AN OPERATING SYSTEM MODEL

Abstract

This paper describes an operating system (0OS)
simulator designed to be used as an instructional
tool in the teaching of 0S performance issues.
Design criteria, assumptions used, development, and
implementation of the model are discussed. The
model provides a hands-on laboratory tool for ex-
perimentation with a layered, modular, multi-
tasking, event driven 0S. Incorporated in the
model is the capability to experiment with a
variety of job mixes. A flexible repoxt generator
presents the results of the simulation in a read-
able form. Empirical validation indicates that
the model simulates typical OS behavior, and that .
it has potential for becoming an effective teaching
tool.

INTRODUCTION

One of the main difficulties encountered both
in the teaching and the study of Operating Systems
(08) is the lack of a laboratory environment for
direct experimentation with a sophisticated,
multi-tasking, event driven O5. One of the best
ways to familiarize oneself with the properties
and behavior of an OS is to vary the basic
characteristics of the system, and the job mix.

It is prohibitively expensive, difficult, and
hazardous to allow students to perform such ex~
periments directly on a functional system already
allocated for other computing uses. These were
the factors that motivated us to develop an 0S
model that would serve as a laboratory, allowing
students to perform the types of experiments
described above.

We decided that our model should be easily
transportable and modifiable, thus an Apple ITI
computer was selected, and UCSD Pascal was the
programming language chosen. Since a team of ten
programmers was to work on the project, it was
essential to design the Operating System Model
(0SM) as a collection of independent cooperating
modules. This design choice should also facili-
tate future modifications to the OSM. All the
programmers contributed during the design phase,

Proceedings of the 1982

Winter Simulation Conference
Highland * Chao * Madrigal, Editors

82CH1844-0/82/0000~0323 $00.75 © 1982 IEEE

Larry L. Wear, Ph.D.

Thomas P. Vayda, M.A.

Kirk MacKenzie

Ross Yakulis

Department of Computer Science
California State University, Chico
Chico, California 95929

323

and module assignments were made. After the in~-
dividual modules were completed, a supervisor
program, called the User Job Processor (UJP), was
written; the separate modules were linked together
and the OSM was completed. ’

It is the purpose of this paper to give an
overview of the OSM, then to describe the three
major sections of the 0SM, the types of experiments
that can be performed using the OSM, the degree of
success achieved, and planned future enhancements
to the current capabilities of the OSM.

OVERVIEW OF THE OPERATING SYSTEM MODEL

The purpose of the OSM is to simulate an OS
with specified parameters and job stream. The 0S
simulated is a layered modular system such as de-
scribed by Lister [1] or Calingaert [2]. The
specification of the system parameters and job
stream should be done interactively, thus allowing
for and encouraging experimentation with the
simulated OS.

The inputs to OSM will consist of several data
files, previously generated by the user. These
data files contain:

1. parameters specifying system character-
istics such as memory size, memory
placement algorithm to be used, the
number and type of I/O devices attached
to the system, etc.,

the stream of jobs to be processed by the
0S. Each job will have randomly gener-
ated characteristics (within limits and
distributiong specified by the user) such
as processor use vs. I/0 ratio, I/0 de-
vices used, etc., and

specification of output reports to be
generated by the OSM.

3.

The output generated by the OSM will be re-
ports consisting of statistics -describing how the
specified job stream was processed by the simulated
0S. The statistics include such items as total CPU

An Operating Sysem Model (continued)

time used, number and size of I/0 transfers
handled by each device, percentage utilization of
various system resources, and "snapshots" of the
state of the system at specified times.

.The OSM consists of three distinct logical
modules as illustrated in Figure 1. They are the
System Configuration/Job Stream generation module,
the Simulator module, and the Report Generator
module. The first of these modules interacts with
the user to create initialization, system configu-
ration, and job stream data files. The job stream
file.is created using random variables from user
specified statistical distributions. The
Simulator module processes the job stream data, by
simulating the internal workings of an 0S, and
collects specified statistics. The Report
Generator miodule produces readable reports that
were specified by the user. These reports are
relevant to OS performance and summarizZe statis-
tics. collected by the Simulator module.

