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SIMULATION ANALYSIS

W. David Kelton
Department of Industrial and Operations Engineering
The University of Michigan
Ann Arbor, Michigan 48109

The use of a computer simulation model to learn about the system(s) under study
must involve an analysis of the results from the simulation program itself. A
.classification of simulation types is given which provides a framework for a
treatment of simulation analysis. A more detailed discussion of the most
difficult ciass of simulation analysis is presented. Various goals of analyses
are mentioned, together with a brief discussion of related topics.

1. TINTRODUCTION

The study of a system by means of computer
simulation involves a substantial effort in
modeling, validation, coding, and debugging.
Once these difficult tasks have been
accomplished, the simulation program will
presumably be used to study the behavior of the
corresponding system, try out alternative systems
specifications and designs, and aid in making
recommendations and decisions, This paper
focuses on such use of simulation models, and in
particular how the model's output should be
analyzed to enable the drawing of valid,
accurate, and precise conclusions.

Section 2 gives one possible way of classifying
computer simulations which is useful for
discussing their analysis. In Section 3 the most
difficult kind of simulation is discussed in more
detail. Sections 4 and 5 briefly mention
additional topics in simulation analysis, and a
few conclusions are drawn in Section 6.

2. A CLASSIFICATION OF COMPUTER SIMULATIONS AND
ANALYSIS TYPES

The structure of mathematical models of systems
can be classified along several alternative
dimensions, For models to be studied by
‘simulation, it is useful to use a two-dimensional
classification to delineate the different kinds
of analyses which are appropriate. Along one of
the dimensions, a model may be classified as
either deterministic or stochastic. Along the
other dimension, a model may be either static or
dynamic,

2.1 Deterministic

A deterministic mathematical model assumes that

there are no 'random or uncontrollable elements
which enter in a meaningful way. In such a
model, the exogenous inputs ars assumed to be
-exact in the sense that there is no uncertainty
associated with their values. Thus, a simulation
‘evaluation under a fixed set of structural
assumptions and parameter values will produce an
‘exact, deterministic set of output responses and
system performance measures, subject to numerical
accuracy. In this case, the analysis is quite
simple, at least conceptually: A single run of
the simulation model produces the exact (again,
up to roundoff) set of values desired. Further
runs of the same model will, of course, produce
the same results. There may well be other
difficulties, however, since the model may still
be quite expensive to run, and the analyst must
choose which alternative model specifications
should be evaluated, given a budget constraint.

Static. In a static model, there is no time
element involved; there is simply no concept of
the passage of time in the system being modeled.
Some examples of deterministic, static models
might include:

Calculating the value of a dependent
variable from a fitted regression for a
particular set of independent variables
which have not been observed o

Calculating the values of key financial
variables under alternative conditions
arising from alternative decisions at a
specified time '

Note that in each example, we can calculate
(exactly) the quantities desired, since the
inputs are deterministic.

Dynamic. Here, the flow of time is an important
nart of the model. The system being modeled
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evidently changes over time, and we want to study
and quantify this evolution. Some examples of
deterministic, dynamic models are:

CalcuTating growth and decay rates of

biological populations interacting with
: each other over time as functions of their
initial sizess; natural birth' and death
rates, and predator-prey rules, by means
of numerical evaluation of differential or
finite-difference equations chosen to
model their dynamic evolution

Calculating values pertaining to product
demand or production levels into theé
future by simple use of a deterministic
forecasting rule

Since the results from dynamic models may take
the form of a discrete or continuous timé path,
some summary measures may be helpful, such as the
final or average population size, or the average
rate of increase of demand, over the time period
of interest. Here again, we are abie to
calculate, exactly, the quantities desired.

2.2 Stochastic

As opposed to deterministic models, at least some
of the inputs driving a stochastic model are
raridom quantities whose exact values on an
individual evaluation of the model are not known
in advance. This appears to be far less
desirable than the deterministic case, and from
the standpoint of the analysis problem this is
true. However, many systems are inherently
stochastic and it 1s thus necessary to model them
stochastically to obtain a Tevel of validity
sufficient to obtain the information desired.

