ON-LINE DEMONSTRATION OF SIMAN

Abstract

This paper provides an overview of the SIMAN
simulation Tanguage. The SIMAN language is
FORTRAN based and runs on 16 bit microcomputers as
well as large mainframe computers. Following
the presentation of the language concepts, the
program will be demonstrated on a personally
owned microcomputer. The written paper provided
here is concerned only with the modeling concepts
included in SIMAN.

INTRODUCTION

SIMAN is a new combined discrete-continuous
SIMulation ANalysis language for modeling
general systems (1). In addition to containing
powerful general purpose features which are not
currently found in other Tlanguages, it also
incorporates a number of special purpose features
for modeling manufacturing systems. These special
purpose features are particularly useful in
modeling the material handling component of a
compiex manufacturing system. In the following
sections an overview of SIMAN is given.

THE SYSTEM--THEORETIC FRAMEWORK

The SIMAN modeling framework is based on the
system theoretic concepts developed by Zeigler
and Oren (2,3). Within this framework, a funda-
mental distinction is stressed between the
system model and the experimental frame. The
system model defines the static and dynamic char-
acteristics of the system. 1In comparison, the
experimental frame defines the experimental con-
ditions under which the model is run to generate
specific output data. For a given model, there
can be many experimental frames resulting in many
sets of output data. By separating the modeT
structure and the experimental frame into two
distinct elements, different simulation experiments
can be run by changing only the experimental

Proceedings of the 1982
Winter Simulation Conference
Highland * Chao * Madrigal, Editors

82CH1844-0/82/0000-0523 $00.75 © 1982 IEEE

523

C. Dennis Pegden
Associate Professor, The Pennsylvania State
University

Mike Joost
Associjate Professor, North Carolina State
University

frame. The system model remains the same.

Within this framework, component models based
on three distinct modeling orientations can be
combined in a single system model. For discrete
change systems either a process or event orienta-
tion can be used to describe the model. Continuous
change systems are modeled with algebraic differ-
ence/differential equations. The combination of
these orientations can be used to represent
combined discrete-continuous systems.

Given the system model and the experimental
frame, the SIMAN simulation program generates an
output file which records the model state transi-
tions as they occur in simulated time. The data
in the output file can then be used for various
data analyses such as data truncation and compres-
sion, and the formatting and display of histograms,
plots, tables, etc.

Within the SIMAN framework, the data analysis
and display function are done after the development
and running of the simulation program and.are
completely distinct from it. One output file can
be subjected to many different data treatments
without re-executing the simulation program. Data
treatments can also be applied to sets of output
files--this is useful when performing an analysis
based on muitiple runs of a model or when comparing
the system response of two or more models.

Modeling Orientations

The primary modeling orientation for discrete
change systems is the process orientation, in
which the model is constructed by depicting the
functional operations of the systems as a block
diagram. The block diagram is a linear top-down
sequence of blocks which represents specific
process functions such as time delays and queues.
The block diagram may be specified in either an
interactive mode in which the diagram is construc-
ted graphically on a computer terminal, or a batch
mode in which the diagram is described with batch
input statements. In this paper we restrict our
attention to the Tatter.

A second modeling orientation for discrete
change systems, the event orientation, may he used
to augment or replace the block diagram component.

The event component consists of a set of user-
written FORTRAN subroutines which contain the
mathematical-logical expressions that define the
instantaneous state transitions occurring at each
event time. The event subroutines typically use
calls to subprograms contained in the SIMAN
Subprogram Library. These subprograms perform
standard event modeling functions such as file
manipuiating, event scheduling, observation
recording, etc. The simulation is controlled by
advancing time and making calls to the appropriate
event subroutines at the correct simulated time.

The continuous component in a SIMAN system
model results from coding the necessary algebraic
difference/differential equations in FORTRAN
within subroutine STATE. When differential
equations are included, SIMAN automatically inte-
grates the derivatives over time to obtain the
system response.

THE SOFTWARE STRUCTURE

As shown in Figure 1, a SIMAN simulation is
divided into three distinct activities: system
model development, experimental frame development,
and data analysis. Within these three:activities,
the SIMAN software consists of five individual
processors which interact through four data files.

1. The model processor is used to construct
- a block diagram model. The data file

that is generated is called the model file.

2. The experiment processor is used to
define the experimental frame for the
system model. The data file that is
generated is called the experiment file.