The UCSD Pascal system was chosen not only
because it supports modular design and coding
techniques, but hopefully will allow the OSM to be
easily transported to other sites and systems. The
OSM currently runs on an Apple III with 160K main
memory and a Profile¥ 5 megabyte hard disk.

The simulation is controlled by an imaginary
timeline which records the sequence of events to be
performed by the simulator module. The events on
the timeline represent either future interrupts to
be serviced by the 0S, "snapshot" statistic reports
to be output, or the end of the simulation. Many
of the modules can alter the timeline by adding or
deleting events from the timelihe. The simulation
proceeds by executing the next event indicated by
the timeline and updating the simulation clock.
When one event occurs, it may be necessary to add
one or more future events to the timeline. This
choice of simulation technique allows the simula-

LEGENRD
R A SC/JS — SYSTEM CONFIGURATION/JOB STREAM GENERATION MODULE

scr
Js¢ -
S -

JOB STREAM FILE
SIMULATION MODULE

~ SYSTEM CONFIGURATION FILE

REP = REPORT GENERATION MODULE
‘ ﬂ
SCF
USER —>|sC/Js SIM |—>| REP
—> CRT
JSF

FIGURE 1 = MAIN MODULES OF THE OSM

To allow for future modifications and ex-
pansion of the OSM, it was decided that the
" Simulator module should consist of several inde-
pendent, interacting submodules. This design
methodology lent itself well to structured,
modular methods of coding, and also allowed us to
easily coordinate and specify tasks to be per-
formed by the ten. programmers involved in the
project. The facilities provided by the UCSD
Pascal system allowed the separately coded and
debugged modules to be easily incorporated into a
single set of cooperating programs.

As an example of the advantage of using in-
dependent modules, if a future user wanted to
simulate a paged memory system instead of the
currently used segménted memory, only the memory
management submodule would have to be modified,
leaving all other parts of the 0SM unaltered.
Similarly, different memory replacement policies
could be easily implemented without affecting
other modules of the system.

. 324

ion to proceed in an efficient manner, by elimi-
nating unnecessary monitoring of the system:
behavior.

During thé design phase the following
assumptions were madé about the 0S to be simulated:

1.

The simulation should be able to carry
out a minimal amount of error checking,
such as detecting and properly handling
a request for a non-existant resource.

2. The 0SM will model a layered modular OS
of contemporary design.

3. The OSM will model a multi-tasking, _
event driven OS.

4. A vectored priority interrupt system
will be supported.

5. Memory management will assume a variable

length, segmented, non-paged system.

6. The I/O facilities will support direct
memory access (DMA) and channels.
7. Static resource allocation will be used

in the first version of the OSM.

The next three sections provide detailed de-
scriptions of each of the main modules and sub-
modules used in the OSM.

SYSTEM CONFIGURATION/JOB
STREAM GENERATION MODULE

This interactive menu-driven module allows
the user to create two data files needed as inputs
to the 0SM: the system configuration file, and
the job stream file. The file names are specified
by the user, and the files created are automatic-
ally saved on disk by the module.

The system configuration file specifies
parameters for the computer system to be simulated.
The user is prompted to specify the size of main
memory, the memory placement policy to be used
{(currently first-fit, best-fit, ox worst-fit), and
I/0 facilities to be provided. Up to 30 I/0
devices of varying speeds can be specified.
devices are grouped into the three categories
based on their transfer rate, and no more than ten
devices from each category can be used by a job.
This allows the simulation of slow, medium, or
high speed I/0 devices.

The

The job stream file contains the description
of the set of jobs to be processed by the simula-
tion module during one simulation run. To create
the job stream file first the user is prompted to
discribe a single job type by specifying jcb
characteristics such as upper and lower bounds for
average time between I/C requests, upper and lower
bounds for the average size of an I/0 request,
what percent of I/O requests use slow, medium, ox
fast I/O devices, average code and data segment
gize, and average CPU time reguired. After a
particular job type has been described, the user
is asked how many jobs of this type are to be
included in the job stream. After all the job
types have been similarly described the module
randomly chooses from the pool of job types
specified, and creates the job stream file.