Given the need, then, to use a stochastic
simuiation model, we generate observations on
random variables (r.v.'s) from appropriate
distributions to drive the model, using a random
number generator and appropriate transformation
techniques. to obtain the desired distributions;
see, far exanmple, chapters 8 and 9 of Fishman
(1978b), or chapters 6 and 7 of Law and Kelton
(1982b). While we must know exactly the
distributions from which to_generate, we will not
know the particular values of the observations
that will be generated on a given execution of
the model. Thus, unlike the deterministic case,
two runs of the simulation under {dentical
structiral assumptions and parameter settings .
will not, fn general, produce the same output '
'values if we use independent streams of basic
random. numbers. It is very important to be aware
of this, for it implies that simply running a
stochastic simulation model once and noting the

- values of some point esimators is not an
acceptable analysis technique. The output values
‘from a stochastic simulation are properly thought
of as r.v.'s themselves, which have their own
jprobability distribution, mean, variance, etc,
The purpose of a stochastic simulation is to
Tearn something about these output distributions,
such as estimation of means, forming confidence
intervals (e.i.'s), performing hypothesis tests,
or estimating distribution quantiles.
Unfortunately, the output distributions, being a
result of the simulation {tself, will certainly
not be kngwn; 1f we could derive these
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distributions mathematically, there would have
been no need to simulate in the first place. The
use of the simulation output to infer something

about the output distributions proceeds by means

of statistical analysis of that output.

‘As with deterministic simulations, we distinguish
between static and dynamic models.

Static. A static stochastic model has no time
element; these models are sometimes referred to
now as "Monte Carlo" models, aTthough this use of
the term is not completely standards Many uses
of these models are for purély mathematical or
probabilistic problems which may not have any
jnherent random structure at all, but for which a
papsr~and-pencil analysis is intractable or
nunerically unstable. Some examples are:

Estimate an analytically intractable
integral by writing 1t as the expectation
of some r.v. which is then repeatedly
sampled and averaged (see Law and Kelto
1982b, pp. 49-50) ’ .

Estimate the null distribution or critical
points of the test statistic for a
proposed hypothesis test by generating
many independent data sets uhder the null
hypothesis and calculating the value of
the test statistic for each set

1

Note that instead of “calculating" quantities as ;

in the deterministic case, we can only "estimate"
quantities from a stochastic simulation, due to
the random nature of the output. For stochastic,
static simulations, the general analysis
technique is relatively simpie. The model is
repeatedly executed under the same structural
assumptions and parameter values, but using an
independent stream of input random numbers each
time; this we call replication. The results
constitute independent and 1dentically
distributed (i.i.d.) random variables to which
the techniques of standard “classical"
statistical analysis may be applied; we think of
each replication as producing one data value on
an output variable. The only open question is
that. of determining the number of replications,
‘and must be decided on the basis of desired
accuracy and cost. In general, it ¥s advisable
‘to make as many replications as possible to
:obtain the greatest accuracy in the output .
estimates, and to justify the use of any hormal-
theory techniques (such as using the t
distribution to form a c.i. by invoking the
central 1imit theorem. ‘

Some general references on Monte Carlo simuylation
are Hammersley and Handscomb (1964) &nd
Rubinstein (1981). Of the many good books
available as references for statistical analysis
and experimental design, Box, Hunter, and Hunter
(1978) provides a recent source. For more on
response surface methodology and optimization,
see Myers (1971), or Biles and Swain. (1980).

Dynhamic. A stochastic, dynamic model is a random
model which evolves through time in a way which
is not completely predictable. This is the kind
of simulation to which many people now réfer as
"simulation.” A few examples are:
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Estimate the expected time a customer is
delayed in queue and the expected number
of customers in system in a fast-food
restaurant

Estimate the probability that a customer's
demand from an inventory cannot be

‘ immediately satisfied

The proper analysis of stochastic, dynamic

simulations is far more complicated than for the

above three cases, and will occupy the remainder

of the paper.

A caveat that should be immediately issued in ‘
this case is that the mere existence or
application of some statistical technique nesd
not imply that it is appropriate or that it is
valid. Indeed, inappropriate statistical methods
will always produce some numerical results, but
‘these numbers, if taken literally, can Jead to
serious misinterpretation and thus to the drawing
'of invalid conclusions. An important example of !
this is the calculation of a "sample variance"

statistic, sz. from successive customers' waits
in a queueing simulation (which is an available
option in some simulation Jlanguages' output
reports); such a statistic can be heavily biased
due to the presence of autocorrelation between
the individual customers' waits (see, for
example, Anderson 1971, p. 448). If the waits
are positively correlated, which is usually the

case, then sZ will be biased Tow, i.e., E(s2) is
less than the actual variance of a customer's

wait. The result is that s2 gives a deceptively
small estimate of the uncertainty associated with
the simulation output, leading in turn to a
tendency to place more faith in the results than
is justified. Thus, an Tmproper analysis of a
simulation may, in some sense, be worse than no
analysis at ali.

Over the past several years, the subject of the
statistical analysis of the output from
stochastic, dynamic simulations has received
considerable attention in the operations research
11terature. In the remainder of this paper, an
overview of some of the main problem types and
procedures i1s given; space Timitations prohibit a
detailed, immediately usable treatment of the
methodologies. For a more thorough treatment,
the reader is referred to the books by Fishman
(1978b) and Law and Kelton (1982b), as well as to
the comprehensive, detailed surveys by Law (1983)
and Welch (1983). These works also contain a
targe number of references to the original
papers.