3. The link processor combines the model file
and the experiment file to produce the
program file.

4. The porgram file is input to the run

i processor which executes the simulation

. runs and writes the results on the output
file. If the system model includes an
event or continuous model, the user-
written FORTRAN subroutines are Tinked to
the run processor before the simulation
runs are executed.

5. The output processor is used to analyze,
format and display the data contained in
the output file.

The five independent processors within the
SIMAN software simplify the framework by separating
the distinct functional activities of simulation.
This breakdown is also practical, since only one
of the five processors is executing at one time,
and computer memory requirements are substantially
reduced. In addition, you can independently create
and save the model files, experiment files, program
files, and output. files on disk or tape for future
use.

BLOCK DIAGRAM MODELS

Block diagrams are the primary means for
mode11ng discrete systems in SIMAN. These diagrams
are linear top-down flowgraphs which show the
movemént of entities through the system. The shape
of the individual blocks indicates their function.
The sequencing is depicted by arrows which control
the flow of entities from block to block through
the entire diagram.

Figure 1.

SIMAN Software Organization

Model S;:!pn;zry
Processor
Link ~ Run Output i Reports !
‘Processor Processor Processor | “‘—”f’_,_J
¥ User-Writien |
Subroutines }
beemem e H
Experiment |
Processor

524

These entities are used to represent "things"
such as workpieces, information or people which
flow through the real system. Each entity may be
individualized by assigning attributes to describe
or characterize it. For example, an entity repre-
senting a workpiece might have attributes corres-
ponding to the due date and processing times. As
the entities flow from block to block, they may be
delayed, destroyed, combined with other entities,
etc., as determined by the function of each block.

There are ten different basic block types in
SIMAN. The symbol and function for each of these
blocks are summarized in Table 1.

The Block Function Name

Each block function in SIMAN is referenced by
a block function name. In the use of the QUEUE,
STATION, BRANCH, PICKQ, QPICK, SELECT and MATCH
blocks, each block type performs only one function
and the block function name is the same as the
basic block name. However, in the:case of the
OPERATION, HOLD and TRANSFER blocks, each basic
bTock type performs several different functions.
The block function name for each of these blocks
is the operation type, hold type or transfer type
specified as the first operand of the block. We
will frequently refer to a block by its function

Name Symbol

OPERATION

TRANSFER

HOLD

SuELE G

e [D

BRANCH ﬁ
———
——

PICKQ W
| —
| —

Function

The OPERATION block is used to model a
wide range of processes such astime delays,
attribute assignments, etc. Also see Table
1-2.

The TRANSFER block is used to model
transfers between stations via material
handling systems. Aiso see Table 1-4.

The HOLD block is used to model situations
in which the movement of an entity is
delayed based on system status. The HOLD
block must be preceded by a queueing
facility to provide a waiting space for delayed
entities. Also see Table 1-3.

The QUEUE block provides a waiting space
for entities which are delayed at following
HOLD or MATCH blocks.

The STATION block defines the interface
points between model segments and the
material handling systems.

Tr;e BRANCH block models the conditional,
probabilistic and deterministic branching of
entities.

The PICKQ blockis usedtoselectfromaset
of following QUEUE blocks.

(Continued on next page)

Table 1. Basic Block Types

525

(Continued from previous page)

Name Symbol -
SELECT
EEE———
rr——
QPICK
—
r————
MATCH

—

! Function

The SELECT blockis used to select between
resources associated with a set of following
OPERATION blocks.

'

'
i

The QPICK block is used to select from a set
of preceding QUEUE blocks.

The MATCH block delays entities in a set of
preceding QUEUE blocks until entities with
the samé value of a specified attribute
resides in each QUEUE.

Table 1. Basic Block Types

name--for example, we will refer to the OPERATION
block with the DELAY operation type as the DELAY
block.

Types of BTock Functions

The OPERATION, HOLD and TRANSFER blocks are
further subdivided into several different block
functions depending upon their operation type,
hold type or transfer type. These types (specified
as the first operand of the block) consist of a
verb describing the function of the block. For
example, the operation type CREATE specifies that
the block is to create entities; the operation
type ASSIGN specifies that the block is to assign
a value to an attribute or variable; and the
operation type DELAY specifies that the block is
to delay entities. A summary of the varijous
operation types, hold types and transfer types
included in SIMAN i$ given in Tables 2, 3 and 4.

