VARIANCE REDUCTION IN ESTIMATING THE MEAN FLOW TIME IN OPEN QUEUEING NETWORK SIMULATIONS

Abstract

The number of replications required to produce
a satisfactory confidence interval for the mean
flow time through a queueing network can be prohi-
bitively large unless an effective variance reduc-
tion ‘technique is used. A variance reduction
technique is developed specifically for the estima-
tion of mean flow time and the corresponding sample
variance is analyzed. Several examples are shown
with variances reduced to as much as one percent of
the variance of the original process.

I. INTRODUCTION

The number of replications required to produce
a satisfactory confidence interval for the mean
flow time through a queueing network can be pro-
hibitively large unless an effective variance reduc~
tion technique is used. A variance reduction
technique is developed specifically for the estima-
tion of mean flow time and the corresponding sample
variance is analyzed. Several examples are shown
with variances reduced to as much as one percent of
the variance of the original process.

In Section II the variance reduction technique
is formulated and analyzed. Several examples are
developed in Section III and conclusions are given
in Section IV.

II. FORMULATION AND ANALYSIS

Consider an open network of N nodes with tran-
sition probability matrix P. With the nodes
labeled 1 to N we have the ijth.entry of P, Py
corresponding to the probability of a transition to
node j after departing from node i. In order to
avoid trivalities we assume that the average number
of visits to each of the N nodes is finite. With
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this assumption it follows that the number of
visits to node i, i =1, 2, ..., N, is geometri-
cally distributed with mean a, where a, is the i
component of the vector +

th

A= POT (I -P)'l,

wvhere I is the N x N identity matrix and

(P )

o1
o2
PO =
ON
where POi is the probability of a new arrival to

the network entering at node if2]. Let Xi be the

random variable of passage time through node i.
Then the mean flow time through the network,
E[XF]’ is given by

N
"E[X] = .XlaiE[Xi] . @)
1:

From equation 1 it is apparent that tne random
variable

N
Y= ] (2)

X

aixi

1

can be used to estimate the mean of XF since
E[XF] = E{Y]. The most significant characteristic

of Y however, is that the source of variation due
to the transition probabilities has been eliminated.



II. Formulation and Analysis ‘(continued)

From the examples shown in the next section it will
be seen that for some networks the variation due
to transitions can account for 1007 of the varia-
tion in XF.

In using equation (2) to produce an estimate
of the mean of XF’ observations are made at each

node i and estimates ii are generated for E[Xi]’

An estimate ¥ of E[Y] can then be obtained by

Y = 2 aiﬁi. The variance of Y is easily
i=1

obtained from (2) and is given by

L
oo = ) atel +2 a,8.0 . 3
i=1 tF i<y T3 :

It is tempting to comnclude that the sample variance
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X, X,
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appropriately. Equation (3) under these conditions

overestimates the true sample variance because

estimators for the mean values of the Xi's are used

, tan be obtained from (3) by substituting

, the sample variance and covariances,

in (2) rather than individual random samples. We
proceed with the discussion of the sample variance
of Y after proving the following theorem,

Theoremn. If.Xi, i=1, 2,'..., Nare independent

random variables then

N
» 2
c% = Z B, o_ , (4)
1, if I’r{Mi =1} =1

ai zn(ai-f 1)
Bi = —_ai‘*’—l- , otherwise

and Mi is the random variable of the number of

visits to node i.

Proof. Consider the random variable

where

1
X TR
1

It is assumed that the XiK are i.i.d. for each
K=1, 2,

ey Mi' Since each Xi and Xj are
independent ii and ﬁj are also. Thus

[¢)

<N

i=1 i

To compute cg‘ we use the general conditiohal
X

i
relation
Var[U] = Var[E[U|{W]] + E[Var[U|W]].
It follows that
~ M

2 1 of
oy = Var E[ﬁ: 2 XiK Mil
i L iR=1 -

M,
1 t ]
+ ElVar{— X, M,
Mi K=1 1Kl i
_ lopllo? | =2l
= Var E[Xi] + E T o cX.E |
i i} i i

For the case when Mi,is a random variable it is

geometrically distribited with mean a,. It follows
that E L =f2£}ifﬂ£l_. For the case when
Mi l+a,

Pr[Mi =1] =1, E[l/Mi] = 1 and the result follows.

In comparing equation (3) and (4) it is clear .
that the significant difference is the multiplica-
tive constants ai as opposed to aiSLnai for large
ag. The random variables Xi are independent pro-

vided that each node is a delay server, i.e., an
infinite server. However if queues exist in the
network, Xi and Xj will not be independent if a

sample path exists between them. An extreme case

is where Pif = 1. 1In this case a long delay at i

due to queueing increases the likelihood of a
similar delay at node j.
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For the case of queueing in the network a
closed form equation for the variance of Y compar-
able to (4) could not be obtained. It can be shown,
however, that an upper bound for the sample
variance of Y is given by =

X

N
62 = 7 a%?
i=1 % ij

+ ZEaiajcx (5)

where o is the covariance between Xy and xj.
i™j -

In the simulation cases used to test (5) this

estimator was within approximately 30% of the

calculated variance and the variance of was con-

sistently 40 to 60% greater than the variance of Y.

