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INITIAL BIAS AND ESTIMATION ERROR IN DISCRETE EVENT SIMULATION

Abstract

This paper analyses several stochastic
systems and obtains expressions for the initial
bias. The bias is compared with the estimation
error of the same system starting in statistical
equilibrium. {t turns out that the bias and the
estimation error are c]osely related to each
other. Furthermore, it is shown that if the
estimation error is smail, the bias becomes
negligible.

INTRODUCT I ON

Suppose a certain system is simulated from
time 0 to time T, and the problem is to find the
expectation of a certain variable H. ﬁ may,
for instance, be a queue length, the amount of
stock in an inventory etc. We assume that H
changes randomly through time, but that the
expectation of H approaches an equnllbrlum E(H)
The simulation is to provide an estimation H of
E(H) .

Since H varies randomly, any estimator QT
. will also vary, resulting thus in an estimation

error. Secondly, the simulation must start under
certain initial conditions, and these initial
conditions will normally influence H(t), the
value of H at a later time t. "
on H(t), 0 =t

biased.

Since HT depends

< T, the estimator usually becomes
In this paper, we analyze thé bias and the
estimation error for a number of theoretical
models, including the M/D/= queue, the M/M/x

queue and the continuous Markov process. - For
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these models, analytical expressions for the bias
Though
these models may or may not be representative for

and the estimation error can be found.

a typical discrete event system simulated, they
open at least new prespectives.

it is a well known fact (3) that the
variable H of a stochastic system never reaches
an equilibrium.
that H(t) =i
value ni for large t.

However, the probability Hi(t)
will often reach an equilibrium

In this case, we say th;t
the system is in a stochastic equilibrium. In
this paper, we restrict ourselves to systems that
have such a stochastic equilibrium. A

It is possible to start a simulation in such

.away that it is in a stochastic equilibrium

already at time t = 0. For instance, if H(t)
describes a Markov process, one can make sure
that H(0) is a random variable with the
distribution PLH(0) = il= I,. This method is of
course only viable“if the equilibrium
probabilities are known, and that is not normally
the case in simulation. In the models we analyze,
If a

it is
We

can thus concentrate on the standard derivation of

however, this can be done quite easily.
system starts in a stochastic equilibrium,

easy to find unbiased estimators Hy for E{H).

HT which we denote Std(ﬁT). Because in the systems

considefed H will become normally distributed,

- Std (H ) is a meanlngfu] measure for the -
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estlmatlon error. Here, as well as later, Std(H )

will mean the standard deviation in stochastic’
equilibrium,
To find an expression for the initial bias,

we have to start from a certain initial value H(O)



Initial Bias (continued)

Here, we will always assume that H(0) = 0.
However, the extension of our theory to opher
initial states is $traightforward.- '

As a measure for the bias, we then use

Bias () = E(H) - E(H)

To estimate E(H), one can use several
estimators . GPSS, Simscript, and other
simulation Ianguéges support the continuous
time average QT = H(T), which is defined as

—_ 1 T
H(T) = = [ H(t)de.
0~ .
Other people (1) have arguéd that ‘H(T). should
only be measured at the times t = kh, where
k=0,1,2, ..., nand h = T/n, and the average
of these values should be used as an estimator.-

Thus, one has

- - _ 1 n . -
Hp = Hh(T) = B’TTX k=0 H(kh), n = T/h.

Suprisingly, H(T) is not normally the estimator
with the lowest standard deviation. indeed,
Grassmann(2) has shown that in the case of the
M/D/= queue, the best estimator for E(H) is
Hh(T), provided h is equal to thg service time

S.

There are other estimators for E(H) as well.

tn particular, Halfin (4) uses

~

: T T
Hy = ﬁk()(t) = é A(t)H(t)dt / g A(t)dt,

where A() i$ chosen in such a way that
S;d(ﬁk()(t) ) is'minimal. We will not use this
estimator here, however. Indeed, references (2)
and (4) show that the difference between
reasonable estimators in small. For us, it
turns out to be convenient to use ﬁ;(T) in the
case of the M/D/~ queue, and to use E¥T) in all
other cases.
THE M/D/= QUEUE
Suppose an M/D/» queue has an arrival rate

of A and a constant: service time of S. Let H

be the number of elements in the system, and

suppose E(H) is estimated as follows
He = B (M) = =™  H(ks) , T = ns
T st n+ 1 k=0 ’ ¢
(1)
It can be shown (2) that ﬁg(T) is the minimum
variance estimator in statistical equilibrium,
and that the variance of ﬁg(T) becomes

Var ( H (1) ) = as%/(T45).

If the system starts with H(0) = 0, equation (1)
becomes

e 1
HS(T) = -mX 2=1 H(kS).

