INPUT MODELING: ESTIMATION USING EVENT COUNT DATA

Abstract

In modeling a system, identifying the times at
which the state of the system changes is important.
In particular, the probability distributions of the
interevent times (time lengths between consecutive
events) of each process (such as interarrival
times) are required in a simulation model. Often
the only available data for a particular process is
the number of events per unit time (count data)
rather than the event times. This paper surveys
estimation of the interevent time distribution from
count data.

INTRODUCTION

0ften information characterizing the
interevent times of a discrete event simulation
model may be unavailable or difficult to obtain.
On the other hand, the number of events per unit
time are simple and economical to collect.
Furthermore, the only information available in many
situations consists of count data. Two common
examples are accident occurrence and traffic flow.
In the first example, accident statistics are given
as a specific number per hour, per day, or per
year. In the second example, the time between
consecutive vehicles passing a given point 1is more
difficult to measure than count data. In addition,
the statistic which 1ds wusually givén by traffic
authorities is the number of vehicles passing a
given point in a fixed time period.

Count data, however, provides less information
about the process than event time data. That is,
there is more information in the statement that n
events occurred at times t,,...,t_, respectively,
than in the statement that n even®s occurred by
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epoch t. On the other hand, the actual counting
process and the associated count data process agree
at the points when. the counts are recorded.
Furthermore, as the sampling interval Lengths
decrease to zero, the associated count data process
approaches the actual counting process in terms of
the information provided by the data.

In the last few years, there has been much
research in  stochastic modeling using point
processes by a varied group of researchers (see (1,
2, 3, 4&)). Despite this extensive and diverse
research effort, Little attention has been given to
estimation techniques based on event count data
rather than -event time data. In the Llast two
years, however, some new estimation techniques have
been developed. This paper surveys estimation
based on event count data.

General Framework

Fitting a model from count data can be
described by the following four step approach:

1a identifying an appropriate model for the
process;

2. designing the method of data acquisition;

3. estimating the parameters of the model
from the data; and

4e testing the adequacy of the model.

As a first step 1in detailing the four step
approach, we developed a flowchart (Figure 1) that
represents a lLogical decision making approach to
model selection, data collection, model fitting,
and model testing. Decision boxes with an "M"
above them are modeler decisions; for instance,
does the modeler believe the process is stationary.
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Copnt Data (Continued)
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Figure 1. Modeling Approach
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Rather than a yes/no response, the modeler decides
to not reject/reject the assumption. becision
boxes with an "S'" above them are statistical tests
of hypothesis. Process boxes perform the data

collection and model fitting task (NHPP denotes..

Nqn-Homogeneous Poisson Process). This flowchart
will be detailed in the remainder of the paper.

Statistical Tests for Stationarity

Statistical tests for stationarity are rather
Limited when the data is count data. Most of the
tests are for trend. In this section, three tests
for trend are discussed that are applicable to
count data. To employ these tests, the counting
intervals must be of equal length T .

The Cox-Stuart (5) test for trend is a
modification of the sign test. For each observed
replication of the process, one of the early
observations (qgwber of events in a particular
interval), the i observation, is pajred with one
of the later observations, the (j+c) observation
where j=1,..., V=c, ¢ = integer L( v +1)/2], and
v is the number of observations (intervals) per
replication. The test statistic is based upon the
number of times the earlier observation is greater
than the later observation. This test, however,
assumes that the observations are independent.

Alternative tests for trend involve Kendall's
and Spearman's rank correlation coefficients. The
(Ti' Ai) pairs, gpere T. = i1 and the number of
evénts  in the i~ interval is denoted by Aﬁ, are a
sample of bivariate observations in which each
varjable can be ordered. Employing Kendall's rank
correlation coefficient as a nonparametric test for
trend is discussed fully in (6). Rank correlation
methods are discussed thoroughly in (7).

Fitting the Poisson Process

Oone of the most widely used assumptions is
that a process can be modeled quite well as a
Poisson process. This assumption arises because
many analytic models, such as queueing network
models, need this assumption. Of equal importance,
numerous processes exhibit behavior that can be
modelled quite well by the Poisson process 8). In
particular, the Poisson process is appropriate when
modeling light traffic flow on a road at a point a
targe distance beyond the road entry point with
unrestricted overtaking (9, 10, 11, 12). An
extensive List of other applications is given in
13).

fo estimate the unknown parameter X of a
Poisson process from event count data, the unique
minimum variance unbiased estimator of A, total
number of events divided by the total period of
observation, is usually employed. That is, if we
have count data for disjoint intervals of length
tyrtoreees the statistic is 3= =n/ % t,
u% re n, is the number of events observed in the
i intefval. The variance of this estimator is
A/ Z ti. .

