VARIANCE REDUCTION TECHNIQUES

. 3
THE NEED FOR, IMPROVED EFRICIENCY

IN QISCRETE‘EVEN\" SIMULATIONS

)

EXAMPLE: SIMULATING A SINGLE~SERVER
QUEVEING .SYSTEM TO ESTIMATE THE
LONG-RUN AVERAGE WAITING TIME PER
CUSTOMER PRIOR TO RECEWVING SERVICE
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To WITHIN £5%, OF ITS TRUE VALUE USING
A 957, CONFIDENCE INTERVAL ESTIMATOR
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REGUIRED SAMPLE SIZE WITH DIRECT SIMULATION

OF THE PROCESS. {Wa- t f=h2y §

TRAFFIC INTENSITY . SAMPRLE SIZE
P "
ool 321,345
0.05 - 76,283
6.10 46,688
0.20 34,191
0.30 33,106
040 36,538
0.50 . 44,563
0.60" ' 60,442
- 0.70 : ' 94,711
0.80 : .. 189776
0.90 681,073
0.95 : " 2,586)327

©.99 62,084,898

= FREQUENTLY, PRODIGIOUS RUN LENGTHS
ARE REQUIRED TO ACHIEVE ACCEPTABLE
PRECISION IN SIMULATION-BASED ESTIMATORS

= We LOOK FOR SUITABLE VARIANCE REDYCTION
TECHNIGUES



Variance Reduction Techniques

S 7
CORRELATION METHODS IF Y, Y, RESPOND IN A SIMILAR WAY

. A - TO CHANGES 1 E RANDOM NUMBEF
THREE TECHNIQUES TAKE ADVANTAGE OF N THE RANDOM NUMBER. INPUT
LINEAR CORRELATION AMONG SIMULATION ‘ | t @Y, ARE BOTH
OUTPUT RESPONSES TO ACHIEVE" |MPROVED ‘ MONGTONICALLY
EPFICIENCY pALY I INCREASING
INDUCED CORRELATION METHODS — REQUIRE , /
THE EXPERIMENTER. TO INDVCE POSITIVE OR | B '
NEGATIVE CORRELATION AMONG BLOCKS OF >

SIMULATION RUNS BY MANIPULATING THE
RANDOM NUMBER INPUT

1. COMMON. RANDOM NUMBER STREAMS — TO
COMPARE 2. OR MORE ALTERNATIVES

2, ANTITHETIC VARIABLES —TO ESTIMATE
MEAN RESPONSE OF A SINGLE SYSTEM

CONTROL. VARIABLES— THIS METHOD EXPLOITS . o ‘
ANY INHERENT CORRELATION AMONG OUTPUT ‘ R L
VARIABLES AND CONCOMITANT SYSTEM VARIABLES

® Y, Yo ARE BOTH
MONOTONICALLY
- DECREASING

A

. . 8
THEN 1T IS REASONABLE TO EXPECT THAT
POSITIVE CORRELATION OF INPUTS=> POSITIVE

6 CORRELATION OF QUTPUTS
>-‘Cov(Y,)‘(,_ >0

—_—
R, R, R, — MODEL 1 |—=Y, E”u]‘l“l l. FOR MODELS WITH COMPLEX, DISSIMILAR

RESPONSES LITTLE OR NO EFFICIENCY GAIN
MAY RESVLT FROM THIS TECHNIQUE

R.’ R{ Rn,‘ » MODEL 2 Yz_ E[Tz]'-'-"l,_ 2 MF)ST WIDELY USED TECHN!QUEV ?N PRACT CE
‘ 3. MULTIPLE COMPARISONS ANALYSIS IS MORE
USING Y, TO ESTIMATE B Pan WE HAVE COMPLICATED | E
: — . REFERENCES
E[Yt‘Yz] = f’l"f‘z ""“‘—""'—“"
tWRIGHT & RAMSAY, "oN THE EF FECTIVENESS
Var(=1) = Ver(Y}) + Var (V) — 2Cov{\,,Y.) ©OF CoMMON RANDOM NUMBERS,” MANAGEMENT