3. ANALYSIS OF STOCHASTIC, DYNAMIC COMPUTER
SIMULATIONS

In this section, let us assume that we have a
single simulation model of interest; Section 4
discusses the analysis of more than one system.
Also, we focus on c,f.'s rather than hypothesis
tests. An appropriately defined c.i. gives all
the information embodied in the result of a
hypothesis test as well as a quantitative measure
of the degree of departure from the null
hypothesis in case it is rejected.

different kinds of properties.
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3.1 Types of Measures

There may be several different measures of
performance of interest for the model, reflecting
Many of the main
kinds of measures may be classified as means,
probabitities, ut1112at10ns, variances, or
quantiles,

Means. A mean is the expectation of an output
r.v. For example, if D; is the delay (in

minutes) in queue of the ith exiting customer, we

may want to estimate the expectation of DlOO' or
of

500
£ D4/500,
i=1

the average of the first 500 customers' delays.
In the latter case, the average is the r.v. whose
expectation is desired. As a second example,
suppose Qg is the number of jobs waiting at time
t hours in a queue for a printer in a computer
facility. We might want to estimate the mean

‘number of jobs in this queue at time 8, i.e.,

E(Qg), or the expected time-average number of
jobs in the queue over a day, i.e.,

24
E(S 0pdt/24).
0 .

A mean is a traditional (but not the only)
measure of central tendency of a r.v.

Probabilities. A probability output measure is
simply the probability that some condition in the
output will occur, Following the same two
examples as above, we might be interested in the
probability that DlOO is between 2 and 6 minutes,
1.6,y P(2 £ Dypg £ 6)s or in the probability that
the average of the first 500 delays is no more
than 4 minutes. Probabilities can be thought of
as (and measured by) the mean of an appropriate
indicator r.v. For example, define the r.v. I to
be equal to 1 if 2 X Dygq £ 6, and define it to )
be zero otherwise. Then P(2< D)4y <6) = E(I),.
and can be estimated as such.

Utilizations. A utilization is the expected
proportion of time some facility is in a
particular one of its two possible states,
usually referred to as "busy." In the printer
queve example, let

1 if the printer is busy at time t
By = .
0 otherwise

Then

2
e(| syats2e)
0

{
is the expected proportion of time in a day the
printer is busy, which we call its utilization,

Variances. A variance is a measure of the
dispersion, or degree of instability, of an
output r.v. While this may certainly be of
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interest in itself, the estimation of variances '
plays a central role in performing statistical
analysis on and inference from simulation output,
especially concerning inference on means. The
variance of an output r.v. X is also an
expectation of another. appropriately defined

rov.: Var(X) = E{[X - E(X)1%)

Quantiles. Unlike the above measures, a quantile
is not an expéctation. For 0 <q <1, the g-
quantile of X is a number *q satisfying

P(X < xq) < qand P(X £ xq) > q.

(If X has a cumulative distribution function
which is strictly increasing, then x, is defined
by the simpler relation P(X £ x,) = q.) Note
that the 0.50-quantile is the mﬁgiﬂﬂ; which is a
measure of central tendency that is sometimes
used instead of the mean, especially if the
distribution of X is highly skewed. Quantiles
can bé very important measures in simulation.

For example, if the output measure X is the
amount of oil arriving to a tank during a day, we
might want to know what tank capacity is needed
to give us a 0,95 probability of being able to
store all the oil that_arrives; this is the 0.95~
-quantile of X. The estimat{on of quantiles from
simulation output tends to be more difficult than
the other measures (typically involving some kind
of sqrtihg operation), and will not be explicitly
tréated here; see, for example, Heidleberger and
Lewis (1981), Iglehart (1976), Seila (1981,
I1982), and Welch (1983), i
3.2 Measuring Several Quantities Simultaneously
In most cases, we will want to get more out of a

$imulation study than an estimate of only a
single parameter. For example, we might want to

estimate the expected average delay in queue, the

expéctéd time-average length of the queue, and
the utilization of a particular server. All
three estimates could be readily obtained and (by
meéthods describéd below), 95% (say) c.i.'s could
be placed on their expectations. However, we are
making three separate statements about unknown
parameters, each of which is at confidence level
0.95. By a simple result known as the Bonferroni
inequality, the overall confidence level for all
thrée c.i.!s, taken simultaneously, may not be !
0.95, but can only be said to be at Teast 0.85:
0.85 =1 - 3(1 - 0.95). (This may not seem too
severe, but consider the consequences of having, -
say, twenty instead of three output measures.)
This unhpleasant phenomenon can be rectified by
making the initial three c.i.'s at level :
0.9833,,. ‘instead of 0.95, which would produce an
ovérall confidence level of at Teast 0.95. The

. cost is that the individual c.it's will be wider
(and thus less precise), or that more data will
have to be collected to get 98.333% c.i.'s as
small as the original 95% c.i.'s.