III. EXAMPLES AND DISCUSSION

In practice neither equations (4) and (5) need
to be used. Equation (2) .is recommended with the
Xi's replaced by the estimated average value. The

usual procedure for computing confidence intervals
from a sample set is then used. The network shown
at Figure 1 was analyzed numerically by the author
in [1]. The transition matrix and analysis for
this network is reproduced at Tables 1 and 2
respectively. In Figure 1 node indexes are shown
in parenthesis, the average node transit times are
shown immediately above the index, and node to node
transition probabilities are shown at each transi-
tion -arrow.

In Table 2 the random variable Ui denotes the

time to exit the network starting from the time of
arrival at node i. The equation used in the
numerical computation for the entries are shown

in the Appendix. Table 3 provides a summary of the
variance computations for both.Y and X_,. The
average number of visits to each node is shown,

the mean flow time, and a tabulation of the
variances of Y and X_ for three different distri-
butions at each node. The first distribution
analyzed is the constant with means as shown in
Figure 1. From equation (4) it is obvious that

02 = 0.
Y
entirely to variation in transitions through the
network. The second distribution shown in Table 3
is uniform where the distribution for node i is
uniform on [0,2E[Xi]] where E[Xi] is the average

Therefore the variance of XF is due

transit time for node i. The third distribution
shown 1is exponential with mean E[Xi]. Note that

for the uniform and exponential cases the variance
of Y is 0.8% and 6.8% of XF respectively. This

correlates closely with the relative differences
between the constant and uniform variances and the
constant and exponential variances of XF respec—

tively, i.e., 0.5% and 5.8%., For this example it
is true that this variance reduction approach does
factor out the source of variation due to transi-
tions.

IV, CONCLUSION

A variance reduction technique for estimating
flow time in a general network was developed and
analyzed for the case where each server is a delay
server. The technique essentially eliminates
variation due to transitions. From the examples
shown it is clear that a significarnt reduction in
the number of ‘samples' required to generate- con~-
fidence intervals of a specified width is possible
with this approach. For simulations of multiple
layes of networks, i.e., the nodes of the global
network are networks and so forth, repeated appli~
cation of this technique at each layer would pro-
vide a very desirable reduction in variance for
estimating the overall flow time in the network.
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APPENDIX

The formulas used in producing Tables 2 and 3 are
presented in this appendix. The following defini-
tions are required?

I - NXN identify matrix

P -~ NXxN transition matrix

P. .= (P ~ probability vector for new

0 01 .
arrivals
Poz
PON
E[U] = E‘[U1]<,E[X]= E[X,1],Var{u] = Var[U, ]

EIUZJ E[XZ] Var[Uz]
E[UN] E[XN] Var[UN]

The mean value of XF is given as follows

E[XF] = PgE[U], where
E{U] = (T - P)"lE[x].

The variance of XF is given by
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Appendix (continued)

Var[XF]‘ =73 Py Var[U ] + ¥ POif(l—PO].")E[Ui]rZ

TABLE 3. Variance Analysis

-2 ] By® EU,IE[0,] NG w1 ot s
i< j LRA J . 1 4.18
1 2 2.93
where Var[U] = (I - P)"C and C is a vector 3 0.0293
th o ' 4 3.18 2 .
whose 1 component is given by 5 10.0 %
, 6 8.75 Constant 0 517,494
' z 9 7 9.00
C.,=Var[X.]1+)P_ _(1-P, )E[U,] 8 3.15 Uniforn 4,125 520,140,
i i 3 ij 43 J 9 5.85
Exponential|37,124 549,235

-2 Y PP _E[UIE[U].
o<j<g WK TITTK

TABLY 1. Transition Matrix P for Figure 1
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‘FIGUNE L. NRYWORK FLOW XXAMPIR

.TABLE 2. Mean and Variance of U, for Constant, ﬁnﬂen, and Ixponeatial Cases

X, Constane X, Uaiforn . X, Exponential
Noda l[!i.] Vu[xil I(UL'] Vu['l!&] v-:[xil Vur[Ui] Var(X. 1 V-r[Ui.]
1 7 0 715,53 |S17494.47 4,08 |320139.56 : 49 1549234.59
2 &4 -] 724.31 {516926.03 161.33 {519617.50 1936 {549222.56
3 17 0 740,53 |517494.50| 24.08 }S20168.97 | 289 |{549587.59
4 8 a 723.53 |517494.50] 53,67 [520144.87 b 1549298.69
5 4 [} 671.70 |516883.28 1.33 |519406.59 ‘ 16 |'547162.31
6 8 1] 679.70 |516883.28( 53.67 |S19411.94 &4 1547226.31 '
7 .35 ] 741.89 |519274.41 .08 [522076.59 | .90 |552899.98
3 a8 o 804.53 {517494.50] 546.75 |S520691.52 |6561 [555859.69
9 27 0 706.70 |516883.3% 60.75 |519472.66 | 729 |347955.25
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