A SIMULATION OF BUS ARCHITECTURES FOR MULTIPROCESSOR SY.STEMS

Abstract
This paper presents the results of the simulation
of three different bus architectures used in mul-
tiprocessor systems. The TIMESHARED BUS,
MULTIBUS, and, CROSS BAR SWITCH configurations -
were modeled. Activity diagrams were used as a
basis to develop the models. Since our models
were based upon hypothetical multiprocessor sys-
tems, there was no way to compare the models' per-
formance with actual hardware performance. There~
fore, independent models were developed in both
FORTRAN and Pascal to validate the results. Each
model contains a number of functional units, i.e.
memory modules (MM), central processing units
(CPU's), and input/output processors (IOP's), con-
nected by a particular bus configuration. The re-
sults of the simulations are presented as a series
of graphs that display average percentage utiliza-
tion curves for a particular module class, such as
CPU's, as a function of some independent variable
such as I1/0 regquest rate. The results of some of
the simulations are compared with similar results
published by other authors.

INTRODUCTION

The low price and availability of central process-
ing units have made it economically feasible to
consider connecting several such processors togeth-
er into one system. There have been a number of
proposed architectures for interconnecting CPU's,
memories, and IOP's. This paper focuses on three
of these configurations: the TIMESHARED BUS,
MULTIBUS, and the CROSS BAR SWITCH (1,2,3). Mod-
els for these three architectures were developed
in both FORTRAN and Pascal. A previous paper de-
scribed the tradeoffs involved in choosing the
language in which to develop a model (4). The pri-
mary reason for using FORTRAN and Pascal was that
they are available on most minicomputers and many
microcomputers. Our simulation programs are there~
fore more transportable than those developed in
simulation languages such as GPSS or SIMULA.

Each of our simulation programs has three majoxr
sections: an input phase in which parameters are
entered into the model, a computational phase which

proceedings of the 1982
Winter Simulation Conference
Highland * Chao * Madrigal, Editors

82CH1844-0/82/0000~-0269 $00.75 © 1982 IEEE

Larry L. Wear, Ph.D.

Ron Guilmette

Mark Falash

Department of Computer Science
California State University, Chico
Chico, CA 95929

calculates the performance, and an output phase

that creates a data file which is used to plot the =
results. Using FORTRAN and Pascal rather than a
simulation language made it relatively easy to de-
velop the input and output portions of the models.
However, the computation portion of the simulation
was more difficult to write since the primitive op-
erations such as event.scheduling were not directly
available in either language.

The results of the simulation are shown as a series
of plots. The plots typically show the percent
ACTIVE, FROZEN, or BLOCKED TIME as a function of a
variable such as frequency of I/0 requests. Each
plot includes a family of curves in order to mini-
mize the number of graphs needed for the results
and to allow for easy comparison of related curves.
Because of the large number of variables involved,
it was not possible to include the results of all
of the simulations that we performed in this paper.
The HMULTIBUS SIMULATION section shows sowe of the
results of our simulations of the multibus archi-
tecture with several different parameter settings.

BUS ARCHITECTURE DESCRIPTION

The three architectures are shown in Figures 1
through 3. The TIMESHARED BUS (TSB), which is
shown in Figure la, has all CPU's, IOP's, and MM's
attached to a common bus. This architecture is
also called COMMON BUS and is used on many models
of the Digital Computer Corporation PDP 1l series
of computers where it is called the UNIBUS. It is
the most simplistic of the three architectures and
the number of modules on the bus can vary without
affecting the design of the bus interface. In ad-
dition, each module requires only one bus intexface.
A performance limitation of this type of bus struc-
ture is the bus contention problem caused by multi-
ple modules trying to access the bus at the same
time.

A relatively simple extension of the TSB arxchitec-
ture has two or more common buses that are shared
by all the devices on the system. The multiple TSB-
system gives increased reliability and tbroﬁghput
as compared to the TSB system. It is however, more

expensive since it requires multiple bus interfaces
for each module. A multiple TSB system as shown
in Figure 1b was simulated by our group.