SIMULATION MODULE

The simulation module consists of several
utility procedures and five main submodules,
each of which models the following parts of an OS
respectively: The Executive submodule (EXEC) ,
Memory Manager (MEMMGR), User Job Processor {(UJP),
First Level Interrupt Handler (FLIH), I/O
Processor (IOP), and the Scheduler. Figure 2’
illustrates the logical flow of jobs through the
simulation module.

Several utility procedures are shared by the
submodules. They provide commonly used functions
such as managing the many linked lists and other
data structures used by the O0SM, calculating ovexr-
head times needed for each OS function, control-
ling and formatting I/0 for communicating with the

325

START

K=

o=

SOJ

EQJ

LEGEND

SCF - SYSTEM CONFIGURA- A
TION FILE

JSF - JOB STREAM FILE

INIT - SYSTEM INITIALIZATION A

507 -~ START OF JOB
ECT - END OF JOB
SCH - SCHEDULER

Jp - JOB PROCESSOR

INT MGR

~INTERRUPT MANAGER

REP = REPORT GENERATOR INT MGR

MM - MEMORY MANAGER

1/0 - 1/0 PROCESSOR SNAPSHOT >

EZo - END OF SIMULATION
1/0 REQ

1/0 COM

A 4

S0J

EDJ

EOS

e
e ()

FIGURE 2 — THE SIMULATION MODULE

user, reading the data files, and generating random
variables from specified distributions.

A simulation run begins by initializing global
variables, then the EXEC module is called to start
the first job in the job stream file. The EXEC
submodule is responsible for reading and then
initiating new jobs, as well as terminating com-
pleted or invalid jobs. The MEMMGR is called by
EXEC to allocate memory for a new job entering the
system. The MEMMGR can either allocate memory
(using first, best, or worst fit) to the job, or
suspend the job if sufficient memory is not
available. Wheh sufficient memory becomes avail-
able, the suspended job will be activated by the
MEMMGR.

The UJP simulates the execution of the cur-
rently active task. It increments the system clock
until the task either requests I/0, is interrupted,
or completes execution. When one of these events
occuxs, control is passed to the FLIH. The FLIH
determines the cause of the interrupt,” decides
which module is to process the interrupt, then up-
dates some relevant statistics and passes control
to the appropriate module.

An Operating System Module (continued)

The IOP is responsible for initiating and
supervising I/O operations, and for activating the
correct job when an I/0O completion interrupt
occurs. It also maintains a (possibly empty)
queue of jobs waiting on each I/O device. Appro-
priate global statistics are updated by the IOP
whenever an I/0Q transfer occurs.

The scheduler is called by several other
modules, and is responsible for maintaining the
ready to xun queune. It is activated after every
interrupt and reorders the ready to run queue as
needed.

The simulation module continues to process
jobs in the manner described above, all the jobs
in the job stream file have been processed and the
last job exits the system. At this time the re-

_port generator module is called to produce a
surmary of OS activities performed during the run,
and then the simulation run is over.

REPORT GENERATOR MODULE

The module is invoked by the interrupt handler
to print out statistics gathered by specified
simulation submodules during a given run, or to
print out specific summary statistics at the end
of a run. Many of the statistics that we chose to
gather were suggested as useful performance

’méaeures by Coffman and Denning [3] and Hansen [4].

There are two types of reports available:
"$napshots"™ of the current state of various com~
ponents of the OSM or cumulative statistics in-
dicating 0S performance and other relevant
measurements during a given run. The "snapshot”
reports allow the user to examine interrupts re-
maining to be processed, the state of the currently
executing task, the current memory map, various de-
vice and suspend queues, the ready to run queue,
and the state of all jobs currently in the system.

The cumulative statistics show the work pex-
formed by the various simulation submodules in- °
cluding the memory manager, exec, interrupt
handler, I/O processor, and the scheduler. We can
get measurements of overhead incurred in all the
modules, the number of jobs that have entered or
left the system, and the number and type of
interrupts processed. The I/O module reports idle
time, utilization time, number of jobs processed,
nunber of jobs in the device queue, and the cur-
rent job utilizing the device, for each device.
The memory manager reports the number of jobs
currently in memory, the nunber of jobs blocked
for memory, amount of wasted memory, and the num-
ber of times compaction has been performed.

- There aré several other reports available
that were not mentioned above, and more will be
added as users start asking questiong about other
aspects 'of the OSM.)