ATl of the basic block types,-including the
OPERATION, HOLD, and TRANSFER types, have operands
which control the function of the block. For
example, the CREATE block has operands which pre- -
scribé the time between batch arrivals, the number
of entities per batch, and the maximum number of
batches to create. The operands for the blocks
are described in detail in the next sections.

Inputing the SIMAN Model File

As described earlier, block diagrams may be
entered into the SIMAN model file in either an
interactive graphics mode or a batch mode using
input statements. In the interactive graphics
mode, the block diagram model is constructed
directly on the computer terminal with assistance
from real time error checking. In comparison, the
batch mode (using input statements) provides an
equivalent but more concise form for describing a
block diagram model in a batch computing environ-
ment. | Regardless of the method used to enter it,
the block diagram is stored within the SIMAN
model ,file using a special data structure which
allows either the statement form or the graphic
form of the model to be recreated. Hence, a model
entered using input statements can be Tater dis-
played on a graphics terminal in graphics form and
vice versa.

When block diagrams are entered graphically
at a computer terminal, each added block is
automatically inserted at the bottom of the diagram,
causing the preceding blocks to eventually scroll
up and off the top of the screen. These blocks are
automatically aligned vertically. Blocks may be
assigried Tabels consisting of up to eight alpha-
numeric characters (starting with a Tetter) which
are appended to the lower left-hand side of the

526

Name

Description

Assign values to attributes ar.\d variables.
Create batch arrivals to the system.
Delay an entity by a specified time.

Detect state events associated with continuous
variables.

Cause a specified event to occur.

Find the value of the index J meeting a specified
condition.

Send a signal to end the delay for an entity.

Split a group into its individual members.

Change the capacity of a specified resource.

Release units of a specified resource.

Set the status of a specified transporter to active.
Exit a specified conveyor device.

Exit a specified transporter device.

Set the status of a specified transporter to inactive.
Set the status of a specified conveyor to active.

Set the status of a specified conveyor to inactive.

Copy the attributes of-an entity at a specified QUEUE.
Remove an entity from a specified QUEUE.

Search a QUEUE for an entity meeting a specified

condition.

" ASSIGN
CREATE
DELAY
DETECT
General
Function ﬁ EVENT
FINDJ
SIGNAL
\ SPLIT
Resoqrce ALTER
Function RELEASE
ACTIVATE
EXIT
Material- FREE
Handling 4
Function HALT
START
STOP
COPY
File Function REMOVE
SEARCH
Statisgics COUNT
Function TALLY
Table 2.

Increment a specified counter.
Record an observation of a specified value.

Operation Types

block. These labels may be used in branching and
for referencing by other blocks. Blocks are
automatically assigned sequence numbers by .SIMAN
and these appear adjacent to the blocks on the far
left side of the screen. These sequence numbers
are used for block editing, while the right half
of the screen is reserved for user comments.

Block Modifiers

The blocks are connected using the connector
symbols + and L, LABEL. The first connector type,
the +, is used for directing sequential flow of
entities from one block to the next. The second
connector type, the |, LABEL, directs non-sequen-
tial flows where LABEL specifies the Tabel of the
block to where the entity is to be sent next. If
neither connector is appended to a block, the
special | s added to indicate that entities
departing the block are destroyed. Connectors may

527

not be appended to TRANSFER blocks since the flow
of entities from these blocks is controlled by the
block function.

v

In addition to the connector symbols, the
special mark symbol < MA| may be appended to the
right-side of any block to denote the marking of
attribute number MA with the arrival time of the
entity to the block. The use of the marking option
will be explained in detail Tater. The mark symbol
and the connector symbols discussed above are
referred to as block modifiers.

The general block description for batch input
statements is divided into five sections consisting
of the block label (if any), the block name, the
block operands, the block modifiers (if any), and
the block comment field (if any). The block label
is entered anywhere within the first eight columns
of the input record with the remaining description

starting in column ten or after. The operands are

Name Description

Condition SCAN Hold the entity until a specified condition is met.

Function
WAIT Hold the entity until a specified signalis received from

a SIGNAL block.

SEIZE Hold the entity until the required number of units of a

Resource resource are idle and are allocated to the entity.