In the statistics literature, the above
difficulty is called the "problem of multiple
comparisons," especially in reference to its
version for hypothesis tests. It is important
for the analyst to be aware of its dloomy
consequences and avoid making unwarranted
‘stateménts abeut overall Tevels of confidence.

3.3 Terminating vs. Steady-State Simulations

A fundamental issue in simulation analysis
concerns the time horizon with respect to which
the desired output measures are defined. In a
sense, this issue could be dismissed almost as
one of semantics, and the distinction may not be
too important in many applied contexts; by simply
rephrasing the goals of the study and the .
definitions of the quantities to be estimated, a
terminating simulation could be transformed into
a steady-~state simulation, or vice-versa.
However, the distinction is crucial in terms of
the type of statistical analysis that should be
done, as well as in terms of the basic approach
to running and experimenting with the simulation
model.

Terminating simulations. Following Law (1980), a
simulation is called terminating if the
quantities to be estimated are defined relative
4o specific starting and stopping conditions.
For example, a manufacturing system could be

simulated in a terminating mode by specifying the
number of machines up at time zero (or, more
generally, the distribution from which this
number is to be independently drawn), the times
since the last repairs of each machine, the
‘number of production items present initially,
their initial stages of production, etc. The
'stopping conditions might be simply that a fixed
‘amount of simulated time has elapsed, or that a
specified number of finished items have been
produced. The choice of starting and stopping
conditions 15 really a part of the modeling
process, and can have a major impact on the
values obtained in the output. Thus, a complete
description of what is betng measured by a
terminating simulation must include a statement
‘'of the starting and stopping rules.

Steady-state simulations. As opposed to
terminating simulations, a steady-state
simulation is one in which the output
distributions are defined with respect to a 1imit
as the length of the simulation becomes infinite.i
There is no dependence on the initial conditions,,
nor is there any rule specified to stop the
simulation (as indeed 1t must). The quantities
to be measured are defined in a way which makes
them independent of the initial conditions
chosen, so theoretically one could initialize the
simulation in any convenient way; practically,
howéver, the initial conditions actually chosen
for a steady-state simulation run can have a
'great impact, as we shall discuss in Section 3.5.
The open-ended stopping of a steady-state
simulation also poses great problems for the
analyst, who must somehow choose a way to stop
the run(s) wheh it somehow appears that they are
™Mong enough," Thus it seems clear that the
‘analysis problem is considerably more difficult
in the case of steady-state simulations. X
The question arises as to whether there really
are any situations in which a steady-state :
analysis would be appropriate anyway. After all,
time can never really "go to infinity." In
addition, the analysis problem for terminating
simulations is far simpler. Furthermore, it may
bé that the focus of much of the simutation
analysis 1iterature on the steady-state case is
just a result of following in the footsteps of
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mathematical queueing and stochastic process
.theory, where it is generally necessary to take a
1imit as time becomes infinite in order to get
:any tractable results., Nevertheless, there are
some reasons for considering steady-state
analysis. For example, an industrial operation
,may operate on a 24-~hour, every-day schedule, and
'there is interest in observing how the system
might bebave after an initial period when
machines are new, operators are inexperienced,
etc, Another application is to study a system
under a hypothetically indefinite period of peak-
lToading in an attempt to design conservatively
for some kind of perceived worst~case scenario.

It 1s 1ikely that both terminating and steady-
state simuTations find appropriate application.’

Since the available techniques for analyzing them
are quite different, the following two
lsubsections treat these problems separately.

j3.4 Analysis for a Terminating Simulation

For a terminating simulation, the starting and
stopping rules are embodied in the model
specification, so there is no question about how
to run the simulation. From a single run, or
replication, we obtain one or several output
measures, e.g., the average delay in queue of the
first 500 customers, or the observed proportion
‘of time a server was busy during this particular
run. Since the goal is to estimate some property
of the distributions of these measures, such as

» their expectations, we need to make several

" independent replications of the model to be able
to use standard statistical analysis. This
simple replication approach provides the basic

means for statistical analysis of the output from,

-a terminating simulation.

Let X; denote an output measure obtained from the

jth independent replication, For example, X
could be the average of the first 500 customers'
delays in the jth replication, or it might be the
proportion of time a server was busy during the
Jth replication. X; could also be an indicator
r.v. indicating whe%her some condition in the
output occurred, whose probability we seek to
estimate., From n independent replications, we
then obtain X;, X5 ..es X» which are i.1.d.
r.v.!s since they result from observing the same

quantity over independent runs of the same model,

These X;'s form the basic units for statistical
analysis.