For any t>S, H(t) is independent of H(0) (see (5)),

and its expectation is AS. Therefore

Bias(Hg(T)) = E(A(T)) - E(H)

nF+ " AS - S

=~ AS/(n+1) .

Since n = T/S, this gives

Bias( FS(T) ) = As2/(T+s).

Consequently, the variance and the bias are edual,
except for the sign. Let Coef (ﬁ;(T)) be the
ratio of the bias with the standard deviation.

Then, one has

Coef( Hg(T) ) = Bias( A (T) ) / std( H (1) )

= - Std( H'S(T) ).

This means that the bias is unimportant iff the
estimation error is small, and important iff it
is large. For instance, if T is chosen such that

the standard error is 0.1, .the bias is practically
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irrevelant. However, if the choice of T is such becomes negligible, and one has

that a standard error of 10 results, the bias

~ becomes predominant. Var{ A(T) ) = 2 %-;%-+ Rl' ) (3)

THE M/M/» QUEUE
Tn this section, we consider the M/M/» queue. ) '
While doing this, we introduce some basic ideas To find the bias, given H(0) = 0, we define
which will prove important in the next section.

The estimator that will be used is

L(t) = E[H(e)].

L(t) is thus the expected number of elements in

the system at time t. 1t is well known that
D S N - ut

For a stochastic system in equilibrium, the L(e) = u [u L(o)] e .

variance of H(T) can be found as follows )

Since we assumed that H(0) = L{0) = 0, this gives
Var (H(T)) ’

1 T_
*T—z Var((f) H(t) dt)
L(t) =%[1 -e ¥4

ZT‘t
=5 [ Cov{t=x) dx dt
T°00
We can now calculate T
Tt — 1
= E{=— t) dt
= —%gf [ Cov(x) dx dt. EH(M ] E[T é H(t) dt]
T 00 {2) 11. ‘T
=3 [ ElH(D)] dt=?—IL(t) dt.
Here, Cov (x) is the covariance between H(t) and 0 0
H{thx) . For our case, this gives
According to Reynolds (5), one has for the
. T T
M/M/~ queueing system — 1 -
queteins = | ERM] =4/ L) dt =4 [ 20 - ¢ T at.
A X 0 0
Cov(x)=;e .
Aol - T
uD Tu (-e )]
Hence
Tt
~ 2 A _-ix B E(H) = A/u, find
Var(F(T) ) = = é é Le dx dt ecause E(H) /u, one finds X
T A 1 -uT
e = A - {1 - - &
Bias (H(T)) m [ T ( e )] "
= 2‘——1—(1-e“u.r).
u Tu -
SAL 2 1 vl
. TZ S o To find how this bias behaves if uT increases we -
note that
F
or large uT, the term . uT> 1+ uT > uT.
-uT
R = LY 222 (1-e ™)
L T Consequently

e M < 1/(um).
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Initial Biag (céntinued)

Moreover, e ™7 > 0. Hence
. A 1
B =24 _L
ias ¥ T + RZ (4)
where R is negligible.

~ut A

A
O<R=_ s 1 .
u RO r: S Lk

2

=8

When comparing (3) to (4) one finds thus
that for large yT, the bias of W(T) is half as
large as the variance of H(T). We can also
calculate the ratio of the bias to the standard
derivation as: :
A
H

1
coef { H(T) ) = - uT

THE BIAS IN A CONTINUOUS MARKOV PROCESS

Let H(t) be a continuous process with a.
distribution P[H(t)=i] = I, ().

Hi(t) converges towards a unique equilibrium

Furthermore,

pfobabi]ity Hi, and we define

‘ ¢, (8) = m (1) - 1,. (5)

We now want to find an expression for the bias of

the contintois time average H(T). One has

Bias(H(T)) = E[H(T)] - E(H)
17 |
= E[?-g H{t) dt] - E(H)
1 T '
= 7 JIEM(D)- E(H)] dt
0
LN N
= —-[[ T oim(e) - i n.] dt
T oli=1 =t I
PR
x o i L(t)dt
ToiZy
! ')f } d, (t)d (6)
= e i .lt)dt., )
Tzt o

///—-— -2 5td ( H(T) ).

Thus, as soon as one has. an expréssion for the
integratl of d., (t), one has found the bias.