One possible MULTIBUS configuration is shown in
Figure 2. This architecturé is also referred to as
MULTIPORTED MEMORY and offers some performance im-
provements over a simple MULTIBUS system. The
Modconp IV/35 uses this type of axchitecture with a
four ported memory system (3). An idealized ver-
sion of this bus architecture would contain one bus
. (and one memory port per memory module) for each
CPU and IOP in the system. Because each MM must
have an interface for each bus, the cost and com-
plexity of this type of architecture can be
excessive.

The third architecture modeled, the CROSS BAR
SWITCH (CSB), is shown in Figure 3. The Carnegie-
Mellon multi-mini-processor system, C.mmp, uses a
16 by 16 cross bar switch to -connect memory mod-
ules to processors (5). The CSB system is differ-
ent from the other systems in that the bus must be
intelligent (2) rather than passive: This can be
both an advantage and a disadvantage. Because a
€SB axchitecture includes intelligent switching
components, it may be much more expensive than
other architectures. It may also be less reliable
because its active components are more likely to
fail than passive ones. The primary advantages of
the CSB architecture are that it allows parallel
transmissions and that each functional unit re—
quires only a single, simple bus interface.

It is beyond the scope of this paper to go into all
the advantages and disadvantages of the thxee
architectures. A good discussion of this topic can
be found in Enslow's book (2).

PASCAL SIMULATION

Several authors have described how they have used
Pascal as a simulation language by adding proce-
dures that give it attributes similar to those

of GPSS or SIMULA (6,7). Our Pascal simulation
program contains procedures to perform the equiv-
alent of the following standard GPSS block
statements:

ADVANCE ‘LEAVE PRINT, ,B SPLIT

ASSEMBLE LOGIC-R PRIORITY TERMINATE
ENTER LOGIC-S RELEASE TEST
GATE-LS LOOP SEIZE TRANSFER
GENERATE ' MARK

SELECT-NU

Many GPSS standard blocks were not needed and
thus were not implemented. The most notable
omissions in the above list are the QUEUE and
DEPART blocks which were found to be unnecessary
in gathering the desired statistics from our sim-
ulations. To facilitate the use of subroutines
in the simulation, two non-standard blocks, CALL
and RETURN, were implemented. These blocks per-
form the operations implied by their names and do
so more efficiently than the transfer block modes
normally used to implement subroutines in GPSS.

The following Standard Numerical Attributes were
also implemented as FUNCTIONS in the Pascal simu-
lation program:

SNA Meanin

ML transaction mark time

N total block count

w current block count

RL random number generator #1

Additionally, two non-standard numerical attributes
were created in the Pascal program to permit cer-
tain statistics to be calculated with a high degree
of accuracy. These were:

FU total facility utilization
su total (weighted) storage utilization

Normally, the GPSS programmer only has access to
the values provided by the above SNA's in an indi-
rect manner. Facility and Storage utilization fig-
ures may normally be obtained only in parts per
1000 of total elapsed (simulated) time. The stan-
dard SNA's which provide these values are FR and SR
respectively. These SNA's provide utilization
values with only three significant digits of
accuracy. By using floating=point division in
Pascal, and the non-standard SNA's (FU and SU),
percentage utilization figures may be calculated
with precision limited only by the floating-point
format uséd by Pascak.

The Pascal program was very "simulation specific",
which made the implementation of most GPSS
"control" statements necessary. At the beginning
of each independent simulation, the program resets
all statistics (as though a CLEAR statement had
been processed) and then proceeds to read a new set
of simulation control parameters from a parameter
file. If the end-~of-file has not yet been reached
on this filé, the program acts as though a START
statement had been processed and begins execution

-of the new simulation. Once the end-of-file is

detected on the parameter file, program cxecution
is terminated.

