. exhibits that behavior.

INTRODUCTION TO MODEL BUILDING

Abstract:

The building of simulation models is both
an art and a science. The following paper trys
to provide guidance to the model builder during
the design and implementation process.

INTRODUCTION

There is little question that simulation is
one of the most powerful analysis tools available
to those responsible for the design and operation
of complex processes or systems. Simulation is
the process of designing a model of a real system
and conducting experiments with this model for
the purpose either of understanding the behavior
of the system or of evaluating various strategies
for the operation of the system. The concept of
simulation is both simple and intuitively appeal-
ing. It allows the user to experiment with sys-
tems (existing or proposed) where it would be im-
possible or impractical otherwise. Unfortunately,
its use also presents the potential for disaster.
John McCleod compared simulation to the scalpel
used by a surgeon. Used in skilled hands it can
accomplish tremendous good, but it must be used
with great care and by someone who knows what -
they are doing.

Weinberg (1) pointed out that some systems
thinkers view simulation as the ultimate tool be-
cause the way to demonstrate understanding of be-
havior is to construct a system (or model) that .
There are three goals or
purposes to simulation models:

1. Improving thought processes by making
thoughts explicit and by posing sharp

questions. '

2. To solve specific problems related to
the systems of interest.

3. Use the model to predict future behavior,

that is, the effects that will be pro-
duced by changes in the system or in.its
method of operation. ]
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THE MODELING FRAMEWORK*

The simulation modeling framework consists of
six elements: (1) the real system, (2) the con-
ceptual model (our perception of the real system),
(3? the experimental domain, (4) the formal model,
(5) the computer implementation or computer model,
and (6) the experimentation. By the real system
we mean that there is an entity, situation, or
system which has been selected for analysis. le
also mean that there is a method of isolating out
a part of reality, labeling it a real system and
collecting information and data about it. The real
system is nothing more than a source of potentially
acquirable data. At any point in time we will have
acquired only a finite sub-set of this data from .
what is an infinite set or universe. In general,
the real system is (or will become) a source of
behavioral data consisting of time-based trajec-
tories of input, state and output variables.

The conceptual model is the model builder‘s
perception and understanding of the real world sys-
tem. Here, the modeler is defining the boundaries,
components, descriptive variables and interactions
which are beljeved to describe the real system.

The conceptual model consists of a hypothetical,
complete explanation of what the real world system
consists of and how it functions.

The experimental domain, characterizes a Tim-
ited set of circumstances under which the real sys-
tem is to be studied. Here we are concerned with
the specification of the goals and purpose of the
stud%. It is a prescription of the conditions for
which the formal model is intended to match reali-
ty. The explicit purpose of the model has signifi-
cant implications -fer the whole model building,
validation and experimentation process. For exam-
ple, if the model"s goal is to evaluate a proposed
or existing system ¥n an absolute sense, this im-
poses a heavy burden upon the ‘accuracy of the mod-
el and demands a high degree of isomorphism. On
the other hand, if the goal is the relative com-
parison of two or more systems or operational pro-
cedures, the model may be valid in a relative
sense even though the absolute magnitude of res-
ponses varies from that which would be encountered

* Based upon B. P. Zeigler, Theory of Modeling
and Simulation, Wiley & Sons, NY, 1976.




Model Building (continued)

in the real world. It is not surprising then to
learn that a model may be valid in one experimen-
tal domain but invalid in another. Thus there may
be many valid models (at least one for each exper-
imental domain). The experimental domain also
specifies the resource constraints under which

the study is to be conducted such.as schedule,
manpower and dollar limitations.

In most cases, the great comp]ex1ty of the
conceptual model precludes its consideration as a
possible simulation model due to resource limita-
tions. Fortunately, because of the selection of
a particular experimental domain, the modeller
can likely construct a relatively simple formal
model (also called the lumped model) that is valid
in that domain. The formal model takes the form
of logic flow diagrams, equations, etc. which des-
cribe the governing relationships-that determine
the behavior of the system. In principle, the
modeller simplifies by aggregating or lumping to-
gether components and elements that are strongly
connected through structure, function or both.