Function
PREEMPT Hold the eniity“until one resource unit is allocated to
the entity. The entity may preempta resource currently
being used. *
i . ACCESS Hold the entity until a specified number of consecutive
Material-
Handling .
Function ‘

conveyor cells are available and allocated to the entity
at the accessirjg station location.

REQUEST Hold the entity hntil atransporterdeviceis allocated to
the entity and arrives to the requesting station location.

COMBINE Hold the entity until a specified number of entities
reside in the preceding QUEUE block. When this
occurs, the waiting entities are combined .into a
! permanent set and a representative of the set is
Set created. The original entities in the set are destroyed.
Function
GROUP Hold the entity until a specified number of entities
reside in the preceding QUEUE block. When this
occurs, the entities are grouped into a temporary set
and a representative of the set is created. The original
entities in the set are retained and can be recovered
using the SPLIT block.

Table 3. Hold fypes

Name Description ~

r CONVEY Convey the edtity to a specified station via a conveyor.
The transmit time is determined by the distance between

. : the station along the conveyor and the speed of the

Material- conveyor.

Handling J .

Function ROUTE Route the entity to a specified station. The transmit

time is specified as an operand of the block.

. TRANSPORT Transport the entity to- a specified station via a
transporter. The transmit time is proportional to the
distance between stations.

Table 4. Transfe} Types

divided into line segments which are ended with followed by the comment field.
the special character ":" where each Tine segment

corresponds to & given line of operands within a ;

block. Any operand may be defaulted by simply A Sample SIMAN Model

omitting ;he entry from the Tine segment. The last

opgrand Tine is followed by the block modifiers The following example of a TV inspection and
which may be one or more of the keywords DISPOSE, adjustment process (4) illustrates the general
MARK (MA), or NEXT (LABEL) separated by commas. arrangement of blocks on the computer graphics

The DISPOSE modifier causes the departing entities terminal and the format for the corresponding

to be destroyed, the MARK (MA) modifier prescribes input statements (see Figures 2.and 3). In this
the marking of attribute MA with the arrival time model, the vertical control setting of TV sets is
to the block, and NEXT (LABEL) specifies a non- tested at an inspection station. If a set is
sequential flow to the block specified by LABEL. foundito be functioning improperly, it is routed

If the DISPOSE and NEXT (LABEL) modifiers are to an;adjustment station. After adjustment, the
omitted, sequential flow to the next block is TV set is sent back to the inspection station where
assumed. The end of all operands and modifiers is setting is again inspected. TV sets passing inspec-

indicated by the special character ";" which is tion, whether for the first time or after one or

528

Sequence Block
A
CREATE
10
UN(L, 1)
20
INSPECT
SEIZE
30
INSPECTOR
48
S0
60
WITH, .15
WITH, .85
70
ADJUST
SEIZE
8a
ADJUSTOR
DELAY
9
UNC3, 1)
RELEASE
100
ADJUSTOR
L nerecT
Y
TALLY
110 -
PACKING 1, INT(L)
puss g
Figure 2.

Comment

<E| CRERTE ARRIVING TELEVISIONS

QUELE FOR INSPECTOR IN FILE 1

SEIZE AN INSPECTOR

DELAY BY THE INSPECTION TIME

RELERSE THE INSPECTOR

BRANCH TO ADJUST OR PACKING

QUELE. FOR ADJUSTOR IN FILE 2

SEIZE THE ADJUSTOR

DELARY BY THE ADJUSTMENT TIME

RELEASE THE ADJUSTOR

TALLY TIME IN SYSTEM

Block Diagram Mode] for Example 1A

more routings through the adjustment station, are
sent to a packing area.

Since the functional operations of the blocks
used in this model have not yet been fully described,
a detailed explanation of the block diagram model
shown in Figure 2 will not be attempted at this
point. This example is included with the intent
of providing the reader with an overview of the
format for a SIMAN block diagram.

The corresponding input statements for this

529

same model for use within a batch mode are shown in
Figure 3. Again the intent here is not to provide
a detailed discussion of the input statements but
to illustrate the general format conventions.

The model in Figure 3, whether entered in the
graphic or statement mode, would be combined with
an experimental frame which would prescribe the
resource capacities, distribution parameters, random
number seeds, run length, etc. Figure 4 depicts the
input statements for one possible experimental frame
for use with this model.