MODEL DESCRIPTION

In our simulations, each functional unit was
assumed to be in one of four possible states at any
one point in time. The four possible states were:
FREE, ACTIVE, BLOCKED, and FROZEN. BAs can be seen
from our activity diagrams (4), not all types of
functional units actually spend time in each of the
four states (e.g. memory modules are never FROZEN).
The FREE state implies that a module is not cur-
rently performing any function or waiting for any
other module. The ACTIVE state implies that a
module is performing some operation and is not
waiting for any other module. The BLOCKED state
implies that the module has requested the use of
another module and that the module is not avail~
able. The FROZEN state implies that the module has
acquired the use of another module and is waiting
for that module to complete a requested operation.
The activity diagrams given in (4) show the precise
conditions under which module state changes are
assumed to ocour in our models.

The CPU's in the system are characterized by two
parameters: cycle time and instruction mix. Both
of these parametérs are established by the user
prior to execution of an individual simulation.
The cycle time (a simple numeric value) is an

270

Bus Architectures for Multiprocessors (continued)

independent variable that defines the speed of the
processor. The instruction mix is an independeﬁt
variable with a probability distribution. This
distribution describes the probability of occur—,
rence of one, two, and three cycle instructions.

The IOP's are relatively simple devices. They are
characterized by their cycle time. This is also a
user specifiable independent variable. For sim-
plicity, we chose to run all our simulations with
IOP cycle time equal to memory access time.

1
MM's are characterized by two parameters: access
time and cycle time. Memory access time is de-
fined as the time required to transfer the address
and data information to a memory module at the
beginning of a memory write operation (once the
selected MM becomes available to the requesting
unit). Memory cycle time is defined as the time
required to complete a memory read (once the
selected MM becomes available to the reguesting
unit). This time period consists of three parts:
1) address transfer to memory, 2) read operation:
cycle, and 3) data transfer back to reguesting
unit. !
Buses have either one or two parameters that
govern their operation. The bus cycle time para-
metexr exists in each of the bus architectures we
simulated. In addition to the cycle time, for
CBS systems, buses have an access time parameter
which determines how long a module must wait to
be given access to the bus after a request for the
bus is made. This is also known as the “switching
delay".

An additional parameter that must be specified by
the user is the I/0 request rate.
specify the average and distribution of I/O re-
quests as a function of the number of instructions
executed by each processor.

'

THE- MULTTBUS SIMULATION

Although three different architectures were simu-
lated, only the results of the simulation of the
MULTIBUS model are presented here because of space
limitations. The simulation data for the other
architectures are available from the authors.
results shown in the following graphs are for a
system with 3 CPU's, 3 IOP's, and 3 MM's. All of
the graphs use the average number of CPU instruc-
tions executed between I/O requests (per processor)
as the abscissa which is scaled in log base 2. BAll
of the plots display average values for all medules
of a given type in the simulated system.

The

The first set of plots, Figures 4a, 4b, and 4c,
show the percentage of time the CPU's spent in the
ACTIVE, BLOCKED, and FROZEN states. Each graph has
three plots that correspond to three different
memory cycle times. For these three figures the
CPU cycle time was 200ns and the bus cycle time .
was 20ns. We assumed that I/O transfers were
buffered and took place at memory speed and that a
bus, once allocated to an IOP, was.dedicated to .
that device for the duration of the block

The user must. . *

transfer. This meant that the IOP's were never
BLOCKED waiting for a bus after the initial
request was granted.

" The plots for ACTIVE and BLOCKED times display

271

"CPU cycle time, Figure- 7b.

what happens when the IOP's are given priority
over the CPU's as they were for this simulation.
Since the time spent in the FROZEN state is a di-
rect function of the number of memory requests
made, this value increases as the CPU's are al-
lowed to make more requests.

The plots in Figures 5a, 5b, and 5c show the aver-
age amount of time the IOP's spent in the ACTIVE,
BLOCKED, and FROZEN states. The CPU, BUS, and I/0
cycle times were the same as those for Figure 4.
Since the IOP's were given priority over the CPU's,
they only contend with each other for use of the
bus and memory. Figure 5a shows that the ACTIVE
time for IOP's is proportional to memory cycle
time and Figure 5b shows that the FROZEN time is
inversely proportional to the memory cycle time.