By Tumping together components and simplifying
interactions, hopefully a model results that nei-
ther oversimplifies the system to.the point where-
the model becomes trivial nor carries so much de-
tail and complexity that it becomeés intractable
and prohibitively expensiive to run. In the formal
model we purchase ease of manipulation at the cost
of a certain loss of complexity and detail of
content. One of the laws of science is, "If we
want to learn anything, we must not try to learn
everything." This is called the Lump Law by
Heinberg (1).

The next step is to write the step-by-step
instructions for implementation of the formal mod-
el upon a computer. The computer program imple-
menting a formal model should not be identified
as the model itself. Different programming lan-
guages encode the same model in different ways
and will produce different behavior. Great care
must be taken to insure that the computer model
or program behaves. as the modeller intended.

Finally, 'the computer program is used to gén-
erate model behavioral data through planned ex-
perimentation and the results analyzed. In this
stage there are also numerous pitfalls awaiting
the unwary. Depending upon how the experiments

are conducted and analyzed, erroneous conclusions

can be drawn.

THE SIMULATION PROCESS

There are a number -of excellent introductory
books dealing with the methodology of simulation
(2-7). e will therefore present the process in
-outline form. The following stages may be dis-
tinguished: ’ .

1. System (or process) Definition--Determin-
ing the boundaries, restirictions and mea-
sures of effectiveness to be used in de-
fining and studying the system (or pro-
cess).

2. Model Formulation--Reduction or abstrac-
tion of the real system to a block or
logical flow diagram.

3. Data Preparation--Identification of the
data needed by the model and their re-
duction to an appropriate form.

4. Model Translation--Description of the
model in an appropriate language accept-
able to the computer to be used.

5. Validation--Determining that any infer-
ences drawn from the model about the real
system will be correct to some acceptable
level of confidence.

6. Strategic Planning--Designing an experi-
ment that will yield the desired informa-
tion.

7. Tactical Planning--Determining how each
of the test runs specified in the experi-
mental design is to be executed.

8. Experimentation--Execution of the simula-
tion to generate the desired data and to
perform sensitivity analyses.

9. Interpretation--Drawing inferences from
the data generated.by the simulation.

10. .Implementation--Putting the model results
to use.

11. Documentation--Recording the project
activities and results as well as docu-
menting the model and its use.

PROBLEM AND MODEL;DEFINITION

To find an acceptable or optimal solution to
a probTem one must first know what the problem is.
Thus.analysis begins with the specification of the
system of interest, the environment in which it
exists and operates, the specification of goals of
the system and the purpose of the study.

In the process of studyﬁng a system or pro-
cess and converting the resulting knowledge into
a mathematical model, we musit spec1fy the

1. purpose of the mode1

2. components to be_ included in the model.

3. parameters and variables associated with
the components. .

4. functional relationships among the com-
ponents., parameters, and variables.

Simulation experiments are conducted for a
wide variety of purposes, some of which are:



1. Evaluation--determining how good a pro-
posed system design performs in an abso-
Tute sense when evaluated aga1nst spe-
cific criteria.

2. Comparison--comparing .competitive systems
designed to carry out a specified func-
tion, or comparing several proposed oper-
ating policies or procedures.

3. Prediction--estimating the performance
of the.system under some .projected set
of conditions.

4. Sensitivity analysis--determining which
of many factors are the most significant
in affecting overall system performance.

5. Optimization--determining exactly which
combination of factor levels will produce
the best overall response of the system.

6. Functional relations--estabiishing the
nature of the relationships among one or
more significant factors and the system’s
response.

After we have specified (at least tentative-
1y} the specific goal or purpose for which the
model is to be constructed, we begin to identify
the pertinent components. This process entails
itemizing all the components of the system that
contribute to the effectiveness or ineffectiveness
of its operation. Once a complete list of the
components of a system is specified, we next
determine whether each component should be in-
cluded in our model. This is easier said than
done, since at this stage of model development it
is not always clear whether a component is sig-
nificant to the overall goal. One of the key
questions to be answered is whether a particular
component is to be considered part of the model
or part of the environment.