BEGIN;

CREATE:UNC1, 1) :MARK(1);
QUELE, 1;
SEIZE : INSPECTOR;
DELAY:UN(2,1);
RELEASE : INSPECTOR;
BRANCH, 1:
WITH, .15,ADIUST:
WITH, .85, PARCKING;
QUEUE, 2;
SEIZE : ADJUSTOR;
DELAY:UN(3,1);

INSPECT

ADJUST

888 BUAENE

PACKING TALLY:1, INT(1):DISPOSE;
END;

RELEARSE : ADJUSTOR : NEXT (INSPECT) ;

1
CREATE ARRIVING TELEVISIONS
QUEUE FOR INSPECTOR IN FILE 1
SEIZE AN INSPECTOR
DELAY BY THE INGPECTION TIME
RELEASE THE INGPECTOR

BRANCH TO ADJUST OR PACKING
QUEUE FOR ADJUSTOR IN FILE 2
SEIZE THE ADJUSTOR

DELAY BY THE ADJUSTMENT TIME
RELEASE THE ADJUSTOR

TALLY TIME IN SYSTEM

Figure 3, Input Statements for Example 1A

BEGIN;
DISCRETE, 30,1,2;

TALLIES:1, TIME IN SYSTEM;

8d $E&8Is

TRACE;
REPLICRTE, 1,0, 100;
END;

PROJECT, TV INSP' AND ADJT,PEGDEN, 4/25/81;

PARAMETERS: 1,3.5,7.5:2,6.,12: 3,28, 48;
RESOURCES: 1, INSPECTOR, 2: 2, ADJUSTOR;

DSTAT:1,NQ(1), INSP QUELE:2,NQ(2),ADJT QUELE:
3,NR(1),INSP UTIL:4,NR(2),ADJT UTIL;

Figure 4. Experimental Frame ?or Example 1A

DISCRETE EVENT MODELS

An event orientatin is included in SIMAN to
augment the block diagram model of a discrete
change system. The event orientation can be used
to develop specialized Togic which is not provided
by.the set of standard block functions. In this
section, the procedures for including discrete
events within a model are described.

Three distinct types of events can be incor-
porated: the block event, the time eyent and the
state event. The block eyent is initiated by an
entity arrival to an EVENT block included in the
block diagram model. The time event is scheduled
to occur at a specified point in simulated time.
Time events are set by a special event scheduling
subroutine (named SCHED) included in SIMAN. The
state event is initiated by a continuous submodel
when a specified continuous variable crosses a
prescribed threshold. The crossing conditions for
a state event are specified by the modeler in the
éxperimental frame. Although the mechanism for
initiating the three event types differ, the
procedures are identical for describing the mathe-
matical-logical relationships which define the
instantaneous change in system status resulting
from the occurrence of the eyent. Hence the rest
of this section applies to all three event types.

The mathematical-~logical relationships
defining each event are incorporated in user-coded
FORTRAN subroutines. Each event is coded as a
separate subroutine and typically uses calls to
one or more subprograms provided in the SIMAN

530

Subprogram Library. The subprograms perform
standard event functions such as event scheduling,
file manipulations and statistics recording. These
subprograms are summarized in Table 5.

Within the SIMAN event orientation, all
references to entities are made using the entity
record location, denoted by L. The record loca-
tion‘of an entity is a FQRTRAN integer variable
which can be assigned an arbitrary name by the
user.’ This variable is a pointer to the starting
address of the entity record within an internal
SIMAN storage array. The entity record is a data
record for maintaining the current values for the
entity attributes and related information. During
a simulation run, entity records aré dynamically
allocated from, and returned to, the pool of
avajlable records as entities enter and leave the
system. An entity entering the simulated system
is created by assigning it a record location from
the pool of available records. This is done by
calling subroutine CREATE(L) where the argument L
denotes the arbitrary variable name assigned to
the record Tocation. The entity record location
remains fixed and assigned to that entity as long
as the entity remains in the simulated system.
The entity record of a departing entity is returned
to the pool of available records by calling sub-
routine DISPOS(L).