326

EXPERIENCES USING THE OSM

The OSM appears to be an effective 0S labora-
tory. A user can easily test the effect of chang-
ing the job mix offered to a particular 0S, or the
effect of changing some 0S characteristics while
processing a particular job stream, or possibly to
vary both of the above. Once a library of system
configuration and job stream files has been
created, it may not even be necessary to create
new files for each run. The flexible report gen-
eration module allows the user to closely examine
the performance of a particular subsystem (such as

_the memory manager or the scheduler) or to observe

the overall workings of the simulated system.

Thus using the 0SM, the user is free to perform an
vnlimited number and type of experiments, and to
study the impact of changing job or system par-
ameters on any particular subsystem.

The OSM has been extensively tested by our
group. We have found that the system works very
satisfactorily within confines of the design
assumptions listed in a previous section. Most of
the reports produced are very readable and provide
important statistics. Since the simulation time
units do not correspond to real time units, it has
been difficult to obtain quanitative comparisons
with actual statistics from existing systems, but
the gualitative results appear to be very -
realistic. For example, if the number of I/0 de-
vices is increased, the amount of time spent
waiting in device queues is reduced. The fact
that this and numerous other results agree with
typical OS behavior as described by Habermann [51
and Shaw [6] lead one to have confidence in the
correct operation of the model. How well the OSM
helps students of operating systems to understand
the tradeoffs inherent in OS design remains to be
decided in the near future, when it is released
for general use by an advanced OS class.

The OSM has certain limitations, some of which
can be overcome by enhancements to the OSM (see
next section) and some inherent limitations im-
posed by the choice of hardware. The current
version of the OSM does not allow simulating a
paged memory system, choosing various scheduling
algorlthms, dynamic resource allocation, dedicated
oxr protected resources, and other similar desir-
able 0S features.

Since all reports are presented in tabular
form, some of them are time consuming. to read
and interpret. The simulation time units do not
correspond to actual time units, thus it is
difficult to interpret the numerical results.

The main limitation imposed by the hardware,
is that given a large job stream, and many re-
ports to be produced, a simulition run can take a
considerable amount of time to tomplete. The next
section proposes remedies for some of these
limitations. ’

PLANNED FUTURE ENHANCEMENTS TO THE OSM 5.

As mentioned above, the current version of
the OSM has several limitations that can be over—
come by enhancing certain features of the OSM. 6.
Some of the enhancements that we are currently
working on are listed below.

1. Adding the capability for a paged, or a
partial memory system.

2. Expanding the available choices for
memory placement and replacement
policies.

3. Allowing the selection of a variety of
scheduling algorithms in addition to
the currently used simple round-robin
algorithm.

4. BAllowing for dynamic resource
allocation.

5. Incorporating an inter task communica-
tion facility similar to the I/0
processor.

6. Adding an input/output job spooler to
the OSM.

7. Replacing tabular reports by graphic
output.

There are undoubtedly many other enhancements
or improvements that could be added to the OsM,
thus there is much work left to be done. We hope
that some of the future users of the OSM will help
to contribute to this effort.

SUMMARY

The OSM described in this paper presents one
possible solution to the problem of providing
hands-on experimentation opportunities for persons
studying various aspects of OS evaluation, design,
or implementation. While the current version of
the OSM suffers from limitations described above,
it can still provide many valuable insights into
the numerous tradeoffs and design compromises that
each 0S designer must resolve. It also promises to
be an effective tool to be used by instructors of
the arcane art of 0S design.

BIBLIOGRAPHY

1. Lister, A.M., Fundamentals of Operating
Systems, Springexr-Verlag Inc., New York

2. Calingaert, Operating System Elements - A
Usexr Perspective, Prentice-Hall, Inc., New
Jersey

3. Coffman, E. G. and Denning, P. J., Operating
Systems Theory, Prentice-Hall Inc., New
Jersey

4. Hansen, P. B., Operating Systems Principles,
Prentice-Hall, Inc., New Jersey

327

Habermann, A. N., Introduction to Operating
System Design, Science Research Associates,
Inc., Chicago

Shaw, A. C., The Logical Design of Operating
Systems, Prentice-Hall, Inc., New Jersey