Once we have decided which components and
variables we shall include in our model, we must
then determine the functional relationships a-
mong them and the values of the parameters to be
used.” Again, formidable problems confront us.
First, it may be difficult (if not impossible) t
quantify or measure certain variables that are
important to the behavior of the system. Second,
the relationships between components and var1ab1es
.may not be clear. Third, the data and informa-
tion we need may not be ava11ab1e, or perhaps not
exist in the form we need. Thus, decisions re-
garding the data to.be used and their validity,
form, and goodnéss of fit to theoretical distri-
butions and past performance, are all critical to
the success of the simulation experiment, and far
from befng academic points.

Having specified the goals and objectives of
the study and defined the system, we next reduce
the real system to a logical flow diagram or
static model. We wish to construct a model of
the real system that neither oversimplifies the
system to the point where the model becomes triv-
7al (or worse, misleading) nor carries so much
detail that it becomes clumsy and prohibitively
expensive, The danger is ‘that the model may tend

to be too detailed and include elements which con-
tribute Tittle or nothing to the understanding of
the problem.

The tendency is nearly always to simulate too
much detail rather than too 1ittle. Thus, one
should. always design the model around the questions
to be answered rather than imitate the real system
exactly. Pareto's law says that in every group or
collection there exists a vital few and a trivial
many. Nothing really significant happens unless it
happens to the vital few. The tendency among sys-
tems analysts has too often been to transfer all
the-detailed difficulties in the real situation in-
to.the model, hoping that the computer would solve
their prob]ems This approach is unsatisfactory
not only because of the increased difficulty of
programming the model and the additional cost of
longer experimental runs, but also because the
truly significant aspects and relationships may get
Tost in all the trivial details. Therefore, the
model must include only those aspects of the system
relevant to the study objectives.

PROGRAMMING LANGUAGES

Early effort in a simulation study is con-
cerned with defining the system to be modeled and
describing it in terms of logic flow diagrams and
functional relationships. But eventually one is
faced with the problem of describing the model in
a language acceptable to the computer to be used.
Unfortunately, so many general and special purpose
programming languages have been developed over the
years that it is nearly impossible to decide which
Tanguage best fits or is even a near best fit to
any part1cu1ar application. There were over 170
alone in 1972 and new ones are being deve]oped
every day (8).

Any algorithmic programming language can be
used for simulation modeling, but those languages
designed specifically for the purpose of computer
s1m?13t1on provide certain useful features. These
include:

1. Reduction of the programming task.
2. Provision of conceptual guidance.

3. Aide in defining the classes of entities
within the system.

4. Flexibility for change.

5. Provide a means of differentiating be-
tween entities of the same class’ by
characteristic attributes or properties.

6. Relate the entities to one another and
to their common environment.

7. Adjust the number .of entities as condi-
tions vary within the system.

The most widely used simulation languages
are GPSS.(9), SIMSCRIPT (11), GASP-IV (12),
SLAM (21), and in Europe, SIMULA (13).

One of the most exciting recent developments
is the appearance of languages which allow dis-
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crete, continuous or combined models. GASP-1V,
SIMSCRIPT, SLAM, and more recently SIMAN allow a
" great deal of flexibility to the modeller.

VERIFICATION AND VALIDATION

The next general prob1em is how to bring. to an
acceptable level, the users' confidence that any
inference about a system derived from the simula-
tion is correct. Basically, three questions are of
concern:

1. Does the model- adequately represent the
real world system?

2, 'Is the model generated behavioral data

characteristic of the real system behav-

ioral data?

3. Does the simulation model user have con-
fidence in the model's results?

Consequently, we are concerned with tests that fall
into. three groups: tests of model structure, tests
of model behavior and tests of the policy 1mp11ca-
tions of a model.

He will use the terms verification and valida-
tion in the sense used by Fishman and Kiviat (14).
Verification entails the comparison of a model to
empirical reality. In verification, the model
structure may be compared directly to deseriptive
knowledge of the real system structure.or model
behavior may be compared to observed real system
behavior. Validation on the other hand is the
process of establishing confidence in the sound-
ness and usefulnéss of the model's output. A mod-
el is created for a specific purpose, and its ade-
quacy or validity can only be évaluated in terms
of that purpose. The goal is to generate a mod-
el that creates the same problem and behavior
characteristics as the process or system being
studies. Validation is a continuous process, be-
ginning with the start of the study, that con-
tinues as the model builder accumulates confidence
that the model behaves plausibly and generates
problem symptoms or modes of behavior seen in the
real system. Validation then expands to include
persons not directly involved in constructing the
model. "At this point we can further c¢larify the
distinction between verification and validation.
While verification is an activity entailing com-
parison of a model to empirical reality, valida-
tion ¥s a communication process that requires the
model-builder to communicate the bases for con-
fidence in a model to a target audience. Unless
the modeler's confidence in.a model can be trans-
ferred, the model's usefuiness will never be
realized. Thus through verification testing, the
model builder develops personal confidence in the
model and through validation measures, transfers
that confidence to others.. .

