Proceedings of the 1983
Winter Simulation Conference
S. Roberts, J. Banks, B. Schmeiser (eds.)

01

MODELING SYSTEMS USING
DISCRETE EVENT SIMULATION

by

Lee Schruben

Cornell University

1. INTRODUCTION

In this article, we present an introduction to
discrete event modeling and discuss some of the
important issues related to model development. We
are not talking about simulation codes nor
statistical models for the outputs from such
programs. Rather we will focus on the interface
between a real system and a simulation code where
we describe the system.

Typically, our understanding of the system we
wish to study is limited. In modeling, we attempt
to describe the behavior of the system. Since
simulations, like all computer codes, have an
explicit structure our system description must
explicitly reflect the behavior of the system
elements and their relationships. We resort to
simplification and abstraction in obtaining this

system model.

SYSTEMS:

By a system we mean a set of entities that
interact with a common purpose according to a
collection of laws and policies. The system may be
real or hypothesized. We are using a functional
definition of a system, that is, we define a system

by its purpose.

The entities in a system are the physical or
symbolic components of the system. For example,
the entities in a factory include the physical
workers, séaces, material

machines, storage

handling equipment, product routings, production
schedules, etc.

There are tdo general categories of entities
which depend on their membership in the system.
Some entities may be considered as always being

part of a system. These entities, such as machines

in a factory, we will refer to as resident
entities. Many popular computer simulation
languages have special features for handling

resident entities where they are called "permanent

entities" (SIMSCRIPT), "facilities" (GPSS), and
such. Other entities, such as parts being produced
by a factory, are only part of the system for an
interval of time. We will refer to entities that

join and leave a system as transient entities.

SIMSCRIPT refers to such entities as "temporary
entities"” while they are usually modeled using
"transactions" in GPSS. The distinction between
resident and transient entities is important for
two reasons. First they may be handled differently

in the simulation computer code (storage allocated

CH1953-9/83/0000~0101 $01.00 © 1983 IEEE

102 Lee Schruben

to transient entities may be reused once an entity
leaves the system). More importantly, guite
different models of a system may be <created
depending on whether one adopts 'a transient or
resident entity viewpoint. For example: we migﬁt
model a factory by describing what happens to parts
as they travel through the production process Or we
might model the same factory by describing what
happens to the machines and inventories.

Entities are ‘conveniently thought of as
belonging to sets or owning sets of other entities.
From a resident entity viewpoint, a machine may be
considered as owning a set (queue) of parts waiting
to be processed, From a transient eqtity
viewpeint, we might think of a part as owning a set
(routing) of machines that will work on it before
it is finished, It makes sense when studying a
syséem to consider models both from & transient
entity and {rom a resident entity viewpoint.
Models based on a transient entity viewpoint are
particularly suitablé for implementation using a
simulation language that has a "process”
orientation (eg., GBSS or the network part of
SLAM). Models based on resident entities are most
easily implemented using a language that has
facilities for handling “activities" or Yevents"
(eg., SIMSCRIPT or SLAM). We defer discussion of
various simulation languages and their particular

"world-views" to the language tutorial.

Entities. are described by their attributes.

These attributes may be dynamic or they may be
static, Dynamic attributes will change as timé
passes whereas static attributes remain constant
over the period of interest to the system study.
Attribptes may also be qualitative or quantitative.
In a model of a factory from a resident entity

.

viewpoint, a machine may have a dynamic—qualitative

attribute of activity, a static-qualitative
attribute of machine type, a dynamic-quantitative
attribute of number of parts awaiting processing,
and/ or a static-quantitative attribute of its
location. From a transient entity viewpoint, a
factory model may have parts with a dynamic-
qualitative attribute of shape, a static-
qualitative attribute of its material, a dynamic—
quantitative attribute of locationm, and/or a
static-quantitative attribute of due date.

In the simulation program, attributes are
often kept in an array indexed by an identifier
code for the entity which 'they describe. As a
rough guide, the storage requirements for a
simulation program will be am increasing function

of the sum of the of number of entities times the

number of attributes for each entity.