The interface between SIMAN and the user-
coded eyent subroutines is provided by user-coded
subrouting EVENT (L,I). The argument I is the

event _code which is a positive integer assigned to

each event included in a SIMAN model. This event

Subroutine

CREATE(L)
DISPOS(L)
SCHED(L,,DT)
INSERT(L,IFL)
REMOVE(L,IFL)

COPY(L,A)
ASSIGN(L,A)

SETA(L,N,VAL)
SETM(L,NS)
SETP(NS,N.P,VAL)
TALLY(N,VAL)
COUNT(N,INC)

ENTER(L,NS)
QUEUE(L,IFL)

Function
A(L,N)

M(L)

NQ(IFL)
LFR(IFL)
LLR(IFL)
LRANK(NR,IFL)
LPRED(L)
LSUCC(L)

Description

Creates an entity by assigning an entity record location to the integer
variable L.

Disposes an entity by returning the entity record at location L to the pool
of available records.

Schedules event number | to occur in DT time units from the current time
for the entity with record location L.

Inserts the entity with record location L into file IFL. The relative rank of
the entity in the file is determined by the ranking rule specified for the file
in the experimental frame.

Removes the entity with record location L from file !FL.

Copies the attributes of the entity with record location L to the real array A.

Assigns the values in the real array A to the attributes of the entity with
record location L.

Setsthe value of the Nth attribute of the entity with record location Lto the
real value specified as the argument VAL.

Sets the station number for the entity with record location L to the integer
value specified as the argument NS.

Sets parameter number NP of parameter set NS to the real value specified
as the argument VAL.

Records the real value specified by the argument VAL as an observation
of taily variable number N.

Increments counter number N by the integer value specified as the
argument INC.

Enters the entity with record location L into STATION block number NS.

Schedules the entity with record location L to arrive at the QUEUE block
using file number IFL.

Description

The value of the Nth attribute for the entity with record iocation L.
The station number of the entity with record location L.

The current number of entities in file IFL.

The record location of the first entry in file IFL.

The record location of the last entry in file IFL.

The record location of the entry with rank NR in file IFL.

The record location of the predecessor to the entry at tocation L.

The record location of the successor to the entry at location L.

Table 5. SIMAN Subprogram Library (Excluding Random Sample Functions)

is used for all references to the event. The

is the FORTRAN variable JOB.

execution of an event is processed by a call to
subroutine EVENT (L,I) where L is the associated
entity record Tocation and I is set by SIMAN to
the appropriate event number to be executed.

SUBROUTINE EVENT(JOB,I)
G0TO (1,2),I
1 CALL ARRIVE(JOB)

Subroutine EVENT (L,I) maps each event code onto RETURN

a call to the user-written FORTRAN subroutine 2 CALL DEPART(JOB)

containing the logic for that event. The following RETURN

is an example of subroutine EVENT (L,I) where END

Event 1 is coded in subroutine ARRIVE gJOB; and

Event 2 is coded in subroutine DEPART (JOB). In There are two special events which are called

the following example, the entity record location by SIMAN during each run of a model. The first is

531

the start of simulation event which is user-coded
in subroutine PRIME. The second is the end of
simulation event which is user-coded in subroutine
WRAPUP. These events are not assigned event codes
since they are called directly by SIMAN at the
start and end of each run, respectively. Dummy
versions of both PRIME and WRAPUP are included in
the SIMAN Subprogram Library so that user-written
versions of either or both may be omitted.

The relationship between the SIMAN executive,

the SIMAN Subprogram Library, and the user-written
subroutines is illustrated in Figure 5.

Discrete Event Model Example

To iltustrate the SIMAN framework for event
modeling, consider a model to simulate the proces-
sing of jobs on a single machine. Within our
model, the state of the system will be the number’
of jobs in the system. The state will change when
a new job arrives to the system, or a completed
Jjob departs from the system. Two events are
required to model the changes in the system state:
a job arrival event and a job departure event.

The development of a discrete event model for
this problem requires the FORTRAN coding of an
event subroutine to model the state transitions
for each of the two events. This requires a thor-
ough understanding of the routines within the
SIMAN Subprogram Library, including the procedures
for sampiing from distributions. We will provide
here only a brief discussion of the event routines

with the objective of providing the reader with an
overview of the concepts and methods involved in
discréte event modeling using SIMAN,

The FORTRAN coding for the two user-written
routines and subroutine PRIME is shown in Figure 6.
The job arrival event is coded as event number 1
in subroutine ARRIVE, and the job departure event
is coded as event number 2 in subroutine DEPART.
The Tinkage of the events is -provided by subroutine
EVENT (L,I) which is coded as shown in the previous
example.

