DISCRETE EVENT SIMULATION WITH DEMOS

Abstract

Demos is a portable, strongly typed, extensi-
ble, process oriented, discrete event simulation
language embedded in Simula. It extends Simula
with a library of standard process synchronisa-
tion devices together with facilities for data
collection, random number generation, tracing and
automatic reporting. We review the synchronisa-
tion features of Demos programs and the structure
of Demos programs and then illustrate modelling in
Demos by a set of graded examples.

Keywords: Discrete event simulation. Process.
Simula. Demos.
INTRODUCTION

Demos (1, 2, 3) is a discrete event simula-
tion package hosted in Simula (4, 5). To Simula's
general purpose algorithmic, data description,
and file handling capabilities, Demos adds:

1) a simulation clock, an event list, and sche-
duling

2) the notion of an entity (= process) which
can carry out tasks over a period of simula-
ted time

3) data collection devices which enable data
streams to be recorded unobtrusively

4) random number generators which automatically
produce well-spread seeds

5) debugging facilities which include event list
and queue shapshotting routines and event
tracing

6) automatic reporting on the usage of all user
created devices.

*
This work was supported in part by an NSERC
grant.

Proceedings of the 1982
Winter Simulation Conference
Highland * Chao * Madrigal, Editors

82CH1844-0/82/0000-0683 $00.75 © 1982 IEEE

683

Graham Birtwistle®*

Department of Computer Science
University of Calgary

Paul Luker®

Department of Computer Scilence
University of Bradford

Demos has been implemented as a 2,000 line Simula
context (prefixed class). Contexts are library
units - they allow several interrelated ideas
(e.g. clock time, event list, scheduling, snap-
shotting) to be externally compiled together and
made accessible under a single name. In additiom,
external compilation ensures consistency and makes
for rapid compilation. A 100 line Simula program
backed up by a 2,000 line context costs scarcely
more to compile than a 100 line Simula program
without a context. Demos is made available to a
user program by an external declaration, viz.

EXTERNAL CLASS DEMOS,

and is called into use when it prefixes a user
block

DEMOS
begin
concepts of DEMOS are available here;
end

DEMOS declarations are valid inside the block it
prefixes. Inside that block, Demos statements
may be freely intermingled with Simula statements,
after all, Demos is written entirely in Simula.

Demos was released in 1979 and since then
has been applied to a range of industrial problems
including plant layout, transportation, shipping,
and in the oil and gas industries. Because of its
process base, it has also been used to help design
software for local area networks, long haul net-
works and a telephone switching system.

In section 1 of this paper we introduce the
entity, the structure of Demos programs, and in-
troduce four basic synchronisations. In section
2 we present a number of Demos models.

Discrete Event Simulation with Demos (continued)

DEMOS FACILITIES

Major components in Demos simulations are
modelled as entities. Components of the same
class are given a common declaration

ENTITY CLASS name;
BEGIN
" data;
actions;
END;

The declaration reflects .all the features of this
class of object deemed to be relevant; both its
physical characteristics and the actions it car-
ries out as it wends its own way through the
model. :

Objects of the class are created and sche—
duled by

NEW name.SCHEDULE (delay)

When their action sequences are exhausted, enti-
ties are automatically deleted by the Simula sys-
tem.

There are many ways in which entities can
interact together: they may compete for re-
sources, pass messages, cooperate over a period
of time, or interrupt another entity's expected
action sequence. There is a Demos device for
each of these synchronisations.

RESources parallel GPSS's facility and stor-
' age and are used to implement mutual exclusion.
For example, the code below creates PHONE as a
resource of size 1.

PHONE :-~ NEW RES("TELEPHONE", 1);

An entity wishing to use the phone follows the
protocol

PHONE.ACQUIRE (1) ;
HOLD(conversation time);
PHONE.RELEASE(1);

Acquire/Release parallel GPSS's enter/leave com~
mands. Acquire blocks the requester until it is
his turn to use the phone; release will awaken
the first blocked entity, if any. RES objects

may be initialised to values greater than %, and °

-acquired ahd released in chunks of any positive
(integer) size.

~ Message passing is handled by BIN devices.
A typical initialisation statement is

MESSAGES :~ NEW BIN('MESSAGES SENT", #);

MESSAGES is used below to handle the synchronisa-
tion between a sender process and a receiver pro-
cess - it makes sure that the receiver is blocked
if no messages are there to be taken

SENDER: RECEIVER:
produce new message; MESSAGES.TAKE(1);
MESSAGES.GIVE(1); . read this message;
REPEAT; REPEAT

Messages are usually handled by resources in
other simulation languages. This is undesirable
because tight checks can be made inside the release
routine of RES objects to make sure that the re-
leaser of m chunks has previously acquired at
least m chunks of that resource. Such a check is
meaningless for the producer/consumer synchronisa-
tion above. Furthermore, RES and BIN reports
should be differently styled in order to reflect
their different application.