In a contlnuous Markov process with states
0, 1, ...N, this is easily accomplished. To see
this, let a, .
I,]
i toj with‘

be the rate of going from state

a. Z ay ;

=0 T

it is well known (see eg. (3)) that for such a

process
i (t) = Z n, (t)a, ., i=0,1,2, ...N
=0 ) ‘
Here, the ?rime denotes the dgrivative. Also,

one has for equilibrium

The difference between these 2 equations gives

N
n}(t) =izo (m, (v) -1;) a3

]

Since dj::n;(t) (see equation (5)), this means

j=0,1,2,...,N

5 )
. =7 d,(t) a,
J izo 1 1,1

N
gi(t) =3 d.(t) a, ., J=0,1,2,...,N. (7)
J = ! 0
The di(t) have a sum of zero because
2 d,(t) = X n, (¢) - 1,1 = X m(t) - X I, = 0.
i=0 =0
Therefore
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N
dg(t) = 7.21 d, (t).
‘=



Using this expression, (7) becomes

N N
d}(t) =iz1 dj(t) 3 3 -321 di(t} 20,

(8)

It proves helpful to express the results obtained

N R
izldi(t) (ai,j - ao,j) » j ='1,2, P

thus far in matrix form. For this purpose,

we define

B =

[a -a, .l

{49} 0,]
d(t) = [d1(t), dy(t), ..., dy(t)]

d7(e) = [d,7(8), 4, 7(1), ..., 4, ()],

Note that B is a square matrix of order N x N
which has no entries for row zero and column

zero. Similarly, the vectors d (t) and d°(t) do
not contain the terms‘do(t), respectively, do‘(t).
Using these conventions, (8) becomes

d°(t) = d(r) B.

Together with d (0), this differential equation
The elements of d(0)
can vary freely within their range, that fis,

uniquely determines d(t).

there is no additional equation to be staisfied
by the di(O). Let g_=[dj] be the equilibrium

vector d(t). Clearly, d must satisfy

0= ds (10)

Because of the above, this is the only equation
determining d.

. It s well known that under these conditions
B is invertable provided (10) has only the
trivial sotution d = [0]. This is the case here.

Indeed, if there is a unique equilibrium,

d, =1.(t) - 0. =1,
J J() J IIJ

This proves that B is invertable.
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To find the integral of d(t), we integrate
equation (9) ’

d(t) = fd(t)dt B.

This gives

i

Jd(t)dt = d(e)p™!
or
] .
(j)g_(t)dt = [d(T) - d(0)187".

‘

This expression can now be substituted into (6)

to obtain the bias. To write this final result

in nicer form, we introduce the column vector

T
c=11,2, ..., NI\

Now
Bias(H(T)) =

%{gﬁ) - g;o)] 871,

As T increases, d(T) goes to zero and one has

1 T
7/d(t)de ¢ =
0

Bias(A(T)) = - +d(0)B "¢ + &

—~tf

1,

where R] becomes negligible. Moreover, If H(0) =1, .

di(o) = ni(o) Shp=-0, 0=1,2, ..., N,

that is

Bias(A(1) = F157c + &, (1)

where 1 =[H1, 1 cees HN]. The above expression

‘ 2°
for the bias is surprisingly simple,.and it is.

easily calculated. In the next section, a very

similar expression for the variance of H(T) in



Injtial Bias (continued)

equilibrium will be derived.

THE ESTIMATION ERROR ‘IN AN
EQUILIBRIUN MARKOV PROCESS

Equatlon (2) gives the following expressnon
for the variance of H(T):

Var (A(T)) = Z. ff Cov(x)dx dt.’
T 00

o

v

It remains thus. to calculate Cov(x). To do this,
we define
P00 = PlH(esx) = j | Hix) = i).

If the process starts in equilibrium, one has

"PLH(0) = inH(x) = j] = P[H(0)= i3-

= PlH(t +x) = | H(x) =
‘=‘ n.i ij (x).
I¥ u = E(H), the covariance becomes

Cov(x) = Cov(H(0), H(x))

(i-u)HiPij(x)(J'“)'

This expression can be written in a more
convenient form. First we note that j-u can be

replaced by j. Moreover, we introduce

=z

ri(x) = _zo(i—uiniPij(x), (12)

Then

=

J=

N .
Cov(x) = ¥ [ Y (ihu)H.P..(x)]j
j=0li=0 'ty

t

N .
= jr.(t}. (13)
RELILRIE

We now derive a convenient expression to
To do this, we usé the well
known relationship (see e.g. refernece (3)).

calculate rj(t).