It is important to realize that validation
should be considered one of degree and not an
either-or notion; it is not a binary decision var-
iable where the model is. va11d or invalid. There
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are no one or two tests which will serve to vali-
date a simulation model, rather, confidence in the
usefulness of a model must gradually accumulate as
the model passes more tests and as new points of
correspondence between model and empirical reality
are examined. Testing goes on continuously in the
process of constructing and using the model.

Validation must be considered from three dif-
ferent perspectives: (1) the model builder, (2)
the technical evaluator, and {3) the non-technical
model user. Only the mode] buildér has the capa-
city to conduct all of the confidence building -
tests. The technical evaluator {generally a super-
visor) is usually limited to reviewing the infor-
mation and technical data provided by ‘the modelier.
The non-technical user rarely has the technical
background or mathematical sophistication to be
able to understand the verification tests conduc-
ted. Yet:ultimately, all three levels must be
convinced of the model's validity if its results
are to be used.

The process of verification and validation
entails our trying to preclude making one or more
of the following types of errors:

1. Errors in definition and perception of
the real world system.

2. Errors in design of the model.

3. Errors in the data used.

4. Errors in programming.

5. Errors in procedure or use of the model.
6. Errors in interpretation of the results.

DESIGH OF EXPERIMENTS

We have defined simulation as being experi-
mentation via a model to gain information about a
real world system. It then follows that we must
concern ourselves with the strategic planning of
how to design an experiment that will yield the
desired information. The design of experiments is
a topic whose relevance to simulation has Tong:
been acknowledged but rarely applied in practice.
The design of a computer simulation experiment is
essentially a plan for purchasing a quantity of
information which may be acqu1red at varying prices
depending upon the manner in which the data are
obtained. Since the first publication in 1935 of
R. A. Fisher's book; The Design of Experiments, a
great. number of books and papers on experimental
design have appeared and the use of designed exper-
iments has found widespread app11cat1on The pur-
pose of using these designs is twofold: (1) they
are economical in terms of reducing the number of
experimental trials required and, (2) they provide
a. structuré for the investigator’s learning pro-
cess. The running of a simulation experiment is
the process of exercising or runring the model so
as to observe and. analyze the resulting 1nf0rma-
tion to obtain the desired answers. The experi-
mental design identifies a particular approach
for gathering the information needed to allow
valid inferences to be drawn.




Depending upon the specific purpose of the
experimenter, there are several different types of
analysis which may be required. Among the more
common are:

1. Comparison of means and variances of
alternatives.

2. Determinihg the importance or effect.of
different variables and their Timitations.

3. Searching for the optimal values of a set
of variables.

Designs to accomplish the first type of anal-
ysis are generally called single-factor experiments
and are fairly straightforward, with the major
concerns of the experimenter being such matters as
sample size, starting conditions, and the pres-
ence or absence of autocorrelation. The second
type of analysis is one toward which most text-
books on design and analysis of experiments are
directed. These designs primarily utilize analy-
sis of variance and regression techniques for the
interpretation of the results. The third type of
analysis usually requires search techniques of
experimentation.

TACTICAL PLANNING

In general, tactical planning involves ques-
tions of efficiency and deals with the determina-
tion of how each of the test runs specified in the
experimental design is to be executed. Primarily,
tactical planning is concerned with the resolution
of two problem areas: (1) starting conditions, as
they affect reaching equilibrium, and (2) the need
to reduce the variance of the answer as far as
possible while minimizing the required sample
sizes.

