SOME EXAIPLES OF STMULATION MODEL VALIDATION USING HYPOTHESIS TESTING

ABSTRACT

The use of hypothesis testing with cost-risk analy-
sis is illustrated for simulation model validation
by two examples. In the first example, Hotelling's

two-sampie Tz test with cost~risk analysis is used
for illustrating the validation of a multivariate
response sélf-driven steady-state simulation model
representing a single server M/M/1 queueing system.
In the second example, the validation of a multi-
variate response trace-~driven terminating simulation
model representing an M/M/1 system is illustrated by

the use of Hotelling's one-sample T2 test with cost—
tisk analysis.

1. INTRODUCTION

Validation, being one of thé most important steps in
the development of a ‘computerized simulation model,
is usually referred to as "Substantiation that a
computerized (simulation) model within its domain of
applicability possesses a satisfactory range of ac-
curacy consistent with the intended application of
the model" [37].

The validity of a simulation model is usually tested
for different sets of experimental conditions and
for an acceptable range of accuracy related to the
purpose for which the model is intended. The accep-
table range of accuracy is the amount of accuracy
that .is required for the simulation model to be
valid under a given experimental frame.

It is generally preferable to use some form of ob-
jective analysis to perform modél validation. A
commonr form of objective analysis for validating
simulation models is statistical hypothesis testing
[3]. In using a statistical test for validation,
one should consider the type of the simulation model
with regard to the way it is driven and with regard
to the way its output is analyzed. There are basic-
ally two types of simulation models with regard to
the way they are driven: self~ and trace-driven
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simulation models. Self-driven (distribution-driven
or monte carlo) simulation [24] is a technique which
uses random numbers in sampling from distributions

or stochastic processes. Trace-driven (or retrospec—
tive [32]) simulation is a technique which combines
measurement and simulation by using the actual data
collected on the system as the model input [24, 40].
There are basically two types of simulation models
with regard to analysis of the output: steady-state
and terminating simulation models [15, 25]. A
steady~state simulation "is one for which the quanti-
ty of interest is defined as a limit as the length

of the simulation goes to infinity" [25]. A termi-
nating simulation "is one for which any quantities

of interest are defined relative to the interval of
simulated time [O,TE], where TE’ a possibly dengener-

ate random variable, is the time that a specified
event E occurs" [25].

The purpase of this paper is to give some examples

to illustrate the use Of statistical hypothesis test-
ing for simulation model validation. In the next
section, validation techniques and statistical tech-
niques proposed for validation will be tabulated and
the use of hypothesis testing with cost-risk or
sample size-risk analysis will be introduced for
model validation. Examples will be given in section
3 and conclusions will be stated in section 4.

2. VALIDATION TECHNIQUES AND HYPOTHESIS TESTING

The existing literature on simulation model valida-
tion [3] generally falls into two broad areas, name-
ly, validation techniques and statistical techniques
proposed for validation as shown in Tables 1 and 2
that also contain the related reference number(s)
for each technique. Some of the validation techni-
ques in Table 1 can also be used statistlcally by
introducing a statistical test.

In using statistical hypothesis testing to test the
validity of a simulation model under a given set of
experimental conditions and for an acceptable range
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Simulation Model Validation (continued)

TABLE 1. Validation Techniques.
Event Validity : [20]
Face Validity [20]

[39, 45]
[9, 14, 26, 47]

Field Tests
Graphical Comparisons

Historical Methods [30]

Hypothesis Validity [20]

Internal Validity [20]

Multistage Validation [30]

Predictive Validation [11]
Schellenberger's Criteria [19, 36]
Sensitivity Analysis 120, 27, 28, 45]
Submodel Testing 34, 35]

Traces [34, 35]

Turing Test {29, 38, 43, 45]

TABLE 2. Statistcal Techniques Pro-

posed for Validation.

Analysis of Variance {30]
Confidence Intervals ' [5, 391
Factor Analysis ; 18]

Hotelling's 12 fests .
Multivariate Analysis of
Variance (MANOVA) [18]
~ Standard MANOVA
- Permutation Methods:
— Nonparametric Ranking Methods
Nonparametric Goodness—of—
fit Tests
— Kolmogorov-Smirnov Test
~ Cramer-Von Mises Test
- Chi-square Test
Nonparametric Tests of Means [39]
- Mann-Whitney-Wilcoxon Test
— Analysis of Paired Observations
Regression Analysis [1, 8, 21]
Theil's Inequality Coeffi~
cient
Time Series Analysis
- Spectrial Analysis

[4, 6, 7, 39]

[16; 30}

[23, 31, 42]

[13, 17, 21, 22,

45, 46]

~ Correlation Analysis’ [46]
- Error Analysis [10, 44]
t~Test ‘ [39, 41}

of accuracy consistent with the intended application
of the model, we have the following hypotheses:

HO: Model is wvalid for the acceptable
range of accuracy under the given
set of experimental conditions.
H,: Model is invalid for the acceptable
range of accuracy under the given

set of experimental conditions.