The next set of plots, Figures 6a, 6b, and 6c,
show how the CPU's operations are affected by the
CPU cycle time with a fixed memory cycle time of
200ns. The plot of CPU ACTIVE shows that a slow
processor does not have to wait as much for memory
as does a fast one; this is what one expects and
others have also verified this: xesult. Figure 6b
is quite similar to Figure 4b; they both are a re-
sult of IOP's being given priority over CPU's.

The plot of FROZEN time: indicates that for high
I/0 rates, the CPU cycle time does not signifi-
cantly affect FROZEN time. However, as the CPU's
get more memory cycles, the amownt of time they
are forced to wait for an operation to complete is
increased.

The final two graphs show how memory ACTIVE time
is affected by memory cycle time, Figure 7a, and
The first figure in-
dicates that for compute bound tasks, i.e. those
with relatively low I/0 rates, slower memories
are more often ACTIVE. The second figure shows
that, for high I/0 rates, memory ACTIVE is pro-
portional to CPU cycle time.

CPU ACTIVE JPERCENT)

CPU BLOCKER (PERCENT)

Figure 4a
£SUC MULTIPROCESSOR SIMULATION = SPRING 1992

MULTIPORTED MEMORY ARCHITECTURE
EFFECT ON CPUS OF VARYING 170 RATE
@ OPUS, 2 170 UNITS. 3 MEMORY BANKS

CPU CYCLE 20@ne, 1/0 CYCLE &ne, BUS CYCLE ZOre.

10 gy —y——— ————v . .
] MEM CYCLE
L] 4 4 4 4 58
5 4 4 4 - L
3 L + - - RN T ——
75. i P 1222
!] 4 ! i]
3 L - - * L r
se. wiid <
: B -
L 4 + 1 .1
o - - .c -’ / - -
- - - .. - / L. L
.‘.- L
L K 1. 1 4 d
25. rade 7
b FS . " L / L L -
3 L ..'...' :L / + f——’-—’—. .
- . — 1 Pt 4 4
. T — .
P e e ® L L - —r’ 4 o E
& R S] —— . N N x . N . . i
2 <. 8. e. 1. 2.
INSTRUCTIONS PER 1/0 OPERATION (LOG BASE 2 SCALEY>
Figure 4b
C6UC MULTIPROLESSOR EIMULATICN — SPRING 1882
MULTIPORTED MEMORY ARCHITECTURE
EFFECT DN CPUS OF VARYING 1/70 RATE
3 CPUS. 2 I/70 UNITS. 3 MEMORY BANKS
CPU CYCLE 28%Zne, 170 CYLLE Cre. BUS CYCLE 20ne
Ig2. r————— R R — yr—eeg——r
=~ === S~ ' MEM CYCLE
i AR RL B Cr— T + & - L
LTI _—~ ‘
b . .l“ \ \—‘- 'dl\. - L - sa
5 4., N~ ~ 4 J J
~ N Mo N
75.: ‘.'.“ \ N igz2e
|] o N oY S, 1!] ‘
kA + 4 .‘5 .\ r \ LS e
. AY o ,
52, M <
L L .‘- 3 \ / +
!] it 4. N 4
.. L
A 4 J 4 4, 4
25. L . \.,
. ., ~. — -
T L ﬂr - '.. .. -> -
3 e L o - T . o
2. P PP s ——t PSP |
2 R 8. . ie. iz

INSTRUCTIONS PER I/0 OPERATION {LOG BASE Z SCALED

272

Bus Architectures for Microprocessors {(continued)

CPU FROZEN <(PERCENTD

I70 ACTIVE PERCENT)

