SIMULATION OF TRANSIENT HEAT FLOW

IN COMPOSITE CIRCULAR SYSTEMS

INTRODUCTION

In drilling and completing oil wells
in thick viscous o0il reservoirs, it is
frequently found that the productivity is
quite low. Large oil reserves have existed
in these viscous fields and, hence, served
as a challenge to develop commercial oil
production methods. ‘

Many examples of both casing and ce-
ment failures have been cited when doing a
steam stimulation job. Special cements
have been proposed, and heavy~-duty casing
may now be specified. It was known that
the thermal properties of the cement sheath
could be varied, and it was believed that
one should study the effects of the cement
thermal properties on the temperature dis-
tribution about the well bore.

Analytical solutions are available to
show the transient temperature for the case
of uniform homogeneous media without a
change in thermal properties from the well
out into the reservoir. However, in ini-
tiating this problem, it was soon learned
that new methods must be developed in order
to cope with the problem where the thermal
properties of the cement sheath were dif-
ferent from the rock matrix itself.

In reviewing the work on transient
temperatures when injecting hot fluids into
wells, it seems that very little work has
been done showing the temperature of the
cement sheath and contiguous rock as hot
fluid is injected down a cased hole. Hence,
the purpose of this paper is to present a
method which may be used for calculating
the transient téemperatures existing in com-
posite circular systems, i.e., from the
well out into the cement sheath and rock
matrix for the case in which the thermal
properties of the sheath are different from
the rock matrix. Some quantitative results
will be shown.
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MATHEMATICAL DEVELOPMENT

The Fourier equation which governs
cylindrical heat flow dis:
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In difference form, equation (1) becomes
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Equation (2) can be reduced to the fol~
lowing finite~difference form:
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The temperature at radius (r) and time
(6+48) can be obtained from equation (3)
to give:
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One should note that the equation for heat
flow in a cylinder of homogeneous material
is derived from equation (4) when A6= Arz/
200 , i.e.,
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Equation (4) becomes the equation for
two composite concentric cylinders when
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and using this in
equation (4), we have: )
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The preceding equation provides the
temperature at all points in the system,
except at the boundary between the two
layers. To couple the cement-rock equa-
tions, it is necessary to set the cement-
rock boundary or interface temperature
the same, and it is necessary to equate
the flux on both sides.

Under steady-state conditions, the
heat flowing into and out of a circle
must be equal. Using this, we have:
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This method forces the heat flux and tem-
perature at the 1nterface to be the same
for both layers.

PROCEDURE

For this problem, a cylindrical geo-
metry may be visualized representing the
well bore surrounded by a thin layer of
one set of thermal cement sheath proper-
ties followed by a large cylinder of a
second set of thermal properties. This
forms a composite concentric cylinder’
(Fig. 1). 1Initially, the system is at
geothermal temperature. The well bore is
suddenly heated and maintained at constant
steam temperature. It is desired to study
the temperature rise in the cement sheath
and out into the rock.

Equation (6) is the same for both
zone 1 and zone 2 with the exception of
O, dimensionless time. Since it is desir-
able to have the time intervals equal in
each layer, one can choose the ratio of
©1 to ©9 in such a manner that the times
are equal. By further restricting the
©; and 93, we could have thed r; equal
also, but this is undesirable due to the
large difference in the widths of the two

layers. The calculations are simplified
by arbitrarily setting ©; = 1, and this
yields :
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RESULTS

Fig. 2 is presented for two purposes.
The figure shows the transient dimension-
less temperature rise in the cement sheath
and rock for the case in which the thermal
conductivities were 0.3 and 1.4 for the
cement and rock, respectively. The cement
and rock densities were 50 and 150 1b/cu
£t., respectively, and the specific heats
were the same at 0.2 Btu/lb-deg F. Each
of the three curves was calculated three
times, using three different grid sizes
for calculations. This was accomplished
by changing the r1 of the two zones by
varying the number of slices into which
each zone was divided, i.e., the first
zone into 2 slices, the second zone into
20 slices; then 4 slices by 40 slices;
and finally 8 slices by 80 slices. ‘Such
a procedure tests the calculatiomnal tech-
nigques.