( SCENCE | vou. 25 (1979), PP. 649-656.
NOTE: TF  Cov((yY,) >0, THE ESTIMATOR _ a,,
Yo HAS A SMALLER VARWNCE TWAN THAT ~ HEUES HORT T R B e
CBTAINED WITH TWO INDEPENDENT RUNS AN AFROACH To STATISTICAL ANALYSIS," :
Q: HOW DO WE |NDUCE POSITIVE CORRELATION  SIMULATION, VoL.25 (1476), PP. 81—8S.

BETWEEN Y; AND Y, ¢ '

COMMON RANDOM NUMBER STREAMS

e
WE WANT TO COMPARE TWO SYSTEMS BY RiTR
ESTIMATING. THE DIFFERENCE IN THEIR MEANS R’ =Rm
. L]

RANDOM NUMBER ,
INPUTS OUTPUT MEAN

606



ANTITHETIC VARIATES

IF Y AND Y, ARE REPLICATES OF THE
SAME MODEL., WE WANT TO USE *(Y+Yy)
TO ESTIMATE THE MEAN RESPONSE 1

WE HAVE :
B[S0 = by

Var[$(%+ )] = #{var(\r.) + Var(Y2) + ZCov(Y.,YJ}

—

FVar() + £ eov(¥, )
NoTE: TR Cov( ¥, ;) <0, THE SAMPLE
MEAN +(VtT,) HAS A SMALLER VARIANCE

THAN THAT OBTAINED WITH TWO INDEPENDENT
RUNS

HOW DO WE INDUCE NEGATIVE CORRELATION
BETWEEN Y; AND Y. ¢

1o
1F Y(R1yRayery Rm) IS A MONOTONE FUNCTION
OF EACH OF \Ts INPUTS (SEE FoIL 7),

11
CONTROL, VARIABLES
INPUTS QUTPUTS MEAN
.Y ESTIMATOR OF M =&E[Y]
(UNKNownN

R)"++ Ry —> MODEL.

| ~C “conTroL” WITH pe= E[(]
(Known)

T™E CONTROLLED ES'I'IM.A'TOR
Yb) = Y- b(C-rc.)
OF [y HAS _
ELY(b)] = Py |
Var [;((b)] = Var(Y) —2:b-Cov (%, C) + b Var(C)

MINIMUM  VARIANCE WITH OPTIMAL. CONTROL.

COEFFICIENT
/5 (6 0)

Var(C)

—
—

3 2
THEN T IS REASONABLE O EXPECT THAT => Var[Y(g)] = Var(Y)- (1—,0Yc)
NEGATIVE CORRELATION OF INPYUTS FOR RUNS _ __
1 AND 22 == NEGATWE (ORRELATION OF WITH Q== COEFFICIENT OF LINEAR .

CORRELATION BETWEEN Y

OUTPUTS i, Y. AND C

RUN 1

_.__..Y'

; = cov(,Y2) <0

RL=I-R,,

RUN 2. [—Y;:

I. METHOD DOES NOT WORK WELL FOR MODELS
WITH A COMPLEX RESPONSE FUNCTION

2. SECOND MOST WIDELY USED TEC(HNIQUE IN
PRACTICE ‘

REFERENCES

¢ SCHRUBEN AND MARGOLIN , “PSEUDORANDOM NUMBER

. ASSIGNMENT IN STATISTICALLY -DESIGNED SIMULATION
EXPERWMENTS, ¥ J. AMER. STATST. ASS0C., VoL. 73
(1a78) , pp. sOA-525.

* GEORGE, "VARIANCE REDUCTION FOR A REPLACEMENT
PROCESS,” SIMUL ATION , VoL. 29 (1977), PP. 65-74.
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12
IN' PRACTICE, ﬁ 1S, USUALLY UNKNOWN.