Usually it is appropriate to let an entity
needing several extra resources.for its next phase
to acquire them one by one., But this is not always
so. For example, a crane may pick up from area A
or from area B. When idle, it cannot predict where
its next task will be dumped - it has to wait until
there is a task and then go to the appropriate area
and handle it. Demos provides a condition queue
for this purpose. In the program segment below, we
model the number of tasks awaiting handling by
BINS AREA A and AREA B. The condition queue is

initialised by
Q :— NEW CONDQ("CRANE AWAITS TASK');
and code for the crane entity has the form:

Q.WALTUNTIL(AREA A.AVATL > 0 OR
AREA B.AVAIL > 0);

WHILE AREA A.AVATL > 0 DO
BEGIN

ARFA A.TAKE(1);

pick up a load 'and dump it}
END;
WHILE AREA B.AVAIL > 0 DO
BEGIN

ARFA B.TAKE(1);

pick up a load and dump it;
END;
REPEAT;

RES's and BIN's both have a local function AVAIL
which returns how much is currently free. Once
the crane has chosen a loading area, the while
loops ensure that it exhausts one pick up area be-
fore checking the other éne.

The final common synchronisidtion we present
is the rendezvous (ADA's only built-in synchroni-
sation). If entities wish to cooperate for a

while, it is most coavenient to let one be the
master, the other(s) its slave(s).

A slave waits in a WAITQ by calling, for
example

R _VOUS.WAIT;

The master entity coopts a slave from R VOUS
by executing

S :- R_VOUS,COOPT;

The call on COOPT blocks the master until a slave

684

is available. When the period of cooperation is
over, the master reschedules S by

S.SCHEDULE (delay) ;

In addition to these synchronisations, Demos
also supplies a portable random number generator
with well-spread seeds (written in Simula), data
collective devices, tracing and automatic report-
ing. Examples of their usage are given in (1).
Thelr implementation can be found in (2).

In the next section, we present six Demos
models using these synchronisations. Code for
these models is presented in the format:

BEGIN EXTERNAL CLASS DEMOS;
DEMOS
BEGIN
declare static quantity names (resources,
distributions, etec.);
declare(dynamic) entities;
create resource and distribution
records;
create entity streams;
set simulation run time;

END;
END;
MODELLING IN DEMOS
Example 1. Gas Station.

Cars can be accommodated in one of two bays
on either side of the single pump at a gas sta-
tion. Cars arriving for gas drive to a free bay
if there is one, otherwise, they form a single
queue for pump bays. On acquiring a free bay, a
car moves up to occupy it and then waits for the
use of the pump. ‘

The bays and the pumps are resources for
which cars compete. These are modelled naturally
in DEMOS using RES objects. The time taken for
cars to move into a bay is constant, but the
times taken to fill up the tank and pay the atten-
dant are to be determined from random number dis-
tributions. Another random number distribution is
used by each car to determine the arrival time of
the next one. Data for the model is obvious from
the program text.

The life history of a car is described as an
entity in DEMOS. We give this life history first:

ENTITY CLASS CAR;

BEGIN
NEW CAR("CAR").SCHEDULE (NEXT.SAMPLE) ;
BAY.ACQUIRE(1);
HOLD(5.0);
PUMP.ACQUIRE(1);
HOLD (FILL.SAMPLE) 3
PUMP .RELEASE(1);
HOLD (PAY . SAMPLE)
BAY .RELEASE(1);

END#*CAR#%

The driving program for this simulation is:

685

BEGIN EXTERNAL CLASS DEMOS;
DEMOS BEGIN
REF(RES) BAY, PUMP;
REF(RDIST) NEXT, FILL, PAY;

ENTITY CLASS CAR.....3

BAY :~ NEW RES("BAY", 2);

PUMP :- NEW RES("PUMP", 1);

NEXT :- NEW NEGEXP('"NEXT.CAR", 0.01667);
FILL :- NEW UNIFORM("FILL TIME", 90.0,

. . 15.0);
PAY :- NEW UNIFORM("PAY TIME", 12.0, 2.0);
NEW CAR("CAR") .SCHEDULE(0.0);

HOLD(60.0 * 60.0): !simulation run length;
END;
END;

The simulation begins with one car just arriv-
ing and continues over one hour (3600 seconds).
Initialisation of the RES objects shows how the
quantity of a resource is defined.

Example 2. Conveyor belt.