It is important to note that one entire run of
the simulation produces only a single data point,
Xj, for analysis. We do not work directly with,
for example, the individual customers! delays in.
a queueing model as the basic units of data
analysis. Thus, in terms of the final
statistical analysis, an entire replication of a
terminating simulation constitutes a sample of
size one, Statistical analysis is used oniy
indirectly on the individual values computed
within a single replication.

Given the 1iii.d. X%'s, statistical inference

proceeds in a fairly standard way. As an
unbiased point estimator of E(Xj), we use

n
X = Z Xy/n,
J=1
and as an unbiased point estimator of Var(Xs) we:
use
2y %
sf=3 0 - %2/ (n-1). (1)

Undér a norma]ity assumption for the distribution
of the Xj's, a 100(1-a)% c.i. for E(XJ) is
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(2)

X% tn-1;l—a/2 s/n

where t__ 1-g/2 15 the upper 1-a/2 critical
point of $48 ¥ Fistribution with n-1 degrees of
freedom. Although the Xi's will in general not
be normal, the c.f. in (g) will be approximate]y
valid 1f the distribution of the X;'s is not too
skewed. Also, validity is enhanced for larger
choices of n. Again, assuming that the X;'s are
normally distributed, a c.i. can be formed for
Var(X;) using the chi-squared distribution, but
its validity is more sensitive to the normality
assumption. Welch (1983) gives an alternative
c.i. for Var(X;), based on the jackknifing

technique, which is more robust to departures
from normality of the X,'s, Finally, if the Xj's
are indicator r.v.'s, an alternative c.i. for
E(X;) = P(the condition in question occurs),
based on the binomfal distribution, is possible;
see, for .example, Welch (1983).

One potential difficulty with the kinds of c.i.'s
discussed in the preceding paragraph is that they
are based on a fixed number of replications and
may thus turn out to be too Targe to allow for
making statements as precise as we wold like, In
this case, one might consider a sequential
procedure, in which we continue to replicate, re-
forming the c.i. after sach additional
replication, until the c.i. is small enough,
either in an absolute sense or in comparison with
the point estimate, X. This could require a
large amount of computing if our precision:
demands are too stringent, since the required
number of replications unfortunately grows.
(approximately) quadratically with the c.i.
smaliness criterion; i.e., to make the c.i. half
as wide, we need about four times as many
replications. For more on sequential procedures,
see Law (1983) or Welch (1983). !

The analysis problem in the terminating case is,

at least conceptually, fairly straightforward.

The only real difficulties are nonnormality of
the X.i's and cost if the XJ's are highly variable

or we need high precision. For a more complete

‘treatment, see Law (1980).

3.5 Analysis for a Steady-Stéte Simutation

The analysis problem in the steady-state case is
much more problematic. In most steady-state
simulations, we want to estimate a steady~state

_mean

= Tim E(Y4),
i»

where Yi is an individual observation obtained
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from within a run; for example, Y; could be what
we earlier called Dy, the delay in queue for ‘the
1th exiting customer,- This is for a qiscrete-
time process {Y, 121, 25 «o.}; definition for
a continuous-time process (such as our earlier Q;
and By) is similar.

‘One of the chief difficulties, which is
‘immediately apparent, is that our goai is to
estimate a quantity defined as a Timit as the
Jength of the simulation becomes infinite.

However, we must obviously stop the simulation at

'some time, and it is not clear how to decide on a
‘stopping point or rule. Not surprisingly,
isteady-state simulation runs tend to be long, and
|thus costly. A related difficulty is that the
quantity to be estimated is defined to be
independent of the initial conditions, so we are
Jeft with the practical problem of deciding how
the run(s) should actually be started. Yet
another (perhaps not so obvious) difficulty is
that of estimating the variance of a point
jestimator of p; point estimators are easier to

'obtain than estimators of their variances, and we

need both for c.i, formation. The various
methods for steady-state analysis described below
take different approaches to coping with these '
difficulties.

1 ‘ . nsien blem. By the definition
of a 1imit, we can be sure that if we run the
simulation long enough, the means of the output
sequence will be arbitrarily close to p, This
says nothing, however, about the length of time
we must wait for this to happen, and the duration

of this "transient" or "warmup" period can depend
heavily on the way the run was initialized. The:

"problem of the initial transient," perhaps one
of the Tongest-standing questions in simulation
methodology (going back at least twenty years to
Conway 1963) has traditionally been yiewed as one
of identifying the extent of the transient
perfiod, relative to some practical criterion.