Statistically Testing the Poisson Assumption

A standard test for the hypothesis that the
ni's are Poisson observations ds the dispersion
test for homogeneity based on the statistic:
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where

n, = by 1:_.l -

A chi-squared distribution with k-1 degrees of
freedom is a good approximation to the null-
hypothesis distribution of d (14).

iIft=t, =... =t , alternative tests exist.
In this case, the datd consists of k independent
observations of a Poisson ( Xt) random variable.
The statistic d, when divided by k-1, is the ratio
of the estimated variance to the estimated mean,
which dis an estimate of the index of dispersion.
The alternative test is a comparison to determine
whether the estimated index of dispersion differs
from its value of unity under the null hypothesis
of a Poisson process (1). Another test is the
chi-square goodness-of-fit test with the null
hypothesis being the sample was drawn from a
Poisson population.

Fitting a Renewal Process

1f the Poisson process is an inadequate model,
a renewal process might be appropriate. Depending
upon the type of data (number of replications,
tength of the observation period per reptication,
Length of the sampling intervals), different
approaches can be  taken. These different
approaches will be outlined in this section.

When the data consists (primarily) of a
sequence of zeros and ones, an approach developed
by Kimbler (15) or Dattero (16) can be taken.

in his doctoral dissertation, Kimbler (15)
developed an estimator for the interevent time
distribution of a renewal process from event count
data. First the count data record of the process
is used as an estimate of the renewal function for
an ordinary renewal process. Next the estimated
renewal function is approximated by a polynomial of
degree p, R{(t), by solving a set of simultaneous
linear equations consisting of:

1. R =1 (an event is counted at zero);

2. 8¢T) equals the number of events recorded
until epoch T where T is the length of
the observation period; and

3. first-order differential equations at
selected time epochs. - '
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Count Data (Continued)

The polynomial approximation coefficients are then

used to form the LaPlLace transform of f*(s), the
estimate of F (s), which is inverted by Heaviside
methods to yield P(t), the estimate of ¥(t)..

In Kimbler's implementation, three types of
numerical inconsistencies can occur. They are
easily corrected as follows.
approximations of the first’ derivative of the
renewal function are negative, they are set to
zero. If the piece-wise .distribution function
decreases at any point t, (0 < t, <T), Bt s
set to F(t,) + ¢ where t, is thg Last point where
the distribution function is non-decreasing and €
is a small constant. If #(T) > 1, the entire
distribution function is normalized by dividing it
by B(T).

Dattero (16) developed an estimation procedure
based on the following relationship between the
forward recurrence time density function, g(x), and
the interevent time distribution,
F(x): F(x)=1- pg(x). The basic 1idea is to
estimate @ and g(x) from only event count data.
The mean interéevent time, u , is eéstimated by the
length of the observation period divided by the
number of events observed. To get an estimate of
g{x), the associated survivor function is estimated
at, T,27T ,e..,KT . Then an estimate of g(x) is
acquired by fitting a second degree Newton
divided-difference polynomial that passes through
three points and taking the derivative of the
polynomial approxinmstion at x= T ,...,{(K=1)T . An
estimate of F(x), F(x), (at x= T,...,(K-1) T) is
acquired from the basic £§Lationship with the
additional constraint that F(x) be a monotone non-
decreasing function between 0 and 1 dnclusively.
This function is then Llinearly interpolated. Note
that alternative methods of dimplementation are
possible (see (16)). ’

The mgjor short-coming of this approach is the
bias of F(x). Most of the bias usually occurs
during the (linear) interpolation stage. While
this interpolation scheme may be simple and provide
a good approximation for some distributions, it 1is
probably not the shape of the true interevent time
distribution. As T decreases, however, this
.approximation improves and the . bias usually
decreases.