N
P,j “(x) = X (X)a

=0 .k . {1%)
If one differentiates (12) and uses (14) one finds

N
r.o(t) =% (l-u)H Piy (x)
4 j=

N M
=] Gi-wn] Piic(a

i=0 k=0
N N

= E=O{§=o(i—u)niPik(x)}ak.
N

) £=ork£x)akji

Thus

rj‘(m) =

—1

vri(x)aijf

This equation has exactly the same structure as
the corresponding equation for d.(t}, which is
equation (7). Moreover, like the d.(t), one

can show that the rj(f) have a sum of zero. This

is done as follows:

N .
Z S (x) = Z X (|~u)'niPi J.(x)

J=0 j=0 i=0
N
=7 (i-mm, TP (x)
i=0 Jj=0



We conclude therefore that the integral of
rj(x) can be calculated like the one of.dj(t).
In-other words

} r{x)dx = {r(T) - r(O)]B-j,
0.

with
£x) = I (), rp00, ooy Ry (01

We are now almost done. Using (2), (13), (18),
and ¢ = [1, 2, ..., N]T, one finds:

Tt

Var@i()) =2 [T cov(x) dx dt
. 00 ’

2

-

r.(x) dx dt

=1 j

e

2 Te- N
="2 ff 2
T° 00 j

2 N Tt

== Y iffr.(x) dx dt
T j=1 00 J
2 Tt

== [ r{x) dx dt c
T" o0

T
== g{;ft) - [ﬂO)]B_ldt'g

UL

T )
-2 I[L(t) - L’(o)]a" dt ¢

T 0
-1 21 r(1) - r(0) B2
- Fr(oeTlew 2 T - 20 .
T
We now consider again the case that T+w. |If r(T)

stays bounded, as it will because of (11), the
second term of the above expression will be
less than a/T2 for some value a, and it is
therefore negligible.

Consequently

{15)
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Var(fM) = - 2 L(0)p™! cos &, (16)

where R becomes negligible for high T. r(0) ‘
can be found from equation (12), giving

- N
rj(o) = ;_O(i-u)nipij(o) = (j-u)Hj-

Equation (16) and equation (11) are identical
except for the initial conditions.

CONCLUS1ONS

In this section, we investigated the
relevance of our findings in respect to
simulations. To do this, it .is assumed that
the simulation must yield an estimator which
does not have a standard error over e, or, what
is the same, the variance of the estimator must
not exceed‘ez.' What can be said about the
bias under this condition? To answer this _
question, let us first review the main results
of the paper.

In this paper, we used two estimators,
namely the discrete time average ﬁL(T) and the
continuous time average H(T). According to the
literature (1, 2, 4),these estimators are
hardly different, especially for large T, and
we will therefore'treat Ehem as identical. In
this sense, we will use HT for either estimator.

In all cases considered, we found that the
bias and the variance of ﬁT to be given by

equations of the following form.

A
Bias (H;) = b/T + R,
A
Variance (HT) = v/T + R,,
Here R1 and R2 are terms that are negligible,

and they will be ignored from now on.

Since the variance must be ez, we have



Initial Bias (continued)

v/T =

This gives the following run- length T for the
simulation '

T.=.v/e2

[

Because the bias is b/T, this means

Bias (QT) = = (b/y) e?.

Moreover, it is reasonable to complare this °
bias against the standard deviation of HT. In
other words, we should calculate

Coef (QT) = Bias (QT) / Std (QT) = (b/v) e.

If this coefficient .is small, say 0.1 the bias
is relatively unimpertant, whereas it must be
removed by some means if it is 10 or -even
larger.

In this paper, we have shown how to
calculate b and v for a number of cases. In
the case of the M/D/« queue, we had

-h =y = )‘\SZ,

which gives a ratio b/v of -1. For the M/M/e

queue, the values are

b= --)\/u2
v =4+ 2) /u2
b/v = - /2.

Equations (11) and (16) implicitely give

Table 1. b and v for M/M/1 and M/H/2 - queves.
Number of Max in service arrival traffic -b v |bsvl
sérvers system rate: rate intensity
H 10 1 0.5 0.5 3.8 21.4 0.177
1 10 1 0.9 0.9 41.7  231.5 0.180
1 20 1 . 0.5 0.5 3.5 24.0 0.146
RE 20 1 0.9 9.9 199.2 2368.7 0.084.
2 10 0.5 0.5 9.5 5.1 23.5 0.217
2 10 0.5 0.9 0.9 40.2 199.4 0.202
2 20 0.5 0.5 0.5 .5.3 26.6 0.199
2 10 0.5 0.9 0.9 194.7 2205.3 0.038
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formulae for b and v.

Using these equations,

we obtained b and v-for the M/M/1 queue and the
M/M/2 queue with finite waiting room. Some

results of these calculations are given in Table

1.

One can see that Ib/v] is never greater than

%, and usually much smaller. Thus, for any

standard error e less than 1, the bias tends to

be irrevelant.

can be substantial.

For high e, of ¢ourse, the bias
We thus conclude that the

bias tends to be negllglble for simulations that

are done at run lengths giv1ng a high precision,

and that the bias is relevant if the precision

requirements are low.
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