There are two possibilities for making a wrong de-
cision in statistical hypothesis testing. The first
one, type I error, is accepting the alternative hy-
pothesis (H ) when the null hypothesis (H ) is ac-

tually true, and the second one, type II error, is
accepting the null hypothesis when the alternative
hypothesis is actually true. The probability of
making the first type of wrong decision is called
model builder's risk (o) and the probability of mak~
ing the second type of wrong decision is called
model user's risk (B) .[2, 4].

In validation, the model user's risk is extremely
important and must be kept at a small value. Model
usexr's risk can be decreased by increasing the sample
sizes of observations and/or the model builder's
risk. However, increasing the sample sizes will in-
crease the cost of data collection. 1In those cases
where the data collection cost is a major factor to
consider, a cost-risk trade-off analysis becomes
necessary. Otherwise, if the cost of data collec~
‘tion is nmot a relatively important factor, then a
sample size-risk analysis can be performed without
considering the data collection cost. In any case,
model user's risk must be kept at a small value.by
choosing appropriate values for the sample sizes and
model builder's risk.

In the next section, two examples will be presented
by using the validation and cost-risk analysis pro-
cedures. that are given in [4, 6, 7].

3. EXAMPLES

Two examples are given, in this section, to illus-
trate the use of hypothesis testing with cost-risk
analysis for simulation model validation {4, 6, 7].
In the first example, the validation of a multivari-
ate response self-driven steady-state simulation
model is illustrated by using Hotelling's two-sample

T2 test. In the second example, we illustrate the

validation of a multivariate response trace-driven
terminating simulation model by using Hotelling's

one-sample T2 test.

In each of the two examples given in this section,
the random variate generation is done on an IBM 370
by using the Inverse Transform Method [12] and the
multiplicative congruential random number generator

5 (mod 231

Wﬁ =7 W

coded in FORTRAN and the initial (stgrting) condi~
tions are assumed to be an -empty system and the first
arrival takes place at time zero.

1). The simulation programs are

3.1 Self-Driven Steady-State Simulation

A computerized self-driven steady-state simulation
model of M/M/1 queueing system with the arrival rate
of customers per unit of time (ar) = 0.79 and the
service rate of the server per unit of time (sr) =

1 is treated as being the real system for illustrat—

-ing the validation of a self-driven steady-state

For the

simulation model with a, = 0.8 and s, = 1.
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purpose of study, it is assumed that the arrival
process is part of the model and there are two re-
sponse variables (performance measures) of interest,
namely, the utilization of the server (respomse var-
iable 1) and the average waiting time in the system
(response variable 2). The steps of the procedure
given in [6] will be followed figr validating the

) model by using the two-sample Tz test.

. batch means [12, 33].

The set of experimental conditions under which the
validity of the simulation model is going to be
tested with respect to its mean behavior is deter-
mined by the exponential 'service times with service
rate s_ and the first-come first-served queue dis-
ciplineé. Assuming that the intended application of
the model is to analyze the mean behavior of the
system with respect to the performance measures
chosen, the acceptable range of accuracy for the
population means is specified as

‘

[w] - ull < 0.048 «
2
[V - w5l < 0.28

[

v

where (u?,ug) and (ui,uz) are the population means

of the first and second model and system response
variables, respectively.

Assuming that a cost-risk trade-off analysis is de-
sired, we need to construct the schedules for which
an estimate of the common variance-covariance mattix
is required. Therefore, ten independent observa-
tions are obtained in a pilot run from each of the
model response variables by using the method of

The data collected for the
first 600 customers are deleted and each batch is
composed of 300 customers representing one indepen-
dent observation. The estimate of the common vari-
ance-covariance matrix is found as

0.0052  0.2479
= :

0.2479 21.7395

3

The overhead costs for statistical data collection
by way of batch means method for the model and for
the system are assumed to be $170 and $130, respec~
tively. It is assumed that the unit cost of collec-
ting one independent observation (one batch) from
each model response variable is $2 and from the
first and second system response variables it is $4
and $6, respectively. The procedure for construct-—
ing the schedules for the two-sample T“ test, given
in [4], is performed and the schedules are construc—
ted.