The usual procedure is then to delete (or
truncate) this initial period from consideration,
and use ofnly the Y;'s past the deleted portion in

‘forming output measures. Presumably, this

eliminates (or at least greatly reduces) the bias

"induced by the fact that the initial conditions
cannot generally be chosen in accordance with
steady-state behavior of the system, (If we knew
the steady-state distributions involved, there
would be ho need to simulate) Several methods
'have been developed for identifying the length of
the transient; see the comprehensive survey of
‘Gafarian, Ancker, and Morisaku {1978), and the
more recently proposed methods in Schruben
(1981,1982b), Welch (1983), and Kelton and Law
(1983),

The extent of the transient period is certafnly
infiuenced by the initial copsitions. Thus, to
réduce the amount of initial output that must be
discarded, it is probably worth giving some
thought to choosing initial conditions which
appear, at least, fo bear some rough resemblance
‘to anticipated steady-state behavior. Wilson and
Pritsker (1978) evaluated tradeoffs between
ge]etion and choosing "good" fnitiaiization, and
concluded that the Tlatter method is a more
effective means of dealing with the initial
transient problem.

Replication. This method of steady-state
analysis i1s really the same as that for
terminating simulations discussed above, except
‘that the goal is now to estimate a steady-state
parameter. The simulation is replicated, '
starting with the same initial conditions and
stopping according to the same rule to produce
i.i.d. X;'s, as before, which are used as the

basic uhits for statistical analysis. In this :
'case, however, it is not clear how we should
‘initialize, or how long the replications should
Jast. Due to the initial transient probiem, the
X;'s may not have expectation y, i.e., they will
generally be biased. This bias may invalidate
the statistical analysis; e.g., the c.i. in (2)
may have an actual probability of containing n
that is far below the desired level, l-a.

Thus, the main drawback to the replication \
approach to steady-state analysis is the problem .
of the initial transient. Three approaches to
'dealing with it are (1) choose better initial
conditions, (2) effectively delete the initial
transient segments from each replication, and (3)
make the replications very long; these three
:jdeas could be used together. Quantitatively,
however, implementing these ideas in practice can
pose difficult questions; e.g., how long should a
Mong" run be? If the analyst feels that the \
initfal transient problem has been effectively
:dealt with, then replication is attractive due to
the built in independence of the runs (a property.
'not enjoyed by most of the other steady-state ‘
:analysis methods described below). However, the
‘consequences of not dealing effectively with the -
initial transient problem can be severe "in terms
of the validity of the ensuing analysis. For
example, c.i. coverage probabilities can actually,
worsen as more data are taken; see Law (1977). .
In any case, it is probably good practice to
choose to make a few long replications rather
than many short ones to avoid having to pass .
through the transient phase many times. It would
appear that in choosing fewer but longer runs we :
lose efficiency (e.g., the c.i. widens) sincen
is smaller, but the longer runs will tend to i
produce less variable Xj's, having the opposite

effect on efficiency. !

Batch means. Since the main problem with
replication is repeatedly having to pass through
the transient, it seems promising to develop a
method based on only a single run, presumably
very long. The method of batch means (as well as
all the other methods described below) takes this
approach. By only having to pass through the
transient once, its effect on the output is
greatly diminished; it still may be desirable to:
delete some initial portion of the run's output,
to be conservative. As a point estimator of n,
we use X, the mean of all the (undeleted) output
from the run, which should be unbiased, at least :
approximately. The difficult task is then . . _
estimating the variance of X, which is needed for
c.i, formation as well as other inferential
goals. The source of the difficulty is that in
making a single run rather than muitiple
replications, we have lost the independence of
‘the output, which is crucial for unbiased
variance esimation,

The method of batch means attempts to regain some'
degree of independence by breaking the output
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record into subsequences called "batches," From
a run of length m (after any deletion) Y;'s, form

n adjacent batches-of k successive Y;'s each
(where m = nk), and let X; be the average of the °
k Yi's in the jth batch; these X:'s form the
basic units of analysis. Noting that the

average of the X;'s is always equal to X, we
estimate the variance of X by s“ as given
formally in (1), except that the X;'s are now

batch means rather than replication means.
Finally, the c.i. for p is formed as in (2).