Figure 4c
CSUC MULTIPROCESSOR SIMULATION — SPRING 1882

MULTIPORTED MEMORY ARCHITECTURE
EFFECT ON CPUS OF VARYING I/0 RATE

3 CPUS. 2 1/0 UNITS. 3 MEMORY BANKS
CPU CYCLE 2Z8ne. 170 CYCLE Pnw, BUS CYCLE ZBne
192, + 4 - v v > v > - g v v T v MEM CYCLE
L ia S 4 f Qs Avsonunsy
L 4 d i3 ! 52
5 4 4 4 b 1 =22
75. - - 1202
L 4 4 4 4 1
5.
e o o - L. ——
p— / ’
X - o o / ¢
5 E p k / 4 - <
25 L ———
5 4 J g - |
L d J // - p O
] 1] = ':‘.”__._............ |
— 1 -.-"'.'.... L
] o ":“‘."......,‘--"']
2. P Raon, SRS Koy 3 " " " : : " s : Y L
2 4. o. 8. . 12.
INSTRUCTIONS PER 1/0 OPERATION (LOG BASE Z &LALE>
Figure 5a
CSUL MULTIPROCESSOR SIMULATION ~ SPRING 1892
MULTIPORTED MEMORY ARCHITECTURE
EFFECT ON 1/0 OF VARYING I/7D RATE
* 3 CRUS, 2 I/70 UNITS, 3 MEMDRY BANKS
CPU CYCLE 203ne. I/70 CYCLE One, BUS CYCLE 22 ne
ie2. . v - v v v v v v + v v v ——t
MEM CYCLE
L + 4 + 4 i opp
b - L k. - o4 ——— ——
75, 1002
L 4 4+ 4 + J
S
25.
L 4 """'---..,_- J 4 4
bt e -——.———,-—«; i el el ik R LT TP
2. 4. o. 8. p1-- % 12

INGTRULTION PER I/0 OPERATION {LOG BASE 2 SCALE>

273

o>

/0 BLOCKED (PERCENTD

/0 FROZEN <PRRCENT)

L , Figure 5b
CSULC MULTIPROCESSOR SIMULATION -~ SPRING 1882
MULTIPORTED MEMORY ARCHITECTURE
EFFECT ON I/70 DF VARYING 1/0 RATE
8 CPUS., 2 I/70 UNITS, 3 MEMORY BANKS
CPU CYCLE 222ne, BUS CYCLE 20ne. 1/0 CYCLE One

1. . — e e — gy e
MEM COYCLE
L + 4 J 4 i ———
L 4 4 < 4 4 50
3 - B L - L r 2@3
75. 1eee

8

P
I
]
A

e~ \ -
! ; . o0 v
’0...-.‘.-'

o,
trectsana,,

AT Ao A -4

“eaag . e 2

L . N . — .<~\,__\) 4 4 E

X .,“_...,...] S \\\ |]]
A ‘\\N._

® " N . " N 2 ‘ A N 2 . : N e
2., 4. &. : - 8 . iz
INSTRULTIONG PER I/0 DPERATION {LOG BASE 2 &CALE>
Figure 5c
LCSULC MULTIPROCESSOR SIMULATION ~ SPRING 1092
MULTIPORTED MEMODRY ARCHITECTURE
EFFECT ON 1I/0 OF VARYING I/0 RATE
3 LPUS, 2 1/70 UNITS, 3 MEMORY BANKS
CPU CYCLE 208rw. BUS CYCLE 2@ne, 170 CYCLE Pre ..
. MEM CYCLE
S E + 4 + 4 52
5 4 4 4 + 1 zee
3 4 + . 4 . 4 =
75. |. ' A2CD
> - L L L ~
L J i + 1 d
L + . 4 4 4
52
3 4 4 4 - -
L . 4 4
L 4 4 4 4 J
3 - + E P F
et
2S. b= T T
s <
-..-...._\.——-—"‘ - \.:_\.;\ J 9 1
L ."“‘I-._._' -\ \'h. ¢ 3 o
.] 1 ‘%—.r:_\ .
e. —k bt St METENATERE (ERr T it
2. 4. &. 8. ia. iz