Through Monte Carlo experimentation, the two
approaches were compared (see (16)). The results
strongly indicate that Dattero's approach performs
better than Kimblter's. The major reason for the
better performance is that Dattero's approach uses
more of the information provided by the count data.

when the Llength of the observation period is
Ltong and the number of replications is large, lLimit
theorem results can be employed. The approach
consists of estimating the moments of the counting
distribution for large t (time <displacement from
origin under synchronous counting) and then
employing Smith's (17) result which relates the
moments of the counting distribution to the moments

If any of the

of the interevent time distribution for a renewal
process. It should be noted that n+1 moments of
the interevent distribution are required to compute
n moments of the counting distribution; however,
only n moments are required when using only the
asymptotic terms. Using only the asymptotic terms,
the method proceeds as follows. Suppose for some
specified Llarge t, estimates of the first three
cumglants ) of the counting process at .
¢ % (1), #,(t), and %, (t)) are supplied. This
produces the following eStimators for the first
three cumulants of the interevent distribution

( ﬁ1, %é, and %3):

- .t

Ue = ‘
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.t R
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In some cases, using only the < .'s provides
sufficient accuracy. When t s not quite large
enough, the B terms should also be employed. In
these cases, by assuming a specific distributional
form, one parametric equation can be added by using
a parametric form for the (n+1)>5" moment of the
interevent distribution (in terms of the first n
moments).

A form of the interevent time distribution
must be assumed in order to provide a constructive
definition of the process. One general approach
would assume some specific general distribution
family. Here the lLower order moments would be used
to fit the parameters of the distribution while the
higher order moments would be used to check the
distribution assumption.

When neither of the two renewal process
modeling situations (count - data consisting
(primarily) of a sequence of zeros and ones or the
length of the observation period being long and the
number of replications is large) occur, various ad
hoc approaches can be taken. One basic approach
makes assumptions that turns the count data into
event time data and then tests the assumptions.
One si@RLe assumption is that the first event in
the 1 interval occurred at 1/(a.+1) where a, > ﬂ
. . 1 . i .t
is the number of events occurring ‘during the i
interval.' From this "data", an estimate of the
forward recurrence time distribution can be
constructed, The  most important step in
researching this and other ad hoc approaches is
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In addition,
errors

i
testing the adequacy of the model.
the sources and measures of the ‘modeling.
must be examined thoroughly.

Statistically Testing the Renewal Process Assumption

As far as statistically testing . the renewal
process assumption, no tests are available based on
count data. Development of these tests would be a
valuable research contribution.

Stafionary Point Processes Estimation Procedures

One generalization of a renewal process is a
stationary point process. The basic relationship
used by Dattero (14), F(x)=1-u g(x), holds not
only for renewal processes but also for the
marginal distribution of Xi, F(x), in the
stationary sequence {X.} for  a stationary point
process. In addition, the covariance structure of
the Xi's are defined by the relationship:

[++] . 2 . P

[ atistae = g0 + £ G=1,2,000)-

o]
where qg(j;t) = P{N(t)=3> and R(j) 1is the Llag j
covariance (18). From count data, gq(j;t) can be
estimated for t= 7 ,2 7T ,.a..,KT by an approach
outlined in (16). Given these estimates, the
integral can be numerically integrated. Despite
having estimates of F(x) and the covariance

structure, providing a constructive definition of a
counting process with these properties is difficult
since Little work has been done on autoregressive
point processes. Some recent work (19, 20, 21, 22

23, 24, 25, 26) holds some promise for this area.

Use of the Non-homogeneous Poisson Process

If stationarity is rejected, numerous point
process models are still available; however, Little
published work on fitting and testing these models
from count data exists. Use of the non-homogeneous
Poisson process though, seems promising.

A non-homogeneous Poisson process has
independent increments, orderliness, and the number
of events in an interval is Poisson distributed
with the mean depending on the location of the
interval. An estimator for the mean number of
events for the j interval is:

a, (i)

m 351,000,V

M
£.= %
i=1

where a, (i) is the ngﬂber of events during the jth

interval for the i replication, M is the number
of replications of the process observed, and Vv is
the number of intervals. Tg get the estimated rate
of the process during the j interval, the user

supplies a function r (t) that describes his

beliefs on how the process behaves over the
interval. , Then the estimated rate of the process
for the j interval is:

2. r, . (

1 r‘J(t)/frJ t)dt
where the range of the dntegral s the jth
interval. ' ‘

A standard test for the hypothesis that the

a,(id's (j fixed) are Poisson observations is the

dispersion test for homogeneity.

the

Another test s

chi-square goodness-of-fit test with the null
hypothesis
Poisson population.
a, (1)
independence

sample was drawn from a
In addition, the a.(i) and -
observations can be tested for
(using Kendall's or Spearman's rank

being the

(j#k)

correlation coefficient).
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