=>WE NEED A POINT ESTIMATOR. B OF B
FROM WHICH WE CAN COMPUTE 'A. CONFIDENCE
INTERVAL. ESTIMATOR OF HY OVER
INDEPENDENT REPLICATIONS OF THE MODEL.

WE ASSUME THE RANDOM VARIABLES Y, C.
' OB3ERVED ON EACTH RUN HAVE A JOINT
NORMAL DISTRIBUTION :

2=[1]~ s, Z2)

WITH: = f(,( ; - Va'r(‘()‘ COV(Y,C)
B [ rr-] ' Z"Z {CW(Y;C? 'Var(C)]

THIS ENSURES VALIDITY OF THE LINEAR
REGRESSION MODEL.

NORMALLY DISTRIBUTED RESIDUAL
&~N(o, ) |
WITH MEAN QO AND VARIANCE
de = Var(¥)- (l’f[-l’fc)

13
ESTIMATION PROCEDURE WITH ONE CONTROL.

EXECUTE n INDEPENDENT REPLICATIONS OF
THE MODEL. TO GENERATE THE DATA SET

{ [;(;] l$j$"}
. COMPUTE “THE ORDINARY LEAST-SQUARES
ESTIMATE n o _
> (G-C,)
z GG

ESTIMATE THE INTERCEPT BY AVERAGING
. THE CONTROLLED VALUES @

- . N —__ — _Ln /AN
COMPUTE THE RESIDVAL MEAN SQUARE

= gs z Y- fT
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14
5. COMPUTE THE 100(1-&)7, CONFIDENCE

’ INTERVAL FOR ’k( n n
[5am

o =+ 't;_ z(n—z df) 3&, 1':'
f‘ Y &‘ l n. aé'(%_.c.")z

EXTENSION TO q CONTROL VARIABLES :

Now C IS A qxl COLUMN VECTOR WITH KNOWN!

MEAN ,[s('c,) ]
F= E@

AND  VARIANCE—COVARIANCE MATRIX -
Ze =[ (G, ]

/ Is
Now b= [b.,...,bi] IS A gqx1 CorumN
VECTOR OF CONTROL COEFFICIENTS, AND
T™HE CONTROLLED ESTIMATOR

Yb) = Y= B(C—p)
HAS . V
e[ Y(k)] =
Var[\((,‘z)] =

‘'WHERE

|
Q
N
I
N
o7
q

- Cov (Y)Co ,
'@C Cov (Y) Ci)
WITH THE OPTIMAL CONTROL VECTOR

ﬁ = -Z‘c-girc
WE. HAVE

wlMg)] = Nrlr (+F50)



g | - 18
IN PRACTICE, B, IS USUALLY UNKNOWN 4. IN TERMS OF D,= ROW 1,.COLUMN 1

OUR ESTIMATION PROCEDURE FOR [y JENTRY OF (¥XY' COMPUTE THE looli-«)%
IS - BASED ON THE JOINT NORMALITY" ASSUMPTION CONFIDENCE INTERVAL FOR PY

z=[] N(pz,N) . P ‘_5,-(3:1]6) {u}

&

WHERE

/ EFFICIENCY OF CONTRoL VARIATES TECHNIQUE
M~ 2 ® V“'(\r) e | ’
== pl? F2 gl Z. vm
. ~ L~ —~ : ar
THIS ENSURES THE VALIDITY OF THE /
MULTIPLE LINEAR REGRESSION MODEL. VARANCE WITH  MAS %% VARIANCE  LOSS FACTOR
‘NO CONTROLS REDUCTION IF 8 DUE TO
/e : . 1S KNOWN ESTIMATION
Y = h+fg(cr3+a | | o
E~N(o, &) | ReFeRauce
N 1— | * LAVENBERG AND WELCH , “PERSPECTIVE ON USE
Var (1)-( fYC) OF -CONTROL VARIABLES TO INCREASE EFFICIENCY
OF MONTE CARLO SIMULATIONS,” MANAGEMENT

SCIENCE , VOL. 27 (1981), PP 322-335.