INSTRUCSTIONS PER I/0 OPERATION (LOG BASE 2 SCALE>

274

Bug Architectures for Multiprocessors (continued)

Figure 6a

O8UL MULTIPROCESSOR SIMULATION - SPRING 1082
MULTIPORTED MEMORY ARCHITECTURE
EFFECT DN CPUS DF VARYING I/0 RATE
@ CPUS, 2 1/0 UNITS,. 3 MEMORY BANKS
MEMORY CYCLE 200Pre, BU&E CYCLE Z20re. 170 CYCLE One

iee. ——r——y e e ey r— e s
‘ Py CYCLE
o - L] - “ . o =
L d | 4 J i se-
X 9) 4 i J . R
b - L o p —] _— -
75 - 1z00
- — e e
g L - E , E :/ E o
5 L k 4 .: / 4 4
L + 4 e d 5
L 4 4 S 4 4
e
E s0. // =
L 4 4 4 4 4
~
Eo . s) _ .
g / P
25, /// ' L~
/ s] IUUPREPRLELY
V4 ~ .
- /.’ “ — E Lt . o L
L~ .
L /..——— 4 — L aeeet . P) P
,— 1 — — 4 Lemtt 4 o 4
P PR Srwr T RS LR A 0 s et
2. Ao 8. a. 2. . 12.
INSTRUCTIONS PER 1/0 OPERATION (LOG BAGE 2 SCALE>
Figure 6b
CSUL MULTIPROCESSOR SIMULATION — SPRING 1882
MULTIPORTED MEMDRY ARCHITECTURE
EFFELT DN CPUS OF VARYING I/0 RATE
. 3 CPUS, 2 X170 UNITS, 3 MEMORY 3ANKS
MEMORY LYCLE Z2EPne, 170 LYCLE Pne, BUS CYCLE 22ne
E 1 R —— ——— ey —— ey
L N I I] | cru oveLe
[~ i RS DI ’
S \‘ f ~ MR S + + 4 se
] — ~ i i] Jrorree
™ N 3 - : . 200
28, ‘o . 1222
N ~N K ——— e

CPU BLOCKED (PERCENT)
7

so. ~.. .
5 J 4 \\\ 4 N J , T
3 - o \\.‘ - E
! .] N 1\ !
25 ‘ N —]
' I] | S .
N
! | .] R)

2. 4. o. . " o.. N .) iz

INGTRUCTIONS PER J/0 OPERATION (LOG BASE 2 SCALE>

275

CrU FROZEN (PERCENT)

MEMORY ACTIVE <(PERCENT)

MEMORY CYCLE 220 ne, 1/0 CYLE @re, BUS CYFLE 28ne
102. eyt e S i y——y— v -~
o - L L 3 -+ L
b - L L L
78.
9 o 4 4 4 4
3 4 4 b T 5
S5a.
3 4 4 W E e ot .
! | ! J .
- 1 T 1 .'”‘ 1 T
25. SPLIP= I # ‘
“. '/
5 4 J e P 4 4
./ - e e o]
5 4 3 4 R L, e — 4
' Y]
L] R h 4 J .
2. ey o - c PR : .
2 4. ’ E. 8. iz. 12
INSTRUCTIONS PER I/0 OPERATION (LOG BASE 2 ECALE>
Figure 7a
CSUC MULTIFROCESSUR SIMULATION — SPRING 1882
MULTIPORTED MEMORY ARCHITECTURE
EFFECT DN MEMORY OF VARYING 1/0 RATE
F CPUS, 2 I/70 UNITS. 3 MEMDRY BANKS
LOPU CYCLE 203ne, BUS LYCLE 28ne, 1/0 LYCLE Zre
1z2. ——r— . — e Yoy v v
bo L 3 ! - - L.
- 1 J 4 4 4
75. ’
. < o - /_‘.m:" —_ 4
S E o o S P E
s2. e
T ——
3 - L . /-. e E p
oS L e T T] 1 1