A production line involves 5 servers station-
ed along a conveyor belt. Items to be serviced
arrive at a mean rate of 4 per minute (NEGEXP dis-
tributed). If unserviced they are carried along
the conveyor passing a server every minute. If
an item reaches an idle server, the item is picked
off the conveyor, serviced (which takes UNIFORM
0.8->1.2 minutes) and stored away. If an item
passes all the servers, then it is recirculated
and reappears in front of server 1 after a delay
of 5 minutes. The simulation runs for 480 minutes,
and notes the number of recirculated items.

This example introduces an additional DEMOS
data collection devibe, the count., It is used
here to record the number of items processed, and
the number which have to be recirculated. Counts
are updated by calling their local procedure UP-
DATE.

The solution clearly demonstrates the value
of embedding the simulation facilities within a
standard simulation language. For example, there
are five servers in the model, each of which is a
resource, It is natural to combine the ARRAY of
Simula with the RES of Demos to produce an array
of RES objects. The code is also made easier to
write and more concise through the use of standard
SIMULA statements such as FOR.:

We show the life history of an item in its
ENTITY declaration below, A loop is used to step
the item through the servers, with the controlled
variable, K, being used to index the appropriate
server resource. When an item has been serviced,
any remaining passes through the loop and the re-
circulation control statements are skipped, If an
item fails to receive service then it goes round
again, REPEAT returns to the label L0OP,

Uy - -

Discrete Event Simulation with Demos (continued)

ENTITY CLASS ITEM;
BEGIN INTEGER K;
NEW ITEM("ITEM").SCHEDULE(ARR.SAMPLE);
LOOP:
FOR K := 1 STEP 1 UNTIL 5 DO
BEGIN
HOLD(1.0);
IF SERVER(K) .AVAIL =
BEGIN
SERVER(K) .ACQUIRE(1);
HOLD (SERVE.SAMPLE) ;
SERVER(K) .RELEASE(1);
DONE.UPDATE(1);
GOTO L;
END;
END;
HOLD(4.0);
AGAIN.UPDATE(1):
REPEAT;
 L:END***TTEM*#%%

1 THEN

The driver program illustrates how the array
of resources is declared and initialised, with use
again being made of a FOR statement.

BEGIN EXTERNAL CLASS DEMOS;
DEMOS
BEGIN REF (RES)ARRAY SERVER(1:5);
REF (RDIST)ARR, SERVE;
REF (COUNT)AGAIN, DONE;
INTEGER K;

ENTITY CLASS ITEM.....;
ARR. :- NEW NEGEXP("ARRIVALS", 3.0);

SERVE :- NEW UNIFORM("SERVICE", 0.8,
1.2);

AGAIN :- NEW COUNT("RE-CYCLES")
DONE :i- NEW COUNT("ITEMS DONE")
FOR K :- 1 STEP 1 DNTIL 5 DO

NEW RES(EDIT('"'SERVER",
K), 1);
NEW ITEM("ITEM").SCHEDULE(O. 0),
HOLD(480.0);
END;
END;

SERVER(K) :~

Example 3. Production line.

A small production line has three stages:
the first assembles the inner and outer rings of
bearings, the second greases the assemblage, the
third packs them two to a box (the packers take
two greased assemblages at a time). There are 3
assemblers, 1 greaser, and 2 packers. Timings
(in minutes) are obvious from the program list-
ing.

In the DEMOS program for this model, the as-
sembler, greaser and packer are modelled as enti~
ties. No operator can work if the raw material
required is not available. For example, the as~
semblers need an inner and an outer ring in order
to assemble them. The assemblage is then passed
on to the greaser, who cannot proceed without it.
On completion of greasing, the greaser passes the
greased units on to the packers, each of which re-

686

quires two units in order to perform a packing op-
eration. This producer/consumer synchronisation
i1s modelled by the BIN of DEMOS. Two additional
entities are included to generate the supply of
rings, one for the outers and the other for the
inners.

The complete program is shown below:

BEGIN EXTERNAL CLASS DEMOS;
DEMOS
BEGIN REF(COUNT)DONE; INTEGER K;
REF (BIN) ASSEMBLER, GREASED,PACKED,
INNERS ,OUTERS;
REF (RDIST)NEXTI ,NEXTO,ASSEMBLE,
GREASE,PACK;

ENTITY CLASS IRING;

BEGIN. INNERS.GIVE(1);
HOLD (NEXTI . SAMPLE) ;
REPEAT;

END***TRING*%#*;

" ENTITY CLASSORING;
BEGIN OUTERS.GIVE(L);
HOLD (NEXTO . SAMPLE) ;
REPEAT;
END***QUTER RINGS*%#;