In determining the sample sizes and the risks, the
following two questions of particular interest will
be considered: (i) what budget (B) and sample
sizes (n,N) would be required for the given values
of the following: (1) overhead data collection
cost of the model (c.), (2) overhead data collec-
tion cost of the sysgem (C.), (3) sum of the unit
costs of data collection from the model (CHR, (4)
sum of the unit costs of data collection from the

system (C ), (5) minimum model byilder's risk (u*),
(6) maximtm model user's risk (8"), and (7) the ac-
ceptable range of accuracy (8., j = 1,2), (ii)

what would be the maximum mpd41 user's risk, maximum
model builder's risk, and the acceptable validity ,
range for the given values of cqs CO’ Cm’ Cs’ B, o,
and §? , . ro

In order to answer the first question; assgming that
ey = $170, Co = $130, Cm = $4, CS = $10, o = 0.1,

8% = 0.0438, and §' = [0.048, 0.28] which give

§f$—¥§ = 0.8469, Figure 1 is constructed by using
the data contained in the schedules. The data col-
lection cost is read from Figure 1 (or from the
schedules) as $530 for o* =,0.1 and B*¥ = 0.0438.
Thus, the necessary data collection budget B is $530,

and the sample sizes corresponding to €y CO’ Cm, c,

s
and B are read from thé schedules as n* = 20, N* ="'
15. The acceptable validity range corresponding to’
these sample sizes is read from the operating charac-
teristic curves in Figure 2 (or from the schedules)as
0*5_1 < 7.282. Notice that for these sample sizes,
8" would be 0.0876 and 0.2546 for o = 0.05 and 0.01,

respectively.

MAXIMUM MODEL USER'S RISK (8™

FIGURE 1. Cost Versus Maximum Model User's

Risk.
1.00

]
»
]
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72} -
3 178 .0.8496
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36} a*«0.08 '
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In order to answer the second question, assuming
that c, = $170, C0 = $130, Cm = 8§84, Cs = $10, B =

0,
$710, « = 0.1, and §' = [0.048,0.28], Figure 3 is
The

constructed by using the data in the schedules.

optimal sample sizes corresponding to g CO’ Cm,

CS, and B are read from the schedules as n = 40 and
. k
N* = 25. The corresponding A 1is calculated as
L ., | * % )
n N §'$78/(n N ) = 13.071. Then, the value of the
C * )
maximum model user's risk B 1s read from Figure 3

%
(or from the schedules) for ¢ = 0.1 as 0.0018.
Thus, we get 0 < 8 < 0.0018, 0.1 <& < 0.9982, and

, * *
0 <2 < 13.071. Notice*that forn = 40 and N = -
25, we could also get B = 0.0047 and 0.025 for
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Simulation Model Validation (continued)

*
o = 0.05 and 0.01, respectively.
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" found to be 0.4829 which is less than F =

750 |

For illustrative purposes, the remaining steps of %
the validation procedure will be carried out for n
= 25 and N* = 15.

The simulation model and the system are run for 20
and-15 independent batclies, respectivély, in steady-
state after deleting the data collected during the
transient period of 600 customers. Each batch is
composed of 300 customers. The data obtained are
given in Table 3. ’

The Steps 7 through 17 of the validation proécedure
are followed and the results of the univariate and
multivariate normality tests and the transformations
are given in Table 4. The original system and model
response variable 1 are found univariate normal with
approximaté significance level of 0.6075 and 0.8931,
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TABLE 3. Data Collected for Validation.
SYSTEM MODEL

Var. 1 Var., 2 Var. 1 Var. 2
0.78 13.84 0.83 27.90
0.80 . 5.59 0.78 5.64
0.75 3.25 0.75 3.78
0.87 . 6.10 0.91 6.68
0.73 2.64 0.78 3.25
0.72 2.88 0.80 2.89
0.91 7.42 0.76 3.98
0.75 3.18 0.79 4.08
0.77 4.44 0.67 2.01
0.83 5.67 0.87 3.71
0.81 7.16 0.82 3.90
0.81 3.12 0.75 4,26
0.81 4.09 0.82 6.37
0.80 4.66 0.79 3.50
0.84 6.56 0.77 3.28
0.88 12,29

0.75 5.39

0.92 4.97

0.66 2.88

0.75 3.32

respectively., The original system response variable

1 and the .transformed system response variable 2 are
found multivariate normal with approkimate signifi-
cance level of 0.2753. Similarly, the original

nodel responsé variable 1 and the transformed model

-response variable 2 are also found multivariate not-

mal with .approximate significance level of 0.2382.