ESTIMATION PROCEDURE WITH q CONTROLS 7 .
1. EXECUTE N REFLICATIONS OF THE ‘MODEL. STRATIFIED SAMPLING
TO GENERATE THE DATA SET ' " suPPosE R “MoDEL” HAS A SINGLE
X RANDOM NUMBER R FOR INPUT, AND THE
{[ J] 1 <“} : oUTPUT IS AN EXPONENTIAL VARIATE Y.
_ WE WANT TO ESTIMATE THE MEAN Ky
-2, IN TERMS OF THE QUANTITIES .
R—{MopEL. —="Y(R) = =, In(R)
1 (Et-F‘bl K '
COMPUTE THE ORDINARY LEAST-SQUARES Y®) '
ESTIMATE OF THE CONTROL VECTOR f3,
AND THE INTERCEPT sz '
A
% v ——t r— —
B = ﬁ | = (XXV'XY ¢ ok of I R
o STRATUM L w
WEIGHT Wmoz  Y2=%3  Vg=o.S
OUT OF n=100 MODEL RUNS, WE FORCE
3. ComMPUTE THE RESIDUAL MEAN SQUARE THE INPUT OF Ny RUNS TO FALL IN STRATUM h,
Az 1 ) ] |sh<|_=3 .
% T ‘) G- Fr

609
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STRATUM *  SUBSAMPLE ' STRATUM MEAN ~
h n“= wh- n . ?‘1
L N Mz \‘;,zo JZ_,-
2 \(34 Yzz e \rz,ao V ? == ‘3_62’_:(14'.
- h ‘ — 1) so
3 -Yst Yoo Ys,sp \(s: EE%Y?‘J

THE STRATIFI ED ME-AN

Y = AN =027, 403, + 05,
h=|

1S A MORE ACCURATE E-ST\MATOR OF rl

“THAN THE MEAN OF A S)MPLE RANDOM

SAMPLE OF n=100 RUNS

REFERENCE

STATISTICAL “TECHNIQUES

» KLEIJNEN , J.P.C., 4 4
DEKKER, \974.

IN SIMULATION, PART T ,

2
IMPORTANCE SAMPLING

IN THE PREVIOUS EXAMPLE, WE WANTED
TO ESTIMATE

v = (YO fenr

wHere ) 15 -tHe ProsABILITY DENSFTY
OF A RANDOM NUMBER

o) = { , OSr<i
O, OTHERWISE

IF THE INPUT  HAS AN ALTERNATIVE DENSITY
h(+), WE WiLL CALL IT AN “IMPORTANCE NUMBER” U

NOTE : THE RANDOM VARIATE

_ YW
Z= 0

HAS EXPECTED VALUE

E[2] = [ 2tk =[ Y2

heY -hi) du

=y
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IF h(u) CLOSELY MIMICS Y4}, THEN
Z="YW/h(4) 15 NEARLY CONSTANT
=3 Var () <’ Var (Y)
WHEN “THE IMPORTANCE DENSITY s
WELL ~— CHOSEN
FOR EXAMPLE, WE MIGHT TAKE
, . OSuU<)
rur‘
23

IMPORTANCE SAMPLING PROCEDURE

l. GENERATE A RANDOM SAMPLE OF
SIZE n FROM IMPORTANCE DENSITY

{U‘l : l(iSh} ~ h(u) = ‘2(u—-]_)