As in the case of terminating simulations, the
c.1. in (2) may not be valid in this case since
the X;'s are not normal. More seriously, the
X;'s are not independent, having arisen from a
jsingle simulation run, Thus, s“ is generally a
‘biased estimator of Var(X), and is biased low if
‘the Y;'s (and thus the Xﬂ's) are positively
«correlated, which is typically the case in
‘queueing~type simulations. This in turn can
cause thé c.i. to be too smail and to have a
Tower—than-desired probability of containing n.
The idea behind batching is to make the batch
means approximately uncorrelated (and, as a
secondary goal, more symmetrically distributed
than the underlying Y;'s through the averaging
.operation), which in turn should make s
approximately unbiased for Var(X), and enhance
the c.i.'s validity. The reason for suspecting
‘that the batch means may be nearly uncorrelated
for most Yi processes encountered in practice
Ties in the belief that only those Yi's which are
‘near to each other in time are 1ikely to be
‘heavily correlated. Thus, if the batch size is
Targe, different X.;'s will, at worst (if they are
.adjacent batches), be computed from only
relatively few Y;'s which are close together, )
just on either side of the batch boundary., Thus,
we would expect that X and X4 should be only
weakly correlated, provided tge batch size is
chosen Targe enough.

Once again, the analyst is faced with the .
practical, quantitative problem of deciding just -
what "large enough batch size" means in a given
application. Generally, it is good advice to opt
for a few large batches rather than many small
batches if a tradeoff must be made, There may be
1ittle to be gained in efficiency yet much to be
lost in validity i1f one chooses to spiit the run
into many batches which are too small; see
Schmeiser (1982)., For further papers concerning
batch size selection rules and their evaluation,
see Fishman (1978a), Law (1977), Law and Carson
(1979), or Law and Kelton (1983). ’

Spectral analysis. The method of batch means

attempts to obtain (nearly) uncorrelated
observations to estimate the variance of the

point estimator X, The method of spectral
analysis, on the other hand, uses a relation

between Var(X) and the autocorrelation structure
of the Yi's to form a variance estimate. Thus,

there is no attempt to approximate an {.i.d.
situation.

If the Y1's are covariance stationary (i.e., the
covariance between Y, and Y;,, depends only on k
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and not on 1), then

- ‘m=l
var(X) = [Cy + 2 £ (1 - k/m)C, 1/m,
k=1

(3

where C; is the covariance between Y1 and Y1+k°
Thus, i1f we had good estimates of the C.'s, we
icould insert them into (3) to obtain a variance
estimate. The standard estimators of the Ck's,
however, do not have good statistical properties
(e.g.» they are highly variable for Tlarge k, and
are themselves heavily correlated), and
estimating many of them can be extremely time-
consuming on a computer, The method of spectral
analysis modifies (3) to obtain a statistically
better variance estimator; for details see Law
.and Kelton (1983) and references there.

i
|
i
;

To form a c.i. for w the degrees of freedom must
be specified, which depends on the particular
implementation. Recent extensions and
improvements to the method have been undertaken
by Heidelberger and Welch (198la, 1981b).

Autoregressive representation. Like spectral
analysis, the autoregressive method, developed by
Fishman (1971, 1978b), attempts to use the
autocorre]at1on structure in the Yi's to estimate
var(X) and form a c.i. for p but in a different
way. Since the output sequence of Yi's can be

viewed as a time series, this method assumes that
it can be closely represented as a certain time
series model, called an autoregressive model, in
which each Y; is a linear combination of the p
previous Y;'s, plus a random disturbance term.
Such a model is "fitted" to the output sequence, .
including an empirical determination of the
autoregressive order, p. From the fitted model,
a variance estimate, degrees of freedom, and c.i.
are obtained. For details, see the original
references given eariier in this paragraph, or
the survey of Law and Kelton (1983), which also
contains results on the performance of this
method,

!

The regenerative method. One drawback of all of

the above methods for steady-state analysis is |
that they are not as mathematically well~-grounded
as, say, classical statistics for i.i.d. data.
The regenerative method, developed by Crane and
Iglehart (1974a, 1974b, 1975) and by Fishman i
(1973, 1974) puts the analysis problem on a much
firmer footing, and also eliminates the problem
of the initial transient from many estimation
goals. The price paid is that extra assumptions.
must be made concerning the Y1 process being

simulated, and the simulation program {itself must
be modified to recognize certain conditions under
which it must halt and tally data.

The extra assumption made is ‘that the Y; process

is regenerative, which Toosely means that at
certain random but repeating points in simulated
time called on s, the process
Mstarts over probibalistically" and is
independent of the past. The evolution of the
process between successive regeneration points is
called a cycle (or tour), and what happens during
a cycle is an i.i.d. replicate of what happens
during any other cycle. Observations are
collected within cycles and are then combined to
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forim point estimates and c.i.'s for p in several
alternative ways. For details, see the
references in the preceding paragraph, Crane and
Lemoine (1977), or Igiehart (1975).