Following the procedure, the equality of the vari-
ance-covariance matrices of the model and system re-
sponse variables is tested. The test statistic F is

0.13;3,00 2.08

and the equality is accepted at the significance
level of 0.1. Then, the two—sample"r2 test is ap-
plied to test the equality of the population means.
As a result of the two-sample TZ test, the test
statistic 72 is found to be 0.276 which is less than

% ‘
5.122 at o« = 0.l and the equality of the population

means is accepted at a* ='0.1. TFinally, it is con~
¢luded that the model is valid with tespéct to the
validity measures for the acceptable range of accur-
acy under the given set of experimental conditions.

3.2 Trace-Driven Tetminating Simulation

A multivariate response trace-driven términating
simulation model (M/11/1, a = 0.6, s, = 0.99) repre~-
senting a single server M/M/1l queueing system (ar =.
0.6, s. = 1) has two reésponse variables (performance
measures) of interest, namely, the average queue
length for the first 500 customers (response vari-
able 1) and the average waiting time in the systenm

for the first 500 customers (response variable 2).
The steps of the procedure given in [7] will be fol-



* *
TABLE 4. Normality Tests and Transformations for n = 20 and N = 5.

Univariate Power Transformation Tests '
Response B o Approximate Univariate
Variable Transformed by e 2“'max(e) Lmax(l)} Y Normnal?
1 ’ - ~1.048 0.3032 0.6075 Yes

-]

% 2 ' - -0.59 8.9389 ' <0.005 No °
- ~0.5%

2 (y2 * —})/(-0.594)+2 0.100 0.0315 0.8727 Yes

< 1 : - 0,678 0.0197 0.8931 Yes

k 0.59% :

=] 2 Gy *77"=1)/(-0.594)+2 | -1.431 0.8702 0.3800 Yes

' Multivariate Power Transformation Tests

Response ° 2 ‘ a8 v Approximate Multivariate
Variable e1 62 2“'x:nax(el’ez) Lmax(l’l)} Y . Normal?
gl 1 '

2 ~-4.,100 -2,700 2.6304 0.2753 Yes

> 2

w3 P

PR
g -0.801 . =2.457 2.9148 0.2382 Yes
-2 2

lowed for validating the simulation model by using
the one-sample T2 test.

The experimental conditions under which the validity
of the simulation model- is going to be tested with
respect to its mean behavior is determined by the ex-
ponential service times with service rate s and the
first-come first-served queue discipline. s—
suming that the intended application of the model is
to analyze the mean behavior of the system with re-
spect to the performance measures chosen, the ac-
ceptable range of accuracy is specified as

1] < 0.154
(4)
lug] < 0.28

where ui is the population mean of the differences

.betwéen the paired observations on the first model
and system response variables, .average queue length
for the first 500 customers; uz is the population

mean of the differences between the paired observa-
tions on the second model and system response vari-
ables, average waiting time in the system for the
first 500 customers.

Assuming that a cost-risk trade-off analysis is de-
sired, we need to construct the schedules for which
an estimate of the variance-cévariance matrix is
required. Therefore, five independent paired obser-
vations are obtained in pilot runs on the model and
system response variables by way of replicating the
trace-driven simulation model with the same trace-
data that drive the real system. The trace driven
simulation is obtained by using the same sequence

of random numbers to generate the same arrival pat-

tern to the model and to the system and by using an-
other sequence of random numbers to generate the
same pattern of service times in the model and in
the system., The estimate of the variance-covariance
matrix of differences between the paired observations
on the model and system response variables is found
as

s

0.2162 0.4147
b = | (5)
0.4147 0.7959 .

The overhead costs for statistical data collection
by way of replication for the model and for the sys-—
tem are estimated to be $200 and $1400, respectively.
It is estimated that the unit cost of collecting one
independent observation (one replication) from each
model response variable is $5 and from the first and
second system response variables it is $15 and $20,
respectively. The procedure for constructing the
schedules for the one-sample T2 test, given in [7];
is performed and the schedules are constructed.