2. COMPUTE THE RESPONSES
z, = Y(u)/h(u) 3

j<ign

3. COMPUTE THE SAMPL‘r—: MEAN

w—

E= 13 %
=)
NOTES

LAF hw)=~fnlu) IN THIS EXAMPLE, Z=py
AVD Vnr(i) =0 }

2. IF h() IS5 POORLY CHOSEN, WE CAN HAVE
Vor(2) > Vor(Y)

REFERENCE

. KLEIJNEN J. P.C., STATISTICAL TECHNIQUES
IN SIMULA'TION PART T y DEKKER, 1974,




24
CONDITIONAL. MONTE CAR-O

SUPPOSE THAT WE WANT TO ESTIMATE
elx] =f"" AND WE HAVE AN AUXILIARY
VARIATE Y SUH THAT THE CONDITIONAL.
EXPECTED VALUE ‘

(x| Y=y] |
. CAN BE EVALUATED EXACTLY FOR ALl
- VALUES OF 3

© CONDITIONAL. MONTE CARLO ESTIMATOR OF px:
TAKE A RANDOM SAMPLE OF THE AUXILIARY

VARIATE
R § <
{Ya lsa n}
AND COMPUTE THE SAMPLE MEAN

P = -:\—% x|y ]

25
BASIS FOR THIS METHOD:

e x] = e[ e(xI¥) ]
Ve[ X1 = Var[ E(XIY) T +E[ VarlXIV)]

=> THE RANDOM VARIABLE Z =E(X|Y) Has

E[Z] = rx .
Var[2] = Var[X] — E[ Var(XIY)]
< Var[X]

611

EXAMPLE 1. AN OBSERVATION PERICD T IS =
EXPONENTIALLY DISTRIBUTED WITH MEAN
DURING THIS PERIOD SIGNALS ARRIVE fr
AC;ORDNG To A POISSON PROCESS WITH
RATE A. IF X IS THE “TOTAL NUMBER

. OF OBSERVED SIGNALS, ESTIMATE E[X].

= T~ -FT(f)~ = —#rexp(- T‘t:r) , tzo

X~ g = e

e ————

k' ) ‘égo, 1) .ve

DIRECT S"ﬂULA-nDN APPROACH :
|. GENERATE A RANDOM SAMPLE -{1; I<J'<n}

2. FOR EACH 4, GENERATE X; FROM A
POISSON DISTRIBUTION WITH ‘PARAMETER. T,
3. ComMpuTE ‘ ' J

n
. 7=

: 27
CONDITIONAL: MONTE CARLO APPROACH

I. GENERATE A RANDOM SAMPLE {1} : |$3',sh}

2. NOTE . .
el IgI=G » <o

3.. CompyTE
n —
P" = %—JZ__-;ED% \Ta] = N,
NOTICE ALSD |

%E[Var()%h})] = 'NE{"I;-] = ')\rT>(?

()= el — L 17
> Var (X)
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28

EXAMPLE 2: ESTIMATING DISTRIBUTION OF
COMPLETION TME IN A PERT NETWORK

T, T, Ts, T, T ARE INDEPENDENT
RANDOM VARIABLES WITH
KNOWN DISTRIBUTIONS FyFa,
';5) ﬁhr:s RESPECTIVELY

PATH TIMES:
. 2 =T+ T
Z= T+ T+Ts
zﬁ = 1_4+T57

X= max{zu Z, 5—‘3} ‘
WE™ WANT To ESTIMATE E() = P X<t}

NOTICE:
'i(t | T=t, To=1s)

= {4 4T, s e PR T Bt}
= E(t-5)E (-4t )+ G lt-ts)

29
SAMPLING PROCEDURE :

I. GENERATE A RANDOM SAMPLE OF n PAIRS
{ %, Ty]: 154 <n)

2. AVERAGE  THE CONDITIONAL PROBABILITIES

R = 2R T)

REFERENCES

* CARTER AND IGNALL ™ VIRTUAL. MEASURES * A
VARIANCE REDUCTION TECHNIQUE FOR SIMULATION,”
MANAGEMENT _SCIENCE, VoL. 21 (1975) , PP. 607-616.

* MEGRATH AND IRVING, “MAPPLICATION OF VARIANCE
REDUCTION TO LARGE SCALE SIMULATION PROBLEMS,”
COMPUTERS & OPER. RES., Vo..1 (1974), pp. 283-311,
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