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1. INTRODUCTION

In this article, we focus on two gquestions of
central importance when an estimate is de'sired for
the steady—state mean of a simnlation output
sequence, Y., i = 1,2,...,n. This wunknown
parameter o the system being studied is denoted
as,

p= %*3 E[Yi].
The two questions that we address are:

1. Is initialization bias a
icant problem?

signif—

2. VWhat is the
estimate of p?

accuracy of our

We will use a process central limit theorem to
attempt to quantify our answers to these two
questions, The approach is computationally (but

not philosophically) different from other approachs
found in the simulation literature [Law and Kelton,
1982]. .

The usual estimator of p is the sample mean,

Y= 1/n§nr. .
3=

Most common output analysis techniques attempt to
standardize this scalar random variable. By using
the Central Limit Theorem, one assumes that this
standardized estimator will (for long runs) behave
essentially like a standard Normal random variable.
Properties of 2 standard Normal variate can
therefore be used to analyze the estimator, Yﬂ

Intuitively, what we will do here is
standardize the entire output series (Y.}, The
standardized output series has as its limit1 (again
for long runs) a Brownian bridge stochastic

process, Much is known about the behavior of this
limiting stochastic process. Properties of this
stochastic process are used to analyze the

simulation output series,
femiliar philosophy of classical (non-Bayesian)
statistics. The only difference is that a more
general Central Limit Theorem is used.
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2. STANDARDIZING THE OUTPUT TIME SERIES

Let Y., i=1,2,...,n, be a scalar time series
of system pérformance measurements obtained from a
simulation experiment. We assume, in the absence
of initialization bias, that this output series
would be stationary and satisfy some mild proper-—
ties concerning serial dependence [Schruben,
1982al. The experiment can be a single run of a
simulation program or a more complex experiment
involving several replications. Y. might be actual
system observations, batch averages of adjacent
observations, a2 sequence of coefficients for a
regression modelé etc. We will denote the expected
value of the i~ observation, Y., as p.. We will
say that the ohtput series has 0 ini%ialization
bias if By = pj for all pairs of observatioms, Yi
and Yj. i

In using the classical (scalar) Central Limit
Theorem, several steps are followed:

1. The data is centered to have a
mean equal to zero.

2. The magnitude of the estimator is
scaled by dividing by the sample
standard deviation.

3., A Central Limit Theorem is used
to obtain & probability model for

the behavior of the standardized
estimator. This model is most
commonly a standard scalar Normal

random variable.

4, The limiting probability model is
used in the analysis of the system

being studied. Hypotheses are
tested, confidence intervals | are
constructed, etc. using this

asymptotic model.

We will follow these steps, and one additiomal
step, in standardizing the time series, {Yi]. Let

— k

T, = 1/k211=r



Process Central Limit Theorems ...

denote the cumulative average of the first k
observations. As in the scalar case, we first
perform
Step 1. Center the output series so
that, under the hypothesis that
there is no initializatiom bias, it

'will have a mean equal to zero.

This is accomplished by considering the transformed
series,

o

for kx = 0,

S, (k) =

'Yn = Yk

for k =1,2,...,n.

Note ‘that, under the hypothesis that all the

observations have equal méans, Sn(O) c=

Sn(n) and
E[Sn(k)] = 0 for all k.

Next, similar to the second step in using the
scalar Central Limit Theorem, we perform

Step 2. Scale the magnitude of the’
sequence. '

Scaling the series magnitude involves dividing
‘Sn(k) by the square root of the variance scaling
factor, no3/k. '

Here the constant, o2, is given by,

-]
32 = b 3 o = b4
< cy + 2 yy(i) %*g n Vnr(Yn)

i=1
with ‘
2 =
uy Var(Yi)
and
Yy(i) = CoV(YO.Yi).
When the simulation output measurements are

serially correlated, 62 is in general not equal to
Var(Y)).

The one additional step required in standard-
izing the output series is to scale the index to
the unit interval. This is dome by defining t =
X/n as the index for the transformed output
process., Therefore, for  different ron durations
(e.g. different n) the .index, t, =always lies
between 0 and 1., This step,

Step 3. Scale the series index to
the unit interval,

results in the standardized time series,
Tn(t) = [nt]Sn([nt])léfia), 0t

The-originsl simulation output series, {Y.}, can be
recovered from the sample mean and the standardized

series, (Tﬁ(t?}.< ' E
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Next (as in the case of scalar estimators), we
perform

Step 4. apply 2 Central Limit Theo—
rom to obtain a probability model
for the behavior of the sequence,
{T (£)}.

In [Schruben, 1982b], a lemma is presented that
says that the sequence, {T _(t)} is asymptotically
independent of the sample mean, and converges in
distribution to a standard Brownian bridge stochas—
tic process. Therefore, we then can perform the

final step ‘in  the output analysis process
(analogous to the fourth step in using scalar
estimators).

Step 5. Use properties of the

limiting Brownian bridge process in

the analysis of the standardized

time series, {Ti(t)}'

The properties of the standard Brownian Bridge
process, denoted here as {B(t): 0K t < 1}, that we
will use are,

1. A Wiener Process (i.e. Brownian
motion) has independent increments.

2. If t* is the location of the
maximuin of B(t), and s* = B(t*),
then,

s*3/(t*(1 ~ t*)),

has a x’ distribution with 3 degrees
of freedom [Schruben, 1982a].

