Proceedings of the 1983
Winter Simulation Conference
S. Roberts, J. Banks, B. Schmeiser {eds.)

539

Simulation Programming with Ada

Wilhelm F. Biirger
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598

This tutorial session deals with features of ADA which are of interest for formulating simulation
problems. A general overview of ADA is given with emphasis on packages and tasking. A
simulation package for discrete event simulation will be sketched.

1. Introduction

Ada is a new general purpose programming language
which was developed for the Department of Defense. It
was designed in response to the proliferation of languages
currently in use at the Department of Defense. A series
of documents refined the requirements for the language
design. The final language is based on the ’Steelman’
requirements [1]. The Ada language was standardized in
1983, and the defining document is [2]. Ada is a
registered frademark of the United States Government,
Department of Defense, Under Secretary for Research
and Engineering.

Ada is designed to support the development of very large
software systems. It is intended to be used for a broad
spectrum of applications. The language supports real time
processing and concurrent processing which are needed
for the programming of embedded systems. Efforts are
underway to define and standardize also the Ada
environment [3]. '

We first give an overview of the langnage facilities, and
then we identify the useful features of the language with
respect to simulation. These features will be demonstrated
in the talk with a simulation package for discrete event
simulation [4].

2. Language Overview

In order to achieve its design goals Ada provides the
following concepts and features:

e strong typing

e control structures to support structured
programming
overloading
separate compilation and libraries

e tasking
e exception handling
e generic program units

An Ada program consists of one or more units which can
be separately compiled. Units are subprograms, packages,
tasks, and generics. A unit consists of a specification part
and an implementation part each of which can be
compiled separately. This feature allows the creation of
independent components which can be used to build a
program.

Packages are the major tool for program modularity. They
correspond to some extent to Simula classes [5]. Packages
are used in three ways: as named collections of
declarations, as a facility to group related functions and
procedures which share internal data and types, and for
encapsuvlating data types and associated operations.
Encapsulation provides information hiding so that other
components cannot depend on details of structure and
implementation of the encapsulated type. Components
therefore can be designed in such a way that they are
’plug-compatible’ with other components without the need
for any program modifications.

In order to deal with real-time isswes and concurrent
processing Ada provides the tasking concept. Tasks can
be thought of as processes running on their own logical
processor in parallel to other tasks. Synchronization of
tasks is achieved by the ’rendezvous’ mechanism. Task
types are provided so that tasks can be created and
disposed of in a dynamic way. The task facilities are also
used for managing concurrent access to a shared resource.

Ada enforces strong typing. An operation, procedure or
function can be only applied to an object which is of the
same type for which the operation, procedure or function

CH1953-9/83/0000-0539 $01.00 © 1983 IEEE

540 WiThelm F. Biirger

is defined. However, generalized algorithms which are
applicable to a variety of types can be formulated through
the use of generic program units. Further, names and
operators can be overloaded with the definition of
different algorithms for different types.

The data type definition facilities of Ada are similar to
Pascal’s type definition facilities, Types can be classified
into scalar types, composite types, access types, and
private types. The scalar type includes numeric types for
fixed point numbers and floating point numbers. These
types can be specified, respectively, with fixed or relative
error bounds. '

Ada does not have language features for input and output
but instead provides predefined packages for input and
output. The specification part of these packages is defined
as part of Ada employing the full generality of the
language like subprogram overloading and generic
instantiation.

Several books on Ada are now available. Recommended
reading is Programming in Ada {6] by J.G.P. Barnes, one
of the original authors of Ada. The language reference
manual [2] is indispensable, however, to appreciate the full
language. '

3. Ada as a Simulation Language

The basic facilities usually, provided by a simulation tool
are:

process / event handling

Tist and queue handling

random numbers and distribution functions

e statistic gathering and reporting of results

Depending on the point of view and the simulation system
at hand discrete simulation is formulated either in a
*process-oriented’ way, or in an ’event-oriented’ way. In
the first case a process describes a specific activity of areal
system that evolves concurrently with other activities. In
the second case events are associated with state changes
which schedule other events. Simula [5] is representative
of the first case, SIMPAS [7] of the second.

Ada’s tasking feature provides the basic facilities for
process oriented simulation. By using appropriate tasking
idioms complex interactions between processes can be
formulated. Tasking can be used also with advantage for
the managing of. the event queue as a shared resource in
an event oriented approach. The packaging facility of Ada
allows the extension of Ada to new domains - in the
simulation contéxt generic program units provide the
simulation primitives.

In a likewise fashion the package concept can be used to
define abstract data types which represent ’entities’.
Entities describe the objects which are manipulated in a
simulation. They usually have attributes which gather
information to produce later a simulation feport. The list
and queue handling functions also can be prov1ded ina
generic way for these objects. Furthermore objects which
exhibit dynamic behavior can be formulated with access

types.

Random number generation and a variety of distribution
functions can be supplied by an appropriate library
package. The gathering of data, and the scheduling of
events can be made numerically quite precise through the
fixed and floating point number definition capabilities of
Ada. Packages for producing a standard report of a
simulation run may be also available from a library, As the
user works in the environment of a general purpose
language, new output facilities specifically tailored to the
problem at hand can be integrated with the available
report generation services.

The package facilities of Ada can be used to provide
several simulation environments. For example the
SIMSET and SIMULATION class facilities of Simula can
be made available in Ada in a natural fashion. It should
be possible to imbed other simulation environments into
Ada in a similar way.

1

4. Conclusion

The packaging and tasking facilities of Ada provide the
necessary features to make Ada a useful simulation
lariguage. The package concept allows extensions of Ada
to new application domains. For example a library of
simulation components could be created from which a
model builder could choose the appropriate components
to rapidly build new simulation models. Simulation thus
would be a readily available tool for a decision making
environment. Further the combination of simulation
primitives and database components together with other
application domain specific packages could become a basis
for *modeling methodologies in the large’ [8].

References

[1] Department of Defense Requirements for High
Order Computer Programming Languages -
'STEELMAN’, Defense Advanced Research
Projects Agency, June 1978.

[21 Ada Programming Language ANSI/MIL-
STD-18154, United States Department of
Defense, January-1983:

[31 Department of Defense Requirements for Ada
Programming Support Environments -
STONEMAN’, Defense Advanced Research
Projects Agency, February 1980.

[4] Bruno, G., An Ada Package for Discrete Event
Simulation, Proceedings of the AdaTec
Conference on Ada, Arlington, VA., 1982,

{5] Dahl O.J., et al.,, Simula 67 Common Base
Language, No. 5-22, Norwegian Co;nputing
Center, 1970.

[6] Barnes, J.G.P., Programming in Ada, Addison-
Wesley, 1982,

[71 Bryant, R M., SIMPAS - A Simulation Language
Based on Pascdl, 1980 Winter Simulation
Conference.

[8} Zeigler, B.P, Impact of General Systems
Orientation: Present and Future, 1981,Winter
Simulation Conference.

v