ENTITY CLASS ASSEMBLER;

BEGIN INNERS.TAKE(1); OUTERS.TAKE(L);
HOLD (ASSEMBLE . SAMPLE) 3
ASSEMBLED.GIVE(L);

REPEAT;

END***ASSEMBLER**# ;

ENTITY CLASS GREASER;
BEGIN ASSEMBLED.TAKE(1);
HOLD(GREASE SAMPLE) ;

GREASED.GIVE(1);
REPEAT;
END***GREASER**% ;

ENTITY CLASS PACKER;
BEGIN GREASED.TAKE(2);

HOLD (PACK , SAMPLE) ;

DONE . UPDATE(1) ;

REPEAT;
END***PACKER**# s
ASSEMBLED :- NEW BIN(“ASSEMBLED, 0);
‘GREASED :— NEW BIN("GREASED", 0);
PACKED :— NEW BIN("PACKED", 0);
INNERS :~ NEW BIN("INNERS", 10);
OUTERS :~ NEW BIN("OUTERS", 10);
DONE :— NEW COUNT("JOBS DONE");
NEXTT :~ NEW NEGEXP ("INNER", 6.0);
NEXTO :— NEW NEGEXP ("OUTER", 6.0);
ASSEMBLE :— NEW NORMAL ("ASSEMBLE",

‘ 0.5, 0.1);
GREASE :~ NEW '‘CONSTANT ("GREASE",
‘ 0.16);
PACK :~ NEW NORMAL("'PACK", 0.6,
0.1);

NEW IRING(MI-RING").SCHEDULE(0.0);
NEW ORING("O-RING"),SCHEDULE(0.0);

FOR K := 1 STEP 1 UNTIL 3 DO

NEW ASSEMBLER("ASSEMBLER") ,SCHEDULE
(0.0);

NEW GREASER("GREASER") .SCHEDULE(0.0) ;

FOR K := 1 STEP 1 UNTIL 2 DO
NEW PACKER('"'PACKER").SCHEDULE(0.0);
HOLD(480.0);
END;
END;

Example 4. Printing shop.

Each job for a printing shop comnsists of a
number of pages, each of which consists of a num—
ber of components which comprise photographs, draw-
ings and typed text.

The components of a page will each require
the services of an appropriate operator: the photo
process will require a photographer; the drawing
process will require an artist and the type process
will require a setter. These three types of oper-
ators are modelled as RES objects, with the three
associated processes obviously being entities.

When all the components of a page have been
prepared, the services of a platemaker (another
RES) are required in order to assemble the page.

One essential feature of the simulation is to
ensure that page assembly for any page is delayed
until all its components are ready. Similarly, no
job can be completed until all its comstituent
pages have been assembled. The required synchro-
nisations are affected in this example by the BIN
object of DEMOS. Each job has its own associated
BIN object called JOB_OFFSPRING. When a job sets
up its constituent pages, a pointer, ¢, of type
REF(BIN), is passed to each page so that as each
page is completed, it can signal this event to its
own master job. By issuing a call of TAKE(PAGES),
a job is blocked at that point until all PAGES con-
stituent pages have been completed and issued a
GIVE(1l) to the job's BIN.

Exactly the same synchronisation is used be-
tween each page and its sub-tasks.

A new feature used in the program below is a
further data collection device, the HISTOGRAM.
This can provide a very concise and readily assimi-~
lated report on some aspect of a simulation beha-
viour.

BEGIN EXTERNAL CLASS DEMOS;
DEMOS
BEGIN
REF (RES)PLATEMAKER, PHOTOGRAPHERS,
_ARTISTS, SETTERS;

REF (RDIST)NEXT JOB, PLATE TIME,
PHOTO TIME, DRAWING TIME,
TYPE_SETTING TIME;

REF (IDIST)NR PHOTOS, NR DRAWINGS, NR_TYPES,
STZE;

REF (HISTOGRAM) JOBTHRU ;

ENTITY CLASS JOB;

BEGIN
INTEGER PAGES, K;
REAL ARRTIME; ‘
REF (BIN)JOB_OFFSPRING;

NEW JOB("JOB'").SCHEDULE (NEXT JOB.SAMPLE);
ARRTIME := TIME;

PAGES s= SIZE.SAMPLE;

OFFSPRING :- NEW BIN("PAGES", 0);

FOR K := 1 STEP 1 UNTIL PAGES DO
NEW PAGE("PAGE", JOB_QFFSPRING).

