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A stochastic computer simulation model

interrelated random variables.

is a description of a system of

Realizations of the system can be used to estimate

parameters of interest. Variance reduction techniques (VRTs) transform simulation
models into similar models that permit more precise estimation of bthe parameters.
The basic types of transformations are defined and a simple example is given.

1. INTRODUCTION

A computer simulation model of a real or
conceptual system is  constructed by: 1)
Characterizing those elements of the system that
cannot be predicted with certainty (time between
customer arrivals is distributed exponentially),
2) defining deterministic rules that explain how
the system will react +to actual values of the
uncertain elements (customers will be served in
order of arrival), and 3) deciding what
performance measures will be recorded to estimate
parameters of interest (mean of the customer
waiting +times to estimate expected waiting time).
A model constructed in this way mimics the actual
functioning of the system under study, or at least
the essential elements of it. However, +the only
real restriction is that our model provides
estimates of the parameters of interest. TUnless
we actually want to observe the simulated
operation of the system, we will be satisfied with
"good" estimates, no matter how we arrive at them.

Variance Reduction  Techniques (VRTs) are
transformations. They transform simulation models
into related models that yield better estimates of
the parameters of interest, where "better” means
more precise. This gain in precision is often at
the expense of +the one-to-one correspondence
between the model and the real or conceptual
system. In this paper, we characterize the types
of basic transformations that are combined to form
VRTs. We do this by way of an illustration,
although the definitions and properties of the
basic transformations can be made mathematically
and statistically rigorous (Nelson, 1983). We
begin with some background and an abstract
characterization of stochastic computer simulation

models, then proceed to the example illustrating
the basic transformations. 4 concluding section
suggests how one might approach a model with the
idea of applying VRTs.

2. BACKGROUND

Many VRTs used in computer simulation had their
origins in Monte Carlo methods for estimating the
value of mathematically intractable integrals
(Hammersley and Handscomb, 1964), or in survey
sampling methods for estimating characteristics of

large populations (Cochran, 1977). One of the
first extensions to systems simulatlion was MOy
(1965). Kleijnen (1974) gives  extensive

descriptions of VRTs that are useful in simulation
studies; Wilson (1983) provides a survey of the
current state of variance reduction research. The
most widely used VRTs are “common random numbers”
and "antithetic variates" (Wilson, 1983), but
“control variates" (Lavenberg and Welch, 1981) has
received much recent interest. Probably the best
practical guide on using VRTs is McGrath and
Irving (1973, 1974). Current research efforis are

in identifying classes of simulation models
(stochastic networks, for instance) and
establishing conditions that insure that a

particular VRT will be effective. See, for
instance, Sigal, Pritsker, and Solberg (1979),
Kumamoto, Tanaka, Inoue, and Henley (1980), Carson
(1983), Pishman (1983), Fox (1983), and Grant
(1983). The author's work (Nelson, 1983) is in
establishing a general mathematical-~statistical
framework for studying VRTs.
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3. SIMULATION MODELS

For our purposes, a simulation model is a
description of a system of random variables; the
dimensions of this system may themselves be random
variables. Given a source of randomness (usually
U(0,1) random variables) realizations of  the
system can be generated that are consistent with
the model. We partition these random variables
according to how they are defined.

Inputs are random variables defined by knowm,
posgibly conditional, probability distributions.
Examples might be service and interarrival times
in a queuing simulation, or the quantity demanded
per period in an inventory model. Another example
is a service time distribution conditional on the
number of customers in the system, but given this
value the distribution is completely specified.

Qutputs are defined by

known, deterministic
transformations of +the inputs. These are the
observations that we seek to generate. Their

distributions are not known completely, but we
have a rule or transformation that tells us how to
generate realizations of them from realizations of
the inputs. We can think of these transformations
as representing the actual workings of our system.

Statistics are functions that aggregate outputs
into  point estimates of the parameters of
interest. We often use some sort of sample mean
as our statistic. Notice +that we include the
statistics as part of the description of the
model, not as separate entities. When we talk
about "variance reduction"” we mean reducing the
variance of the statistics.

Obviously we have glossed over a number of subtles
in defining +these sets of random variables.
However, this loose characterization can be made
rigorous, and it captures all the essential
features of simulations that we need +to discuss
variance reduction. For further details see Nelson

(1983).

VRTs are transformations that redefine these sets
of random variables. To be effective, they must
1) increase the information available, and/or 2)
make bebtter use of the available information in
the model about the parameters of interest. Here
we use the %term information in the sense of
statistical information contained in a random
variable about a particular parameter (see Barra,
1981). A basic principle of statistical
information is that we cannot dincrease the
information that a random variable contains by
transforming it via .a transformation that does not
depend on the unknown parameter. However, there
iz a potential for loss of information when we
transform inputs into outputs, and outputs into
statistics. We may increage the information
available by changing +the definitions of the
inputs, and/or by altering the allocation of our
sampling effort toward random wvariables with
-greater information content. We may use the
available information  better by employing
transformations that are statistically efficient.

Thus p

In the next section we illustrate the Dbasic ways
we can redefine a model to accomplish these goals.