Laws are rules that govern the behavior of or
relationships between entities in a system that are
not under the control of the system designer,
operator, OT manager. Examples are the Ilaw 6f
gravity, labor laws, etc. Laws are (strictly
speaking) deterministic; however, we may express
our ignorance of the exact mechanism by which a law
operates using probability. Sets of similar laws
are often indexed by paramegers. For instance, the
acceleration of gravity at differeﬁt altitudes is a
parameter for the law of gravity. Parameters
generally refer to quantitative indices for a
family of laws. Laws are often the vresult of
theory or experience and are rarely absolute. The
parameters for laws are usually estimated from the
observed behavior of the system or of similar
systems. Both data and experience go into
describing the mechanism of a law.

Policies are rules that concern the behavior

of and relationships between entities in a system

Modeling Systems Wsing Discrete Event Simulation 103

that are wuader the system designer, operator or

manager”s control. Examples are the priorities for

processing work orders, break times for workers,

etc. Policies often determine the existance of
entities in a system. For instance, the policy of
how many workers to hire or machines to buy
determines the numbers of such entities in the
system. Similar policies are indexed by factors.
The re-order point of an imventory stocking policy
is such a factor. Factors may be quanitative or
qualitative.

A complete description of a system includes
the values of entity attributes, parameters for the
laws, and policy factors as well as what can be
said about the system”s past ,and future. We
usually refer to such a description as the system”s
state. The state space for a system is the set of
all possible system states. A process is an
indexed sequence of system states. The index is

quite often but wnot necessarily always relative

time.
MODELS

There are many definitions of models. Here we
think of a model as a system that is used as a
surrogate for another system. A real system may
have several somewhat vague purposes: a private
hospital provides quality health care to a
community, employment, tgaining for Thealth
professionals, and may try to make a profit. Many
models, particularily analytical models used in
operations research, are systems that have a single
numerically measurable objective.

The entities in a real system are wusually
physical whereas those in a model system are often

symbolic. In a computer simulation the entity Ni

may symbolize the quantity of part i in inventory.

Real entities have many qualitative attributes.
Mathematical model systems that are ‘run on a
computer .express all attributes numerically;
perhaps by employing coding systems. Real systems
may have a general state space where model systems
‘have a finite state space. In computer simulations
the state space is over a multidimensional but
finite subset of numbers. Real systems tend to
.change with time where many models are static or
dynamic -only in a limited manner. There may be
real system variables that are continuous such as
time. In model systems on a computer the
finiteness of the computer dictates that all
variables be discrete. If the computer has a large
enough word size this may not be an important
distinction between real systems and models.
Besides, measurement devices applied to real
systems may make continuous variables appear
discrete.

The policies in real systems (since they often
involve people) are typically £lexible. In
mathematical models the policies are explicit and
rigid. Depending somewhat on one”s prejudices, the
laws in a real system may be regarded as
deterministic. In models incomplete understanding
of the behavior of entities often forces us to
probability laws to express our lack of knowledge.

Real systems are open in that they are
influenced by their enviromment. Model systems on

a computer are closed while the computer run is in

progress.

Real systems are adaptive in that they may
change their behavior depending on the history they
experience. Computer simulations are adaptive only
to anticipated Thistories which makes them

essehtially not adaptive.

104 Lee Schruben

Real systems are not stable (there may be
shocks ‘to the system from which the system cannot
reéoveF). Many models are stable in that
catastrophies are not permitted.

The responses of real systems to changes in
policy factors or parameters for laws are usually
not linear. (By our definitions, if a factor or
anything else chénges in a system it becomes a
differeﬁt system.)‘A large class of engineering and
statistical models assume that the performance of
the system is in some way linear.

Real systems are non-stationary; the state of

the system depends on time. For example, the state

of a restaurant is different during the dinner hour

than it is in the middle of the afternoon. Many

models assume that the system is stationary.
Finally, in real systems all entities are
strictly speaking transient, eg., machines wear out
or become obsolete. In model systems some entities
are viewed as permanent residents in the system.
With all of the above differences between real
systems and model systems, one can not expect that
the model be in a strict sense wvalid. The only

valid model is the identity, that is, the system

itself. A "valid model" is a contradiction.
MODELING

Modeling, in particular mathematical modeling
as dome in simulétion, involves abstraction and
simplification. The amount of detail in a system
description is influenced largely by the use of
entity attributes. Consider a manufacturing
corporation- that has several divisions. Each
division may have several factories. Each factory
has several departments which in turn have several

machines. One may formulate a highly detailed

description of the corporation by including the

individual machines as entities. A less detailed

description of the system may view the departments
as entities with attributes of the numbers and
types of different machines in each department. A
higher level (less detailed) model might view the
factories as entities with the attributes of the
number and types of departments, and so forth. The
objectives of the systems study determine the level
of detail needed in the system description.

