iaski J& (1963), Conbrol and
51mulat10n language, Computer Joiirnal, 5, pp.
194-199.

Ei%enéed control and
University of

Clementson AT (1973),
simulation language,
Birmingham, England.

Davies NR (1973), A modular interac%ive system
for discrete event simulation modeling,
Proceedings of the Ninth Hawaii Intérnational

Conference on n System Scienceés, pp. 296.

Gordon G (1981); The develophent of the genersal
purpose simulation system (GPSS). In:
History of Programming Languages, Wexelblat R
(ed.), Académie Press, pp. 403-437.

Hardlykken P, Nygaard K (1981), The DELTA
description language: motivation, main
concepts and ‘éxperience from use; Software
Engineering Environments, Hunke H (ed.
North Holland, pp. 157-172.

Heidorn GE (1974), BEnglish as a very high level
language for simulation programmlng, SIGPLAN
Notices, 9(4), pp. 91-100.

Heidorn GE (1976), Automatic programming through
natural language dialogue: a survey, IBM J.
Research and Development 20 PP 302-313,

Heimberger DA (1978), Intéractive modeling,

Simulation and SIMSCRIPT Conference,
Washington, DC.
Holbaek-Hanssen E Handlykken P, Nygaard X

(197171), Systems description and the DELTA
language, Report No. 4 (Publitation No.
523), Norwegian Computing Cénter, Oslo.

Kiviat PJ (1963),. GASP < a general activity
simulation | program, Applied Reseairch
laboratory, TUnited States Steel Corporation,
Monroeville, PA.

Kiviat PJ (1967), Digitadl computer &imalation:
riodeling concepts, RAND Menorandum
RM-5%78-PR, Santa Monica, CA.

Kleine H (1977), A véehicle for déveloping

standards for simulation programmlng,
Proceedings of +he Winter Simulation
Conferénce, pp. e 730=741.

Kleine H (1977}, Software design . and

documentation languagé, JPL Publication

Nance

77-24, Califérnis Institite of Technology.

Markowitz HM - (1979), Proposals for the
standardlzatlon of . status description,
Reséarch Repoft RC 7782 (33671), IBM 1J
Watson Reseéatch Center; Yorktown Heights, NY.

Mathewson SC (1974), Simulation program
generators; Simulation, 23(6), pp. 181-189:

Interactive simulation

Mathewson SC (1979),
Proceedings of the

program generators,

European Computing Conference on Interactive

Systems, Brunel University, pp. 423-439

Mathewson SC (1978), Computer aided simulation
modeling and experlmentatlon, Proceedlngs of
the Eighth Australian Computer Conference,

Pp. 9-15.

Narice RE (1977), The feasibility of and
methodology for developing federal
documentation standards for simulation

models, Fimal Report to the Natiohal Bureau
of Standards, Department of Computér Science,
Virginia Tech.

Nance RE (1981), Model representation in discrete
eévent gimulation: the conical meéethodology,
Technical Report 0S81003-K, Department of
Computer Science, Blacksburg, VA.

Nance RE (1981), The time and state relationships
in simulation modeling, Communications of the
ACM, 24(8), pp. 173-179.7

Nance RE, Balei O (1983), The objectives and
requirements of model managenent, Technical
Report (883024-R, Department of Computer
Science, Virginia Tech, Blacksburg, VA.

Nelson SS, [ILindstrom ¢ (1977), “CONSIM: a
conversational simulatioh . language
implemented thréugh interpretive control
self-modeling, Technical Report UUCS-77106,
Department of Computer Science, University of
Utah.

Norden Division of United Aircraft Corporation

{1971), Users guide to NGPSS, Norden Report -

4339R0003.

Nygaard X, Dahl 0J (1981), The development of the
SIMULA languages. In: History of
Efogrammlng Languages, Wexelblat R (ed.),
Academic Press, pp. 439-493.

Nygeard ¥, Handlykken P (1981), The system
development process -- its setting, some
problems, and need for methods, Software
Engineering Environment, Hunke H (ed.), North
Holland, pp. 157-172. -

Oldfather PM, Ginsberg AS, Markowitz HM (1966),

Programming by duestionnaire: how to
construct a program generator, RAND Report
RM-5129-FR.

Oldfather P, Ginsberg AS, Love PL, . Markowitz HM
(1967), Programming by guestionnaire: the job
shop simulation program generator, RAND
Report RM-5162-PR.

A Tutorial View of Simulation Model Development

Oren TI (1978), A personal view on the future of
simulation languages, Proceedings of the UKSC

Conference on Computer Simulation, PP
294-306.

Oren TI, Zeigler BP (1979), Concepts for advanced
simulation methodologies, Simulation, égﬂé),
pp. 69-82. :

Pohoski MW (1981), A top level description of the
ship combat system simulation, Naval Ocean
Systems Center (jointly with NWC and NSWC).

Teichroew D, Hershey EA (1977), PSL/PSA: a
computer-aided technique for structured
documentation and analysis of information
processing systems, IEEE Transactions on
Software Engineering, Vol. SE-3(1), pp.
41-48.

Tocher XD (1963), The Art of Simulation, Van
Nostrand Company, Princeton, NdJ.

Tocher KD, Owen 6D (1960), The automatic
programming of simulations, Proceedings of
the Second International Conference on
Operational Research, pp. 50-68. -

Zeigler BP (1976), Theory of modelling and

simulation, John Wiley and Sons.

331