SCHEDULE(0.0);
JOB_QFFSPRING.TAKE(PAGES);
JOBTHRU . UPDATE (TIME-ARRTIME) 3
END#*#%JOB#%% 3

ENTITY CLASS PAGE(C); REF(BIN)C;
BEGIN

INTEGER PHOTOS, DRAWINGS, TYPING, ITEMS,

K3
REF (BIN)OFFSPRING;
PHOTOS NR_PHOTOS .SAMPLE;

DRAWINGS := NR_DRAWINGS.SAMPLE;
TYPING = NR_TYPES.SAMPLE;
ITEMS = PHOTOS + DRAWINGS + TYPING;

OFFSPRING :- NEW BIN("SUB-JOB", 0);
FOR K := 1 STEP 1 UNTIL PHOTOS DO

NEW PHOTO("PHOTO", OFFSPRING).SCHEDULE

(0.0);
FOR K := 1 STEP 1 UNTIL DRAWINGS DO
NEW DRAWING("DRAWING", OFFSPRING) .
SCHEDULE(0.0);
FOR K := 1 STEP 1 UNTIL TYPING DO
NEW TYPE("'TYPE", OFFSPRING) .SCHEDULE
(0.0);
OFFSPRING.TAKE (ITEMS) ;
PLATEMAKER .ACQUIRE (1) ;
HOLD(PLATE TIME.SAMPLE);
PLATEMAKER .RELEASE(1) 3
C.GIVE(1);
END#%#%PAGEH %+

ENTLTY CLASS PHOTO(C); REF(BIN)C;
BEGIN
PHOTOGRAPHERS .ACQUIRE (1) ;
HOLD (PHOTO_TIME .SAMPLE) ;
PHOTOGRAPHERS .RELEASE(1) 3
C.GIVE(1);
END*#*PHOTQ#®%% ;

ENTITY CLASS DRAWING(C); REF(BIN)C;
BEGIN
ARTISTS.ACQUIRE(1);
HOLD (DRAWING TIME.SAMPLE) ;
ARTISTS.RELEASE(1);
C.GIVE(Ll);
END#**%DRAWING#®%% 5

ENTITY CLASS TYPE(C); REF(BIN)C;
BEGIN
SETTERS .ACQUIRE (1) ;
HOLD(TYPE SETTING TIME.SAMPLE);
SETTERS .RELEASE (1) ;
C.GIVE(L)

END***TYPE*%%

PLATEMAKER := NEW RES("PLATEMAKER", 1);
PHOTOGRAPHERS :~ NEW RES("F'GRAPHERS", 3);
ARTISTS :—~ NEW RES("ARTISTS", 3);
SETTERS :~ NEW RES("SETTERS", 3);
JOBTHRU :~ NEW HISTOGRAM("JOB TIMES",

0.0, 20.0, 10);

PLATE_TIME :~ NEW NORMAL ("PLATE SETTING',

10.0, 1.0);
PHOTO TIME :- NEW NORMAL("PHOTOGRAPH~
ING", 10.0, 1.0);

~

Dis¢rete Event Simulation with Demos (continued)

DRAWING TIME :- NEW NORMAL("DRAW PIC-
TURE", 10.0, 1.0);
TYPE_SETTING TIME :- NEW NORMAL (''SET

TYPE", 10.0, 1.0);

NEXT JOB :- NEW NEGEXP("NEXT JOB",
0.010);

SIZE :- NEW RANDINT("SIZE", 2,
4);

NR_PHOTOS :- NEW RANDINT ("PHOTOS PER

. . PAGE", 2, 4);
NR_DRAWINGS #~ NEW RANDINT ("'DRAWINGS
PER PAGE", 2, 4);

NR_TYPES i~ NEW RANDINT ("TYPE FONTS",
1, 2);
NEW JOB("JOB'").SCHEDULE (NOW) ;
HOLD (480.0);
END;
END;

'Example 5. Dining philosophers.

Five philosophers are seated around a circu~
lar table which contains an inexhaustible supply
of spaghetti within easy reach of all at its cen—
tre. Between each pair of adjacent philosphers is
a fork. The philosophers have a simple life style

LOOP: think;
eat;
REPEAT;

In order to eat, a philosopher requires both the
fork on his left and the fork on his right. Each
thus competes for resources with his immediate
neighbours. The orgy is to last for 3 hours.