In simulation studies there is a temdency by
less experienced practitioners to include
unnecessary detail simply because it can be
included. It is good practice to justify the
inclusion of detail rather than trying to justify
the exclusion of detail. In computer simulations,
detail costs money and tends to make a model less
flexible. It is usually easier to ‘enrich a
simulation by adding detail than it is to simplify
one that has excessive detail. Unless a particular
aspect of a system can be seriously expected to
alter the study results it should be excluded from
the model by making reasonable assumptions or
aggregation of several entities into sets of
entities. TFor example, it may not be necessary to
individually identify zach part awaiting processing
by a particular machine if the purpose of the study
is to measure machine utilization. On the other
hand, if the delay times spent waiting for a
machine are important them it may be necessary to
consider each part as an individual entity with the
attribute of waiting time.

Mathematical .modeling is essentially a
conceptual way of thinking. People with experience
in modeling approach problems differently than
those who have never modeled a system. The models
between

they create identify relationships

entities, laws, and alternative policies for

Modeling Systems Using Discrete Event Simulation 105

designing and operating a system. It is important
to realize that the process of modeling a system is
in itself worthwhile. ©Even if a model is never
used or the simulated system is never run on a
computer, a subject system is better understood
because of the modeling.

Thirteen references were surveyed that give
"steps" in the mathematical modeling process. The
union of these (paraphrased) steps is presented in
the following table with the frequency that the

references included each step.

Table 1
STEPS IN THE MODELING PROCESS
Step Frequency that the
Step is recommended
1. Establish the 1/13
system boundry
2. Formulate the 13/13
Problem
3. Factor the Problem 1/13
4, State Modeler and 0/13
User Prejudices
5. Seek Analogies 2/13
6. Try a simple 1/13
example
7. Decide on the 2/13
level of detail
8. Define some symbols 2/13
9. State the obvious 1/13
3410. Choose a modeling 2/13
! technique
11. Choose a solution 2/13
technique
12. Collect data 3/13
13. Estimate parameters 2/13
14, Evaluate estimates 2/13
15. Design experiments 2/13
16. Build a model 13/13
17. Analyze the model 13/13
18. Test the solutiomns 6/13

19. Implement results 3/13

20. Update the model 2/13

There seems to be no definitive statement of
exactly how one does modeling; mnone will be
attempted in this paper. The following is a list
of some of the more important simulation modeling
activities that we will discuss in the remainder of
this paper.

ACTIVITIES IN A SIMULATION PROJECT
1. problem identification
2. identify system structure
3. inventory data sources
4. simple models and solutiomns
5. design experiments
6. design run strategies
7. code simulation
8. test code
9. identify data needs
10. collect and prepare data
11. validate simulation
12. run experiments
13. analyze output
14. prepare recommendations

A simulation project does not typically
progress serially from step to step through the
above list. BEach activity may be repeated several
times or not at all in a particular simulation
modeling project. Furthermore, the activities
often take place simultaneously. The ordering in
the list represents an ideal progression fhrough a
project when pothing goes wrong. The remaining
discussion is to a large extent academic; the
author admits to having no experience with such
"ideal" projects.

The first step, problem identification, is an

activity that continues before, during, and after a

106 Lee Schruben

systems study. It is often not clear to the system

i
designers, users, or analysts -exactly what the

'

problems are or even if there is a problem. One of
the benefits of a systems ;tudy is that it provides
the people involved with an opportunity to discuss
some of the trade-offs between various system
objectives. Either the people involved can reach
an agreement on system priorities, or at least they
know where they disagree.

In the second step, identifying the structure
of the system, there are three general approaches
using discrete ‘event gimulations. The three
approaches, called world views, are event
scheduling, . process interactiom, and activity
scanning. The particular approach taken depends
largely on the language chosén to implement the
model.