The model uses the FORTRAN variable STATUS to
keep track of the busy/idle state of the machine,
where' a value of 7 denotes busy and a value of 0
denotes idle. Jobs in the system are modeled as
entities with one attribute which is used to record
the arrival time of the entity to the system.

This attribute is assigned in subroutine ARRIVE and
then used in subroutine DEPART to record statistics
on the time in the system for the job.

Subroutine PRIME is used to establish the
initial conditions for the simulation and to create
and schedule the first arrival to the system. In
this example the system is assumed to begin empty
and idle, with the first job arrival scheduled for
time 0.

Subroutine ARRIVE contains the FORTRAN coding
for the job arrival event. The first action within
the event is to reschedule the job initiating the
event as the next job arrival and to create a record
for the current job. 1In this way, only one job

SIMAN
EXECUTIVE

PRIME

USER
1 EVENT 1

|EVENT (L,If*

WRAPUP

USER
EVENT N

SIMAN SUBPROGRAM LIBRARY

L: Associated entity record location.
I: Event type.

Figure 5. Subprograms Within SIMAN

532

SUBROUTINE PRIME

COMMON/SIM/D(58), DL(58),S(50),SL(58), X(S53), DTNOW, TNOW, TFIN, J, NRUN

COMMON/MACHINE/STRTUS

STATUS=0.8

CALL CREATE (NEWJOB)

CALL. SCHED(NEWJOB, 1,0.8)
RETURN

END

SUBROUTINE ARRIVE(NEMWJOB)

COMMON/SIM/D(58), DL (58), 5(50), SL(5@), X (583, DTNOW, TNOW, TFIN, J, NRUN

COMMON/MACHINE/STATUS

CALL SCHED(NEWJOB, 1,EX(1,1))
CALL CREATE(JOB)
CALL. SETR(JOB, 1, TNOW)
IF (STATUS.EQ.1) THEN
CALL INSERT(JOB, 1)

STATUS=1.08

CALL SCHED(JOB,2,UN(2,1))
END IF
RETURN
END

SUBROUTINE DEPART (JOB)

COMMONSIM/D(58), DL (50), S(58), SL(58) , X(S58) , DTNOW, TNOW, TFIN, J, NRUN

COMMONMACHINE/STATUS

TSYS=TNOW-A(J0B, 1)
CALL TALLY(1,TSYS)
CALL DISPOS(JOB)
IF (NQ(1).GT.@) THEN
JOB=LFR(1)
CALL REMOVE(JOB, 1)
CALL SCHED(JOB,2,UN(2,1))
ELSE
STATUS=-2.8
END IF
RETURN
13,)

Figure 6. Subroutine PRIME and Two User-Written Routines

arrival event is scheduled to occur at any one
time. However, a complete sequence of arrivals is
generated. Next, attribute 1 of the arriving job
is set to TNOW. which is a SIMAN variable denoting
the current simulated time. A test js then made
on the status of the machine. If the machine is
busy, the job is placed in file number 1 to wait
for the machine and a return is made to the SIMAN
executive. Otherwise, the status is set to busy
and the job departure event is scheduled, followed
by a return to the SIMAN executive.

The Jjob departure event is coded in subroutine
DEPART. The first action is to record statistics
on the time in the system for the departing job.
The departing entity is then destroyed by return-
ing its record to the available record pool by a
call to subroutine DISPOS. Next, a test is made
to determine if there are jobs waiting in file 1
for processing on the machine. If there are, the
first waiting job is removed from file 1 and the
departure event is scheduled for that job, fol-
Towed by a return to the SIMAN executive. Other-
wise, the machine status is set to idle and a
return is made to the SIMAN executive.

Subroutines PRIME, ARRIVE and DEPART comprise
the system model for this example. Prior to
execution, the subroutines would be linked to the
SIMAN run processor and combined with an experi-
mental frame to prescribe the length and number of
runs, the distribution parameters for the arrival
and service process, etc.

CONTINUOUS COMPONENT MODELS

In a continuous simulation model, the state of
the system is represented by dependent variables
which change continuously over time. Examples of
continuous change variables include the tenmperature
of an ingot in a soaking pit furnace, or the con-
centration of a reactant within a chemical process.
A continuous simulation model is constructed by
defining equations for a set of state variables
whose dynamic response simulates the real system.