The first problem (i.e., starting conditions
and their effect upon reaching equilibrium) arises
from the artificial nature of model operation.
Unlike the real world the model represents, a sim-
ulation model operates only periodically. That
is, the experimenter starts the model, obtains his
observations, and shuts it down until the next run.
Fach time a run is started, it may take a certain
period of time for the model to reach equilibrium
conditions representative of the real world system
operations. Thus, the initial period of operation
of the model is distorted owing to the initial
‘start up conditions. The solution is to (1) ex-
clude data for some initial period from considera-
tion, and (2) choose starting conditions that re-
duce the time required to reach equilibrium.. Rea-
sonable starting conditions can reduce but not
eliminate the time required for the simulation
model to approach equilibrium conditions. There-
fore it is still necessary to determine when meas-
urement should begin.

The second part of the tactical planning
problem deals with the necessity to estimate the
precision of experimental results and the confi-
dence attributable to the conclusions or infer-
ences drawn. This jmmediately brings us face-
to-face with such areas -as variability, sample
size, and replication. In any experiment, we try

to obtain as much information as possible from a
Timited amount of experimentation. Several tech-
niques for reducing the variance of response have
been proposed (mostly in connection with survey
sampiing procedures), which can significantly re-
duce the required sample size and humber of repli-
cations of the experiments. The use of very large
sample sizes can overwhelm virtually all the tac-
tical problems of simutation but usually at a

great cost in computér and analysis time. The more
complex the simulation model, the more important

is  good tactical ptanning before running the
experiments. .

EXPERIMENTATION AND SENSITIVITY ANALYSIS

Ultimately, after all development and planning,
we run the model to obtain the desired information.
At this stage, we begin to find the flaws and over-
sights in our planning, and to retrace our steps
until we achiéve our originally established goals.

Sensitivity analysis is one of the most impor-
tant concepts in simulation modeling. By this we"
mean determining the sensitivity of our final ans-
wers to the values of the parpmeters used. Sensi-
tivity analysis usually consists in systematically
varying the values of the parameters over some
range of interest and observing the effect upon
the response of the model. In almost any simu-
lation model, many of the set variables are based
upon highly questionable data. In many cases,
their values may have been determined solely upon
the best guess of .experienced personnel or very
cursory analysis of minimal data. It is therefore
extremely important to determine the degree of
sensitivity of the results to the values used. If
the answer changes greatly with §1ight variations
in the values of some of these parameters, this
may provide the motivation and justification for
expenditure of more time and money to obtain more
accurate estimates. On the other hand, if the
results do not change over wide fluctuations in
the values of the parameter, no further effort is
needed or justified.

Simulation is ideally suited for sensitivity
analysis because of the experimenter's degree of
control. Unlike experimentation with real world
systems, the simulation modeler -has absolute con-
trol over his model and can vary one parameter at
a time if need be, observing the results upon the
behavior of the medel.

DOCUMENTATION

The last two elements that must be included in
any simulation project are implementation and docu-
mentation. Ho simulation project can be considered
successfully completed until it has been accepted,
understood, and used. Management scientists'

greatest failure has been in gaining acceptance and

use of their labors. One of the greatests causes
of failure in operations research and management

sciences projects to be the user's inadequate un-
derstanding of results, and thus a lack of imple-
mentation, .

Documentation is closely Tinked to implementa-
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tion. Careful and complete documentation of the
deve]opment and operation of the model can greatly
increase its useful 1ife and chances of successfuil
implementation. Good documentation facilitates
modification and ensures that the model can be used
even if the services of the original developers are
no Tonger available. In add1t1on careful docu-
mentation can help the modeler to learn from his
mistakes and perhaps prov1de a source of subpro-
grams that can be reused in future projects.

CONCLUSIONS

The use :of simulation for problem solving has
become veny extensive in every area of human en-
deavor. One would be hard pressed.to name an area
or field in which simulation has not been used suc-
cessfully, As might be expected with such. wide-
spread use, the state-of-the-art is fairly advanced
(15). However despite the high level of activity
and the rapid advances in the state-of-the-art in.
mathematics, statistics and computer science, simu-
lation remains almost as.much of am art as science
and a.to6l to be used carefully. We can never be
sure that our simulation model captures all of the
important properties of the studied system. Simu-
lations have the appearance of reality and can .
easily mislead us. Simulation in any of its ap-
plied fields is a wonderful servant but a very bad
master. We must be careful that we do not mislead
ourselves into confusing the model and reality.
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