The basic concept that describes the dynamics
of a discrete event system is the notion of an

event. The 1literature on simulation modeling

contains several deﬁinitions of an evegt. Rather
than adopt one of the formal definitions, -one may
think of an event as a potential change in the
state or future of a system. There are two
fundamental aspects of an event. One is the
transformation of the state, the other is the
influence of an event. Events may change the
values of state variables and may cause further
events (or maybe the same event) to be scheduled in
the future, Events are usually implemented as
subroutines or procedures in a discrete event
simulation computer program.

A convénient way to describe the .event
structure:of a system is to use an -event graph.
Basically, the state transformations associated
with an event are représented by vertices or mnodes

on a ‘directed graph. The events that may be

scheduled (or cancelled) by a particular event are
connected to that event with conditional edges.

Pictorially:

means that upon occurrence of event j, if conditiom
i is true, event k will be scheduled to occur in t
time units. A similar event cancelling edge for
the graph can be defined.

The analysis of such graphs can be wused to
identify events that must be initially scheduled in
a simulation, determine the minimal set of state
variables in a simulation, remove events that do
not require separate procedures, aﬁd anticipate the
possible problem& that may arise when two or more
events dare scheduled to occur simultaneously. \iy
associating paths in the event graph with processes
and cycles in the graph with activities, it is
possible to identify several potential equivalent
system representations that may be developed into
simulation programs. Several examples of event
graph analysis will be presented during the
tutorial.

The third step, taking inventory of the
available data, is performed early in the study so
that different médeling approaches m;y be
considered that match the availablilty of data.
This also gets the systems analyst close to the
real system at an early stage in the study. It is
important that the search for daté not be 1limited
to data whose need is anticipated. Data on a
system is collected because someone at sometime
thought it was important. Knowing what records are
kept on a system offers insight into how the system
operates and what is considered important to the
various persons involved with the system. Data

collection can be one of the more expensive

Modeling Systems Using Discrete Event Simulation 107

activities in a simulation project. In this step
one just tries to find out what data is available
and in what form it is kept. The actual gathering
of data should typically not begin until there is
an explicit need for the data and a pretty good
idea of how the data is going to be used.

The £fourth stép, development of analytical
models (ie., mathematical expressions £for the
system relationships) and rough cut solutioms, is
important for two reasoms. First, there may be no
need to develop & computer simulation model once
the structure of the system is examined wusing the
discipline of mathematical modeling. Second, this
activity will force the systems analyst to consider
simple well structured models of the system. This
may help prevent the study from becoming bogged
down in excessive detail.

The fifth and sixth steps (designing
experiments and strategies for the runs in each
experiment) should begin before the seventh step
(actual coding of the simulation program). In
practice, step 7 is usually performed before steps
5 and 6. This can result in a simulation code that
is cumbersome to use in the experiments that are to
be run. One should have a pretty good idea of how
a program is going to be used before coding.

The eight step, code testing or verificationm,
ig 1like the first step in that it is a csntinuing
activity. In a large simulation program, it is
often not possible to guarantee the correctness of
the code in all possible situations. The eleventh
step, customa;ily referred to as model validation
(which seems to the author to be a contradiction in
terms), means that the model system behaves like
the system for which it is a surrogate in all the
ways that are important to the study. A model will

be easier to understand and hence more useful if it

does not behave exactly like the system under
study. The abstraction and simplification inherent
in good modeling imply that the model will not in a
literal semse be valid.

The ninth and tenth steps, data gathering and
preparation, are (like the seventh step) often
performed in a different sequence than in the
activity list. It is not uncommon to worry about
the unavailability of data even before there is an
established need for the data. "Lack of necessary
data" is probably one of the biggest reasons given
for not starting a simulation project. This is
nonsense, one does mnot know what data is really
necessary until the project is well under way.
Perhaps different modeling approaches can be used
that have different data requirements.

The twelfth and thirteenth steps of
experimentation and output analysis should use the
best available statistical techniques. This is the
subject of a later tutorial by Professor W. David
Kelton at this conference.

Finally, the study recommendations should
identify recommended solutions to the problems that

led to the study and suggested strategies for
implementation and monitoring the performance of

these results. There should also be a summary that
identifys problems discovered during the study.
Like many rare things, a final report that
identifiea identis errors made during a study is of
great value.

There are too many references on simulation
modeling to attempt a complete bibliography in the
space permitted. The thoughts presented in this
article are the author”s own but were greatly

influenced‘by others in the simulation community.