3. The signed area under {T (k/n)}
has an asymptotically Normal Ristri-
bution with zero mean and variance,

(n* - 1)/12.

(see [Schruben, -et.al. 19791).

4, 1If initialization bias has
dissipated by observation Y _, for
some fraction tv of the run, th%n the
slope of kS (k) as a function of k =
nt for t > T is equal to the bias in
the sample mean, i;f

3. TESTING THE SIGNIFICANCE OF INITIALIZATION BIAS

Most initialization bias control procedures in
the simulation literature are zrather elaborate.
Therefore, it might be advisable to test the output
series for imitialization bias before one of the
bias control procedures is performed. Many tests
for the presence of initislization bias have been
developed based on the Brownian bridge model for
the standardized output series {T_(t)}
[Schruben,.et al., 1980,  Schruben,  1382a,
Heidelberger and Welch, 19821.



A very simple and effective test presented as
an afterthought in [Schruben, 1982al can be
generalized as follows,

1. Split the output series into two
parts of length n,, and n,.

2. Compute,
2 2
h, = s, /(o (t (1 - t,))
and
B, = s, /(0" (t,(1 = t,))

where t, and t, are respectively the
locations of the (first, if ties
occur) maxima of the standardized
sequences {T_(t)} and {T, (£)} cor-
responding to*the first pa®t and the
second part of the output series,
vith s, =T (t,) and 5, =T (t,)
for o set arﬁitrarzly equal "to 1
(this constant cancels out of the
test ratio in the next step).

3. Test the ratio h = h /h, against
an F distribution with degrees of
freedom equal to 3 and 3.

4, The  hypothesis that the.
observation means in the two parts
of the output series are the same is
rejected at the a level if the upper
tail of the F distribution above h
is greater than a.

This test is asymptotically valid (for large
n, and n,) and is theoretically based on properties
1 and 2 of B(t). The choice of n, and n, can be
varied as long as they are fairly large, The
experimenter is reminded to pay attention to error
control if several tests are run on the same output
series. The above procedure has been used
successfully by students in their first simulation
course both at Cornell University and at Syracuse
University [Sargent, 1982]. Note that the test
does mnot work well in the presence of a large
initial transient that persists throughout the
entire run. This case, however, can usually be
detected by visual inspection of a plots of (Y.}
and {Tn(t)} (see [Schruben, 1982a] for a discussion
of the behavior of [Tn(t)] in the presence of
initialization bias).

4. TRUNCATING THE OUTPUT SERIES

Property 4 of the standardized output series
can be used to truncate a simulation output series
that has suspected initialization bias. A plot of
kS (k) as a function of k = nt is first printed.
An estimate of the slope near k = n is then
subtracted from the sample mean for the entire
output series. This correction for initialization
bias is algebraically equivalent to truncating the
output series at the first place (smallest value of
k) a line fixed at (n,0) intersects a plot of
kS_(k) (if that value of k is an integer). This is

slight generalization of truncation since this
value of k need not be integer (i.e. effectively a
fractional part of an observation will be

truncated). The authors have found that a string
held at (n,0) on a plot of kS_(k) versus k = nt to
estimate the slope mear k = n 1s a quick method of
truncating a simulation output series,

5. CONFIDENCE INTERVALS FOR p

Properties 2 and 3 of B(t) have been msed to
obtain confidence intervals for p [Schruben,
1982b]. Thése confidence intervals can be used
with the output of & single run and perform as well
or better than the common techniques of batched
means and replication [Law and Kelton, 1982].

The confidence interval estimator for s single
run based on property 2 of B(t) is as follows. Let

= (Y -1Y.)) /(nt‘(l - t*))
25.=1 i

Then an asymptotically valid 100(1-a)% confidence
interval for p is given by, :

e Yn * t,(a)sqrt(l/n)
Here t,(a) is the 100(1-a/2) quantile of st dis-
tribnt:on with 3 degree of freedom,

The confidence interval estimator for a single
run based on property 3 of B(t) is as follows. Let

A" = ( }n }(Y -x))

i=155=1"
and

= (12/(n3? - n)}‘

Then an asymptotically valid 100(1—a)% confidence
interval for p is given by,

* e Yn + tl(a)sqrt(A/n) ,
Here t,(a) is the 100(1-a/2) quantile’ of a 't dis—
tribntion with' 1 degree of fteodon. To obtain

additional degrees of freedom with either

estimator, replications can be run or the output

batched in the usual manner. For large batch sizes

or run durations these two confidence intervals

have theoretical properties that are superior to

the methods of batching and replication, Most

notably; the confidence interval based on property

2 has & interval half-width variance that is at

most only 1/3 of that for the methods of

replication and batching [Goldsman and Schruben,

1982]. This indicated that sequential confidence

interval methods based on the estimator using

property 2 might mnot suffer from the teandency of

''picking losers’’ that methods currenmtly in the

literature have.
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6. CLOSING REMARKS -

The purpose of this article is to present a
new approach to the analysis of simulation output.
The authors hope that practitioners will try the
techniques already developed and that researchers
will be able  to improve on these methods. Thexe
are potentially many applications of the
standardized time series, {T (t)}, presented in
this article. Other xpplicat?on: are currently
under study by the authors.

The ' authors are grateful t@ Professors D. Heath, A,
Law, R. Sargent, W. Vervaat, and J. R. Wilson who
have aided and encouraged this line of research.
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