4. ILLUSTRATION OF TRANSFORMATIONS

In this section we define and illusirate the six
basic types of transformations that form all VRTs.
A transformation is not a VRT in and of itself,
and application of a transformation does not
guarantee a variance reduction. VRTs are formed
by combinations of these basic transformations and

prior knowledge (see section 5 below) about the
specific  problem at hand. I4s effectiveness
depends on the characteristics of the simulation

model. The first two types of transformations are
ways to redefine the inputs of a simulation model,
the next two transform the outputs, and the final
two change the statistics.

The example we use was originally suggested by
Kahn (1956) %o explain some basic VRTs. We will
use it to  illustrate the six types of
transformations. Consider the problem of
estimating the probability, p, that the sum of two
fair dice is 3. Clearly p = 1/18, but suppose
that we do not know this and want to estimate p by
togssing dice. We will foss n pairs of dice (2n
single dice), or let a computer program simulate
these tosses. Let

Xi = {1, if the sum of the ith toss is 3 (1)

0, otherwise i=1,250e0,n

Pr(Xi = 1). As our statistic we take

— 1 n
X=— ZX.
n . i
i=1

for which !

B(X) = p and Var(X) = —%53

For convenience later we let

Py = Pr(toss of a single die = j)

Our model is defined by the probabilities p. +that
define the working of the dice (inputd), ‘the
transformation (1) that gives us our  score
(outputs), and the statistic X. We now look at
ways to transform +this model. The names given %o
these classes of transformations are our own.

4.1 Distribution Replacement (DR)

Redefine a marginal distribution without altering
any statistical dependencies.

Suppese that we redefine the working of
in the following way. Let

our dice

and
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= p = =g =

P3 - P4_ - P5 P6 12
Thus the total 3 will now occur four +times as
often, on average. Notice that the individual die

tosses are still independent. To compensate for
the altered probabilities we let

=1%
xdr - Z'X

which is an unbiased
variance

estimator of p, having

. <011
Var(Re,) = S

4.2 Dependence Induction (DI)

Redefine statistical dependencies without altering

any marginal distributions.

On any particular pair of tosses, if we see the
outcome (first, second), we were actually just as
likely to have seen (7 ~ first, 7 - second). TFor
instance, the events (2,1) and (5,6) have the same
probability of occurrence. Now the well~known
relation

Var(Xi + Xj) = Var(Xi) + Var(Xj) + 2Cov(Xi,Xj)

shows that negative covariance can decrease the
variance of a sum. Thus, if we roll (first,
second) on toss 2i - 1, we will just use (7-first,
7-second) for toss 2i. This causes

Cov(X ) = ;pz

2i—1’x2i

and results in

. +049
Var(Xdi) R 25

4.3 Sample Allocation (SA)

Redefine the allocation of sampling effort without
altering the definition of individual
observations.

We now approach the problem a bit differently.
Suppose we realize p = 2p,p, and we decide to use
our 2n single die tosses to estimate D, and Py
Let

T, = { 1, if the ith single toss is 1

0, otherwise i=1,2,...,m

Zi = 1, if the ith single toss is 2
0, otherwise i=mn+,...,2n

and our statistic is

Xsa = 2Y7
The key point here is that the variance of Xsa
depends on how we allocate our 2n ‘tosses. In this

case, the optimum allocation is to let m = n, and

~ 031 077
Var(R ) & 125 + 50
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4.4 BEquivalent Allocation (Ea)

Redefine the observations sampled without altering
the allocation of sampling efforst.

We use the same approach as
but now we score

in illustrating SA,

Zi = %3 if the ith single toss is 2
%3 if the ith single toss is 4
0, otherwise i=m+,...,20n
This could bYbe Justified if we realize that
Py = Py- Again using the allocation m = n
022 .03%1

Var(X ) = =25+
ea n o

4.5 Auxiliary Information (AL)

Redefine the arguments of a statistic without
altering its functional form.

We continue to work with the X estimator. We
might notice that we are actiially not utilizing
all the available information. Since Py = Py, we

can use the Yi observations in %, and vice versa.

Thus, both ¥ and Z are based on 2n observations,
and
Var(® .) = =012
ai n
Of course X ., is biased because Y and Z are
dependent.

4.6 Bquivalent Information (B1)

Redefine the functional form of a
without altering its arguments.

statistic

estimator, X. A class of
using equivalent information

Recall our original
unbiased statistics
is

For example, suppose we let

1 =2 =1
wn 2n Wy n

where Ewi =1,

w, = i=2,%,¢..,0-1

1 2n
(Maybe we believe the dice "warm up.") In this
case we have an estimator with greater variance

, . 052 +130
Velr(Xei) “ n-2 * n2

Looking at the most used VRTs, we find that common
random numbers and antithetic variates are based
on DI transformations, while control variates
combines AI and EI.
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5. PRACTICAL GUIDE

How does one approach a large and complex
gimulation model and decide what kind of VRT to
apply? Such a discussion is well beyond the scope
of +this paper. However, it is widely accepted
that some sort of prior krowledge is required fo
effectively apply any VRT. By prior knowledge we
mean any knowledge; either known with certainty or
suspected, beyond what is needed tp build the
original simulation model. Some examples are:

1. Any analytic solutions %o parts of the
problem.

2. Any analytic models that approximate the
aystem under study.

3. Previous experience with similar gystems.

4. Statistical knowledge: correlations between
random variableg in the model or properties
of their distributions.

5. Relative importance of particular random

variables in the final estimate.

Prior knowledge makes effective uge of the types
of transformations outlined &bove possible.
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