In this model we represent the forks by
REF (RES)ARRAY FORK(1:5) and initialise by

FOR K := 1 STEP 1 UNTIL 5 DO
FORK(K) :- NEW RES(EDIT("FORK", K), 1);

We number the forks so that philosopher n finds
FORK(n) on his left and FORK(n+l) on his right
(FORK(1) in the case of philosopher 5). Then
CLASS PHILOSOPHER can be written

ENTITY CLASS PHILOSOPHER(N); INTEGER N;
BEGIN REF(RES)L, R;
L :- FORK(N);
R :~ FORK(IF N=5 THEN 1 ELSE N+1);
LOOP:
HOLD (THINK. SAMPLE) }
Q.WATTUNTIL(L.AVAIL > O AND R.AVAIL > 0);
L.ACQUIRE(1); R.ACQUIRE(1);
HOLD (EAT . SAMPLE) ;
L.RELEASE(1); R.RELEASE(1);
Q.SIGNAL;
REPEAT;
END#**PHILOSOPHER*#*%

Usually a conditionqueue contains entities
all waiting upon the same condition so that when
one attempted awakening fails, there is no point
in trying to awaken the rest of the queue. Occa-—
sionaily, as here, we have several entities wait-=
ing upon different conditions in the same queue '

(it seems profligate to put each philosopher in
his own queue). Besides waituntil and coopt, a
condq has a boolean attribute ALL which when set
to true ensures that a call on signal will test
each and every condition queue member even though
they have different -conditions and some may fail.
This gives us what we want: by using a single
CONDQ with ALL set, philosophers are queued ranked
according to their time of entry (their priorities
are all zero) and every member of the condition
queue will be tested. The complete program reads

BEGIN. EXTERNAL CLASS DEMOS;
DEMOS
BEGIN INTEGER K;
REF (RES)ARRAY FORK(1:5);
REF(IDIST)THINK, EAT;
REF (CONDQ)Q;

ENTITY CLASS PHILOSOPHER(N);........ ;

Q := NEW CONDQ("AWAIT EAT");
Q.ALL := TRUE;
THINK :- NEW RANDINT("THINK", 20, 30);
EAT :— NEW RANDINT ("EAT", 10, 20);
FOR K := 1 STEP 1 UNTIL 5 DO
FORK(K) :~ NEW RES(EDIT("FORK", K), 1);
TRACE;
FOR K := 1 STEP 1 ONTIL 5 DO
NEW PHILOSOPHER('"P", X).SCHEDULE(0.0)3;
HOLD(180.0);
END;.
END;

Example 6. Information system.

This problem has been used in several ‘papers
and books and so provides an interesting comparison
(see for example (6)). The model represents an in-
formation retrieval system with a number of remote
terminals each capable of interrogating a single
processor (CPU). A customer with & query arrives
at one or other of the terminals and queues, if
necessary, to use it. The terminals are physically
far apart and so no queue jumping is possible.

When the terminal is free, the user keys in his re-
quest, and then signals his presence to the system.
He then awaits his reply.

The queries are picked up by a scanner which
looks at each terminal in turn. If there is no
query outstanding, the scanner rotates on to the
next terminal in turn. If there is a query, the
scanner locks on to that terminal and does not
rotate further until it has succeeded in copying
the query to a buffer unit capable of holding three
such queries at a time. The copying process is
blocked if no buffer slot is available. When the
copying has been completed, the scanner starts to
rotate again and leaves the cpu to deal with the
request.

The CPU processes the query and places the
answer in the buffer slot overwriting the query.
The answer is returned to the terminal by the
buffer unit (without using the scanner) and then

.that buffer slot is freed. The customer reads

the reply and then quits his terminal.

688

We describe the model in terms of two entity
classes -~ QUERY and SCANNER. CLASS SCANNER des—
cribes the actions of the real scanner as it ro-
tates from terminal to terminal. If the current
terminal has no request pending, the scanner moves
on, otherwise it awaits a buffer and transfers the
query into it before rotating on.

CLASS QUERY describes the roles of the cus-
tomer, his request and the réply. On arrival, the
customer keys in his request and awaits his reply.
The query (same object) is eventually passed from
the terminal-to a CPU buffer by the scanner: Since
these actions are already described inside CLASS
SCANNER, they are not repeated here - instead each
QUERY object is coopted by the scamner for this
part of its life. When it resumes its own life
history, the query is already in.a buffer. Then
the query is processed by the CPU and the reply
sent back to the appropriate terminal for reading.

Now that we have outlined the roles to be
played by scanner and query objects and decided
upon their interactions, we can tackle their de~
clarations separately. We begin by detailing
CLASS SCANNER.

The scanner rotates from terminal 1 to termi-
nal 6, and then repeats. At each terminal N
(L <= N <=6),it rotates (HOLD(0.0027)) and then
tests to see if any query is pending (B := REQUESTQ
(N) .LENGTH > 0). This test also takes 0.0027 min-
utes to complete. If there is a request, then the
scanner locks on to that terminal, acquires a buf-
fer (by BUFFERS.TAKE(1l). This may imply a delay.),
and then transfers the request to the buffer
(HOLD(0.0117)). Once this has been accomplished,
the query is then released (Q.SCHEDULE(0.0)) and
the scanner is free to rotate to the next terminal.