Each slicing method gave good re-
sults. For example, the difference in
heat flux at the boundary was:

Time Dimensionless

Difference Time Method
1.3 20.8 2X20 slices
0.8 20.8 4X40 slices
0.1 20.8 8X80 slices

Effect of Thermal Conductivity

Figs. 3,4, and 5 show the transient
temperature for the case in which the
thermal conductivity of the cement was
0.075, 0.15, and 0.3, respectively. The
low conductivity might possibly be a-
chieved by the use of certain insulative
types of materials. The density of the
cement and the rock was unchanged for all
three figures. It will be seen from Fig.3
that at the end of approximately 31 hr,
the temperature at the cement-rock inter-
face had been raised to approximately 20
percent of the dimensionless temperature
rise.

Fig. 4 shows a similar study for the
case in which the cement thermal conduc-
tivity was 0.15. This is approximately
1/10 that of the rock. It will be seen
that the cement is serving as an excellent
insulative material. By increasing the
thermal conductivity of the cement to 0.3,
the temperature rise at the rock interface
had raised to approximately 30 percent of
the dimensionless temperature rise (Fig.
5).
of the effect of thermal
shown in Fig. 6. TFig.6
shows the case of the temperature rise
where the thermal conductivities of the
cement ranged from 0.15 to 0.3.

A comparison
conductivities is

Effect of Cement Densitv

Figs. 7,8, and 9 show the case in
which the thermal conductivity of the ce-
ment is maintained at 0.7, but the density
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of the cement varied from 25 to 100 1b/cu
ft. At the end of approximately 45 to 50
percent for both cements (Figs. 7,8, and
9). The effect of the cement density on
temperature seems to be quite small
throughout the range studied.

Fig. 10 shows a cross plot of the
data with the triangles, circles, and
squares corresponding to the case for
cement densities of 25, 50, and 100 1b/cu
ft, all having the same thermal conduc-
tivity. It will be seen from this figure
that the temperatures varied slightly and
were almost independent of the cement
density.

CONCLUSIONS

A method has been proposed for simu-
lating heat flow in composite circular
systems in which the temperature is sud-
denly changed to a constant temperature
and maintained at this temperature for a
long period of time. The method requires
that the temperature at the interface be
the same, and the heat flux on both sides
of the interface must be the same. The
computational method appears to be rea~
sonably stable. The quantitative.effects
of cement thermal conductivity and cement
density on the transient cement sheath
temperatures have been shown for the first
time.

With knowledge of the transient tem-
perature, one may then initiate calcula-
tions on the thermal stresses. Hopefully,
this will lead to the design of improved
cementing practices for thermal opera-
tions. -



NOMENCLATURE

Al,A2 = area of inner and buter zones-
2 rh, sq ft

c = unit heat capacity of solid,
P Btu/lb_ - deg F
T = temperature within the solid,
~a function of time and position,
deg F
TB = temperature at boundary between -

zone 1 and zone 2 F

Tl = temperature at any inner zone
point

T2 = temperature at any outer zone
point

h = unit height, ft

k = thermal conductivity of solid
Btu/hr-ft-deg F .

r = radius at any point within the

cylinder, ft

s Ty, = change in radius in inner and
. outer zones, ft
€] = dimensionless time = ZGiAG/Ari2
o "= thermal diffusivity of solid
=k/pcp; sq ft/hr
] = time, measured from instant at
which inner surface temperature
is suddenly increased, hr
p = density of solid 1bm/cu ft
SUBSCRIPTS
B = boundary between zone 1 and
zone 2 ’
1 = inner zone

2 = outer ZzZone
i = denotes some local position

within solid with respects
to x coordinate .
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