A Tutorial on Discrete-System Simulation in Ada

‘ Raymond M. Bryant'1
IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598

Sumniary

Introduction

Adaz, the mnew Department of Defense standard
language, contains many new features designed to
facilitate the rapid construction of software for
embedded computer system applications. However, Ada
is also suitable for general purpose programming,
and the size and backing of the Ada project means
that the language will enjoy considerable use and
support. It is therefore important that simulation
professionals are aware of the features of Ada
suitable for the construction of discrete-system
simulations. In this tutorial we provide a brief
introduction to these features and we outline’ the
implementation of a process-oriented simulation in
Ada. We also describe how a SIMULA-like "hold"
procedure can be implemented as a package in Ada.

A summary of the presentation is given below; for
further details see [4] and the references given
there.

Strong-Typing

Like Pascal [6], Ada is strongly-typed. The
contemporary view is that strongly-typed languages
assist in the construction of clear and readable
programs. Additionally, wmany common programming

. mistakes can often be detected during compilation of
a program written in a strongly-typed language (see,
for example, [5]).

1 This work was performed while the author was with
the Computer Science Department, University of
Wisconsin-Madison, Madison, Wisconsin 53706, and was
supported in part by the Wisconsin Alumni Research
Foundation and NSF grant MCS-800-3341.

2Ada is a registered trademark of the U.

Department of Defense.

5.

nggggeggrﬁgggt1ontson%erence

Highland * Chao * Madrigal, Editors

82CH1844-0482/0000-0643 $0O?75 © 1982 IEEE

643

The type definition facilities of Ada can be used
to define the entities of a simulation. For
example, one can use record types to represent
permanent entities. Temporary entities can be
represented using pointer types; these types are
called access types in Ada.

Packages

A package is a "set of facilities provided for
the benefit of other packages and procedures” [3].
Packages allow a programmer to create a collection
of routines and data structures that can be compiled
separately and then included as a unit in other
programs. Additionally, the package declaration
specifies the interface of these routines to the
outside world in a way that allows enforcement of
Ada's strong-typing rules.

For example, packages to define a queue of
entities can readily be implemented in Ada. The
package declaration includes routines to do queue
initialization, entity insertion and removal, and a
data type that allrws the user to declare queunes.
The package can be constructed so that the queue
‘type is accessible to the user, but so that the
internal details of the queue data structure are
invisible to the user. This insulates the user from
changes in the queue implementation.

A single queue package can be used to implement
queues of different types of objects by making the
package a generic package; multiple entity types can
be placed in a single queue (if so desired) by
representing the entitiesusing a record with
variants.

Tasks

An Ada task represents an independent execution
that runs in parallel (at least conceptually) with
all .other tasks. However, unlike a process in
SIMULA {2}, a task cannot be assumed to run to
completion before the physical processor is
reassigned to another task. SIMULA-like processes
can be implemented in Ada through synchronization

primitives that only allow one task to run at a time.

Tasks communicate by calling entries in other
tasks. The receiving task must be waiting at a
corresponding accept statement when the call occurs;
otherwise the calling task is delaved. Similarly,
the called task is delayed at the accept statement
until some other task executes a call on that entry.
When both tasks have reached the corresponding
statements (this is called a rendezvous) the body
of the accept statement is executed.
task is delayed until the body of the accept
statement has been completed.

Using task types one can define synchromization
objects [&barnes]. Tasks using these objects wait
at "wait" statements until another task executes the
appropriate '"send" call. Synchronization objects
can be used to implement SIMULA-like processes in
Ada.

A Simulation Package

Combining the ideas of packages, tasks, and
synchronization objects, one can define a general,
process-oriented simulation package in Ada. This
simulation package will have the advantage of
portability among Ada inplementations, but also will
be process-oriented rather than event-oriented.
Finally, since it is writiten in a strongly-typed
language, a simulation package in Ada provides the
advantages of strong-typing for the simulation
programmer. We provide
package and illustrate its use in a simple example

[4]. Although it has yeét to be tested on .a
production Ada compiler, we feel that standard
packages 1like this will eventually become as

portable and well-known as event-oriented packages
such as GASP-IV [7].

The calling

an outline for such a

644

References

{1] Barnes, J. G. P., "An Overview of Ada,’
Software -- Practice and Experience 10, pp. 851-887
(1980).

[2] Birtwistle, G. M. et al, SIMULA Begin,
Petrocelli/Charter, New York (19755%

[Sl Brender, R. F. and I. R. Nassi, "What is
Ada?,” IEEE Computer 14, 6, pp. 17-24 (June 1981).

(4] Bryant, Raymond M., '"Discrete System
Simulation in Ada," Simulation, (to appear October

1982).

{51 Bryant, Raymond M., "SIMPAS -- A Simulation
Language Based on Pascal," Proceedings of the 1980
Winter Simulation Conference, pp. 25-40 (December
3-5, 1980).

[6] Jensen, K. and N, Wirth, "Pascal: User
Manual and Report,” Lecture Notes in Computer
Science 18, Springer-Verlag Berlin, New York (1974).

{71 Pritsker, A. A. B., The GASP-IV Simulation
Language, John Wiley and Sons, Inc., New York
(1974).