The full declaration is

ENTITY CLASS SCANNER;

BEGIN INTEGER N; BOOLEAN B: REF(QUERY)Q:;
FOR N := 1 STEP 1 UNTIL 6 DO
BEGIN

HOLD(0.0027);
B := REQUESTQ(N).LENGTH > 0
HOLD(0.0027);
IF B THEN
BEGIN
Q :- REQUESTQ(N).COOPT;
BUFFERS.TAKE(1);
HOLD(0.0117);
Q.SCHEDULE(0.0);
END3; ’
END;
REPEAT;
END#*%#SCANNER#*#%;

A query object first generates the next query ob-
ject, notes its arrival time (T := TIME), and then
chooses its terminal (N). That terminal is then
seized (by TERMINAL(N).ACQUIRE(1l), perhaps after

a wait), and the request is keyed in (HOLD(KEYIN.
SAMPLE)). Now the query waits passively in
REQUESTQ (M) .

When it becomes active again, the scanner has
acquired a buffer slot on its behalf and copied
the request into that buffer. The request is now

processed (HOLD(PROCESS.SAMPLE)) and the reply re-
turned to the appropriate terminal (HOLD(0.0397)).
After the transfer has been completed, the buffer
slot is freed (BUFFERS.GIVE(1)), possibly unblock-
ing the scanner. Then the reply is read and the
términal vacated (TERMINAL(N).RELEASE(1)), which
allows in the next query, if any. Finally, a hist~
ogram of through times (THRU) is updated by the
elapsed time of this query through the system.

ENTITY CLASS QUERY;
- BEGIN INTEGER N; REAL T;
NEW QUERY("QUERY") SCHEDULE(ARRIVALS SAMPLE) ;

T := TIME;
N := TERMINALS.SAMPLE;
TERMINAL (N) .ACQUIRE(1);

HOLD (KEYIN . SAMPLE) ;
REQUESTQ(N) .WAIT;

HOLD (PROCESS . SAMPLE + 0.0397);

BUFFERS.GIVE(1);

HOLD (READ , SAMPLE) ;

TERMINAL(N) .RELEASE(1);

THRU . UPDATE (TIME-T) ;
END#*%*QUERY %% ;

The driving program contains these definitions plus
the various resources, queues and distributions and
one histogram. It generates the scanner and the
first query and runs for 60 minutes. Unspecified
timings are obvious from the program listing.

BEGIN EXTERNAL CLASS DEMOS;
DEMOS
BEGIN INTEGER K;
REF (HLSTOGRAM) THRU 3
REF (WAITQ)ARRAY REQUESTQ(1:6);
REF(RES)ARRAY TERMINAL (1:6);
REF (BIN)BUFFERS;
REF (RDIST)ARRIVALS, KEYIN, PROCESS, READ;
REF (IDIST) TERMINALS

ENTITY CLASS SCANNER....eeses}
ENTITY CLASS QUERY...ce00ues .3

ARRIVALS -:~ NEW NEGEXP(“ARR", 2.0);
TERMINALS :— NEW RANDINT("TERMINALS",

1.6);
KEYIN :— NEW UNIFORM("KEYIN", 0.3,
0.5);
PROCESS :— NEW UNIFORM("PROCESS", 0.05,
0.10);
READ :- NEW UNIFORM("READ", 0.6, 0.8);
THRU :~ NEW HISTOGRAM("'THRU", 1.0,
11.0, 10);
FOR K := 1 STEP 1 UNTIL 6 DO
BEGIN
REQUESTQ(K) :~ NEW WAITQ(EDIT("REQUEST",
K));
TERMINAL(K) :- NEW RES(EDIT("TERMINAL",
K), 1)
END;

BUFFERS :~ NEW BIN("BUFFER", 3);
NEW SCANNER("SCANNER") .SCHEDULE(0.0);
NEW QUERY("Q") .SCHEDULE(0.0);
HOLD(60.0) 3
END;
END;

689

" Disérete Event Simulation with Demos (continued)

OUTPUT:

*
*

: kkkhkkkhkhhkhkhkhkhhkkhkhikhkhhkhkhikhhhhhhihkhihkihkkkkikkddkkikkkkiikikkkik

CLOCK TIME = 60.00 .

*
REPORT .