Standardized time series. A new basic

methodology to steady-state analysis is currently

being developed by Schruben (1982a) and Goldsman
‘and Schruben (1982) that is based on weak

assumptions about the underlying Y; process, but

does not necessarily assume that it is
regenerative., The output sequence is
standardized to have mean zero and run duration

on the unit interval, and a central Timit theorem
for this entire process is developed which Teads .

to several ways of forming c.i.'s. This new
‘approach to the steady-state analysis problem has
the appeal of being well~grounded in probability
theory, yet avolds making strong assumptions
about the process or having to write the
'simulation program in a different way.

Sequential procedures. The discussion of the
steady-state analysis techniques above was mostly

in the context of a fixed sample size, i.e., the

.run lehgths and (in the case of the method of
replication) number of replications was assumed
to be fixed and prespecified. However, the

resulting c.i.'s may be too wide to be useful, so
sequential procedures might be considered, as 1n

the analysis of terminating simulations. In the
steady-state case, sequential procedures
generally increase the Tength of a (single) run.
In addition to reducing c.i. width, a sequential
procedure designed to drive the run length
farther should also benefit the c.i. by making it
more valid, {.e., having the desired probability "
of covering p. A survey and evaluation of
several steéady~state sequential procedures
appears in Law and Kelton (1982a), and other
methods based on spectral analysis are proposed
in Heidelberger and Welch (198la; 198lb). In
general, sequential procedures can be expected to
produce c.i.'s which are more valid (and narrow)
than their fixed-sample-size counterparts, but
can result in extremely long runs if allowed to
work in a purely automatic mode.

4. STUDYING SEVERAL SYSTEMS

‘Section 3 focused on analysis from the output of
a single system design. In many (perhaps most)
simulation projects, however, there is interest
- 4n several alternative system designs or
specifications, and the goal of the study is to

compare them, rank order them, select one or some

of them as the best in some sense, or to conduct
a program of experimentation designed to Tead to
 an optimal specification. Statistical
methodologies for accomplishing goals such as
these are outlined in chapters 9 and 12 of Law
and Kelton (1982b). More detailed treatments are

Dudewicz and Koo (1981), Myers (1971), and Biles .

and Swain (1980).

»
Nearly all statistical methods designed to

- accomplish such goals assume the ability to
collect i.i.d. data, with expectation equal to

- the system performance parameter with respect to .
which the comparison, ranking, or optimization is
to be done. In the case of terminating
simulations, this presents no problem, since we

just use the output measure X; obtained from the -
jth replication. For steady state simulations,
however, there is not a clear choice. One
possibility would be to use the method of
replication, together with an effective
initialization/deletion rule to deal with the ;
initial transient problem, Another possibility -
would be to use batch means as an approximation
to i.i.d. data. In either case it is important
for the validity of the statistical methodology
that the analyst take care that the basic units .
of data analysis (the X;'s) can be regarded as
being independent and with the desired . :
expectation.

5. VARIANCE REDUCTION TECHNIQUES

In most statistical experimentation, the
measurements being taken have some inherent
uncertainty associated with them, perhaps induced
by natural forces. The precision of the results
of the analysis 1s limited by this natural
variability, and can usually be improved only by:
increasing the amount of data, which incurs '
additional cost. However, the source of
varifation in a stochastic computer simulation is
the (pseudo) random number generator, which can
be controlled by the simulator. Vartance
reduction techniques (VRT's) are, for the most
part, schemes which exploit this ability to
control the random number generator and carry out
the simulation in something other than a
straightforward manner to reduce the variability

of the output at no (or very 1ittle) extra cost.

If successful, a VRT can give us more precise
results for the same computing effort, or

{equivalently stated) give us the same precision
at a reduced effort.

There are several different kinds of VRT's, such
as common random numbers, antithetic variates,
control variates, rotation sampling, conditional
Monte Carlo, and indirect estimation, designed
for different situations. Most of these rely on
re-using random numbers, either directly or in a
transformed form. For a survey of several of
‘these, see chapters 2 and 3 of Fishman (1978b) or
chapter 11 of Law and Kelton (1982b).

6. CONCLUSIONS AND PROSPECTS

Probably the most important point to be made is
that an analysis should be an integral, planned
part of any simulation study. Especially for
stochastic simulations, the lack of a proper
analysis leaves one with results that may be
misleading and inaccurate. If one makes the
substantial effort to validate, code, and debug a
.complex simulation model, it seems worthwhile to ’
'make some effort to use the model effectively and
‘interpret its output appropriately. One
impediment to proper simulation analysis has been;
the high cost of running and replicating a time-
consuming computer simulation program.
Fortunately, we are now seeing dramatic increases
in computer speed, accompanied by a fall in the
cost of computing. Thus, it seems 1ikely that
this impediment could be in the process of ’
becoming far less binding. However, even if we
had infinitely fast computers whose use were
free, it would still be quite necessary to make
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sure that an appropriate and valid and]ysié
technique is used to insure the accuracy and
reliability of the results,
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