A question of particular interest is "what would be
the maximum model user's risk, maximum builder's
risk, and acceptable validity range for the given
values of o> CO’ Cm, CS, B, o¥, and 6?" 1In order

o = $200,

. *

G, = $1400, C_ = $10, C_ = $35, B = $2300, o = 0.05,
[0.154, 0.28] which give g‘qﬁ;lg = 0.80137,

first the optimal sample size N is read from the
schedules corresponding to B = $2300 as 15 and then
Figures 4 and 5 are constructed by using the data
contained in the schedules. In Figure 4, the rela-
tionships among maximum model user's risk (B*), mini~

to answer this quéstion, assuming that ¢

and §' =
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Simulation Model Validation (continued)

MAXIMUM MODEL USER'S RISK {8")
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*
mum model builder's risk (o ), and data collection

: - ; * a
cost (CDD o + C0 + (Cm + CS)N ) are shown for

the given values of the parameters. In Figure 5,
operating characteristic curves are given for the
specified values of the parameters. to determine the
probability of accepting the simulation model as
valid for various values of the validity measure A
and to allow the determination of 8* for a given
value of the upper bound of the acceptable validity
range A*

The upper bound of the accgptable\validity range
(A7) is calculated as N 6'} "8 = 12.021. Then, the

is read
0.05

value of the maximum model user's risk B*
from Flgure 5 (or from the schedules) for o* =
= 12.021 45 0.0256. Thus, we get
0 £ B < 0.0256, 0.05 < a < 0. 9744 and 0 < A < 12.021.
Assuming that these values are satlsfactory, we

choose N* = 15.

The simulation model and the system are replicated
15 times for 500 customers in each replication; by
using the same sequence of random numbers for the
model and: for the system. The paired observations
obtained and the differences between them are pre~
sented in Table 5.

Continuing with the validation procedure in [7], the
Box-Cox transformation test for univariate normality
{7] is applied to the differences between the paired
observations on each of the two model and system re-
sponse variables. The reésults of the tests are pre—
sented in Table 6. After achieving reasonable uni-
variate normality, the multivariate normality of the
differences is tested by using the transformation
test for multivariate normality [7]. The results of
this test are also given in Table 6. As shown in the
table, multivariate normality is achieved at an ap-
proximate significance level of 0.8724.

TABLE 5. Data Collected for Validation.
MODEL SYSTEM DIFFERENCE
Var, 1 Var. 2 Var. 1 Var. 2 Var. 1 Var. 2
0.691 1.996 0.946 2.627 ~-0.255 -0.631
0.945 2,561 0.744 2,189 0.201 0.372
0.909 2,426 0.901 2.554 0.008 -0.128
0.788 2.373 0.774 2.338 0.014 0.035
1.003 2.544 1.149 2.934 -0.146 -0.390
1.271 3.093 0.950 2.454 0.321 0.639
1.025 2,885 0.928 2.582 0.097 0.303]
1.308 3.257 0.529 2.0X7 0.679 1.240
1.373 3.083 1.012 2.685 0.361 0.398
1.126 2.844 0.857 2.339 0.269 0.505
0.964 2,531 0.811 2.324 0.153 0.207
1.128 2.603 0.799 2.138 0.329 0.465
0.793 2.347 0.560 1.909 0.283 0.438
1.301 2.987 0.644 2.082 0.657 0.905 |
0.835 2.390 1.149 2.848 -0.314 -=0.458 |

Following the procedure, the one-sample T2 test is
applied to test the validity. As a result, the test
statistic T2 is found to be 7.52 which is less than
8.23 at o* = 0.05 and the validity is accepted at

='0,05. Finally, it is concluded that the model
is valid with respect to the walidity measure for
the acceptable range of accuracy under the given set
of experimental conditionms.
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TABLE 6. Normality Tests.

M/M/1 System (ar" 0.6, s_ =1, N

M/M/1 Terminating Trace-Driven Hodel (a

= 15)

*
= 0.6, 5, =0.99, N = 15)

Univariate Power Transformation Tests

Difference N A Approximate Univariate
on Response 8 2“’max(e> Lmax(l)} Y Normal?
1 0.856 0.0206 0.8916 Yes
2 Lo 0.951 0.0077

G.9341 Yes

Multivariate Power Transformation Test

Difference N 2 a8 y- Approximate Muitivariate
on Response el e2 2“'xnax(el’e?.) Lmaxcl’l)} Y Normal?
1
0.772 0.981 0.2779 0.8724 Yes
2 .
4. SUMMARY [6] Balei, 0. and R.G. Sargent (1982a), "Validation

Two examples are presented to illustrate the use of
hypothesis testing with cost-risk analysis for the
validation of two types of simulation models. As
the first type, a self-driven steady-state simula-
tion model with two performance measures is consid-
ered and Hotelling's two-sample 72 test with cost-
risk analysis is used for the illustration. As the
second type, a trace—~driven terminating simulation
model with two performance measures is considered
and Hotelling's one~sample TZ test with cost--risk
analysis is used for the illustration.
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