Fhdhkdkhkkikhdddddihhdihihkkkkhkihkihhkihkiohkikihidddbddddhhk bkl

TITLE : /
arr

terminals
keyin
process

read

TTITLE /
thru

CELL/LOWER LIM/

0 -INFINITY
1 1.000
2 2.000
3 3.000
4 4.000

TITLE /
terminal 1
terminal 2
terminal 3
terminal 4
terminal 5
términal 6

TITLE /
buffers

(RE)SET/ OBS/TYPE / Al B/ - SEED

0.000 122 NEGEXP 2.000 ’ 33427485
0.000 122 RANDINT 1 6 22276755
0.000 122 UNIFORM 0.300 0.500 46847980
0.000 122 UNIFORM 5.000&-02 0.100 43859043
0.000 121 UNIFORM 0.600 0.800 64042082

HISTOGRAMS
Fkkkkkkhhkkkikkkkkk

SUMMARY

(RE)SET/ 0BS/ AVERAGE/EST.ST.DV/ MINIMUM/ MAXIMUM

0.000 120 ' 1,582 0.596 1.077 4.239
N/ FREQ/ CUM :
I
0 0.00 0.00 I
95 0.79 79.17 Ikkkkkkkkkhkikkikkkikikkidkkkikdhkiik

18 0.15 94,17 I¥kkkik
6 0.05 99.17 I**
1 0.01 100.00 I
REST OF TABLE EMPTY

(RE)SET/ 0BS/ LIM/ MIN/ NOW/ % USAGE/ AV, WAIT/QMAX

0.000 20 1 0 1 40.459 0.186 1
0.000 24 1 0 1 49,862 0.639 3
0.000 22 1 0 1 46.063 0.427 2
0.000 21 1 0 0 43.847 0.301 2
0.000 16 1 0 0 34.458 4.816&~02 1
.0.000 17 1 0 1 35.523 0.310 2

BINS

dekkkkkk

(RE)SET/ OBS/INIT/ MAX/ NOW/ AV, FREE/ AV. WAIT/QMAX
0,000 121 3 3 2 2,743 1.701&-04 1

690

WAIT QUEUES
Fekkkkkkkkkkkkkkhhkidk

TITLE / (RE)SET/ OBS/ QMAX/ QNOW/ Q AVERAGE/ZEROS/ AV, WAIT
requestq 1 - 0.000 20 1 0 0.000 20 0.000
requestq 1 * 0.000 20 1 0 3.226&-03 0 9.679&-03
requestq 2 0.000 24 1 0] 0.000 24 0.000
requestq 2 * 0.000 24 1 0 3.165&-03 0 7.912&-03
requestq 3 0.000 22 1 0 0.000 22 0.000
requestq 3 ¥ 0.000 22 1 0 4.007&-03 0 1.093&-03
requestq 4 0.000 22 1 0 0.000 22 0.000
requestq 4 * 0.000 227 1 0 3.304&-03 0 9.011&-03
requestq 5 0.000 17 1 0 . 0.000 17 0.000
requestq 5 * 0.000 17 1 0 2.,400&-03 0 8.472&-03
requestq 6 0.000 17 1 0 0.000 17 0.000
requestq 6 ¥ 0.000 17 1 0 3.328&-03 0 1.175&-02
SUMMARY BIBLTIOGRAPHY
Demos is, effectively, an extension of Simula 1. G. M. Birtwistle, "Discrete Event Modelling
which provides high-level features for the descrip- on Simula", Macmillan, 1979.
tion and implementation .of discrete event models. .
In this paper, the major synchronisation facili- 2. G. M, Birtwistle, "The Demos Implementation
ties of Demos have been described and their ease Cuide and Reference Manual", University of
of use has been illustrated by several examples. Calgary Research Report 81/70/22.
The examples hdve been chosen from different ap- .
plication areas, which serve to show the wide ap- 3. G. M. Birtwistle, "An approach to discrete
plicability of Demos. event modelling", University of Calgary Re-
search Reports 81/72/24, 81/73/25, 81/74/26,
Demos runs on any of the twelve or so ma- 81/75/27, 81/76/28.
chines that currently support Simula (the list In-
cludes IBM, UNIVAC 1100, ICL, CD, PRIME, DATA 4, G. M, Birtwistle, 0-J. Dahl, B. Myhrhaug and
GENERAL, DEC 10, DEC 20, VAX, Honeywell and Motor- K. Nygaard, "Simula Begin", Studentlitteratur,
ola hardware). Sweden, 1979.
Future developments for Demos already slated 5. W. R. Franta, "The process view of simulation”,
include extensions for dealing with combined con- North Holland, 1978.
tinuous and discrete models, and an interactive
front end for inputting model specifications and 6. A, A. B, Pritsker and P. J. Kiviat, "Simula-
automatically deriving 'correct' Demos programs tion with GASP II", Prentice-Hall, 1969.

(correct means consistent with specs).

691