The equations that define a continuous change
system can be written as either algebraic, differ-
ence or differential equations. In algebraic
equations, the state of the system is written

533

~

directly as a function of the other variables in
the system. In a difference equation, the state

is defined as a function of the other variables

in the system and the state at a previous instant
in time. Both algebraic and difference equations
are referred to as state equations since the value
of the state variables are computed directly by
the equations. In contrast, differential equations

RR 1s the rate of recovery.

define the state of the system by specifying the
derivatives of the state variables. In the last
case, SIMAN integrates the derivative over time
to obtain the state of the system.

SIMAN may be used to model pure-continuous
systems or combined discrete-continuous systems.
In combined models, the continuous submodel may
interact with the discrete submodel through either
state events defined in the experimental frame and
user-coded as event subroutines, or through the
DETECT block included in the block diagram model.
The values of the state variables and their
derivatives are also available for Togical testing
or may be modified within the block d1agram mode1
or within event subroutines.

A continuous system is modeled in SIMAN by
coding the algebraic, difference, and differential
equations in FORTRAN within the user-coded sub-
routine STATE. Subroutine STATE is automatically
called by SIMAN at small time intervals called

steps to compute the response of the system over
time. The value of the Ith state variable is
maintained as. variable S$(I), and the derivative
with respect to time of the Ith state variable is
maintained as variable D(I). The values of these
variables at the end of the Tast step are assigned
to the variables SL(I) and DL(I), respectively.
The current step size is denoted by the variable
DTNOW and is automatically controlled by SIMAN
based on accuracy parameters specified within the
experimental frame. When differential equations
are included within subroutine STATE, they are
automatically integrated by SIMAN using the Runga-
Kutta-Fehlberg integration algorithm to ebtain the
values of the state variables within an accuracy
specified by ‘the modeler in the experimental frame.

Continuqus Model Example

To iTlustrate the SIMAN framework for contin-
uous modeling, consider the population dynamics
associated with the growth and decay of an infec-
tious disease within a single population whose
recovery results in immunity (5). The population
consists of three groups: (1) those that are
well but susceptible; (2) those that are sick;
and (3) those that are cured and therefore immune.
Although the system state actually changes dis-
cretely, we will assume that we can approx1mate1y
the system with a continuous model given by the
following differential equations:

g% (WELL) = -RI + WELL * SICK
E%E (SICK) . = RI * WELL * SICK - RR * SICK

é% (CURED) = RR * SICK

In this example, RI is the rate of infection and
We will assume that
RI is .001 and RR is .07.

This model is implemented in SIMAN by coding

the model equations in subroutine STATE. To do
this, weé must first make an equivalence between
the problem variables and the SIMAN array S({.).
In this'example, we will Tet S{1) denote the
number of well members, S(2) the number of sick
members, and S$(3) the number of cured members.
The rate of change of the number in each group is
therefore given by D(1), D(2), and D(3), respec-
tively.' The coding of the differential equations
in subroutine STATE is shown below.

SUBROUTINE STATE

COMMON/SIM/D(50) ,DL(50) ,S(50) ,SL(50) ...
DATA RI,RR/.001,.07/

D(])——RI+S(1*s(2)
D(2)=RI*S(1)*S(2)-RR*S(2)

D(3)=RR¥*s(2)

RETURN

END

To: execute the model, subroutine STATE would
be compiled and linked to the run processor and
combined with an experimental frame to define the
initial conditions, output variables, run length,
etc.

APPLICATIONS

SIMAN is a new simulation language and has not
yet beepn distributed for general use. However,
some application experience has been gained with
the 1anguage at Tektronix, Inc. which has served as
a preliminary test site for SIMAN.. These applica-
tions include a power-and-free overhead monorail
system, a miniloader storage and retrieval system,
and a h1gh volume conveyor line for CRT manufacturing.

REFERENCES

(1) Pegden, C. D., Simulation Analysis Using
SIMAN, manuscript in preparation, 1982.

(2) Ziegler, B. P., Theory of Modelling and
Simulation, John Wiley, New York, 1976.

(3) Oﬁen, T. I. and Ziegler, B. P., “Concepts for
Advanced Simulation Methodologies," Simulation,
32, 3, pp. 69-82, 1979.

(4) Schriber, T., Simulation Using GPSS, John
Wiley, New York, 1974.

(5) Korn, G. A. and J. V. Wait, Digital Continuous-
System Simulation, Prentice-Hall, 1978.

534