Figure 6c

CSUC MULTIPROCESSOR SIMULATION ~ SPRING 1@82
MULTIPORTED MEMORY ARCHITECTURE
EFFECT ON CPUS OF VARYING 1/0 RATE

3 CPUB, 2 1/70 UNITE,

3 MEMORY BDANKS

e e 3
Frsenen e,

R

R X LT IR PO
-

I N TR

25,
L 4 4 3 <+ .
3 L. - o™+ - L
e - - - . L
2. . " . N 2 . . 2 . " . s 2 2
2 4. &. a. iz, 12

INSTRUCTICNG PER 1/0 OPERATION (.05 BASE 2 &CALED>

276

CPU CYCLE

tesssssasus

208

— — g

1202

MEM CYCOLE

se

cessesavnrs

208

1pz2

Bus Architectures for Multiprocessors (continued)

Figure 7b

LSULC MULTIPROCESSOR SIMULATION — SPRING 1882
MULTIPORTED MEMURY ARCHITECTURE
EFFECT UN MEMORY OF VARYING 1/0 RATE

3 LPUS, 2 1/0 UNITS,
MEMORY CYCLE 20Qrw, BUS LYLLE 28re, I/0 CYCLE Pre .

3 MEMDRY BANXS

1] | 1 1 7 TV oru oyoLE
r R 1 ! 4 i se ‘
i 1 1 T i zeo
75. 12e0
e]]] ! _ |-
t g 3 - 4 L -A""”"’. o
- & | E]] o
g sa —
o o 4] el - T T]
Ceen -) .
e o] T T
N | ~ et] i]
|4 e . !
a L 4 N— 4 k ks J
lzl 25, i : '
b - -.\‘-‘_‘\“ﬁ-————--————-‘l'
o. X : : . : N s 3 : : L . s N ;
2 & 8. 8. 1 12,
, INSTRUCTIONS PER 1/0 QPERATION (LOG BASE 2 SCALE>
CONCLUSIONS BIBLIOGRAPHY
We have attempted t& compare the results of our 1. Tanenbaum, A.S., Computer Networks, Prentice-
simulation with the results published by other Hall. Inc., New Jersey, 1981
authors; this has not been an easy task. The main -
problem is that simulations of this type are neces- 2. Enslow, P.H., Jr., Multiprocessors & Parallel
sarily complex and published accounts usually do Processing, John Wiley & Sons, Inc., New York,
not give sufficient information to determine how a 1974 :
specific model operates. To accurately compare two
models, information, such as detailed activity dia- 3. Leibowitz, B.H., "Multiple Processor Minicom-
grams and descriptions of allocation policies, is puter Systems", Computer Design, Oct. 1978
needed; this information is seldom included in pub-)
lished journal articles. In'many cases, simulation 4. Wear, L.L, et. al., "B Comparison of Metheds
results are presented but only a very brief de- for Simulating Computer Bus Architectures" 1981
scription of the modeled system is given. For Winter Simulation Conference Proceedings, IEEE,
example, Bowen and Buhr (8) show how the through- l9g81l - s
put on a Common Bus system is affected by the num- ‘
ber of processors on the system. However, they do 5. Weitzman, C., Distributed Micro Minicomputer
not state what the cycle times of the CPU's and Systems, Prentice-Hall, Inc., New Jersey 1980
MM's' are or what I/O rates are. We have found our
results most useful when examining what happens to 6. Uyeno, D.H. and Vaessen, W., "PASSIM: a
our system when a particular parameter is changed discrete-event simulation package for Pascal”
and all other variables are held constant. We look SIMULATION, Vol 35 no. 6, Dec. 1980
forward to comparing our results with those of B
other researchers when we find other published 7. Barnett, C.C., Micro PASSIM II, Walla Walla
accounts with sufficient information given to make College, College Place, Washington, 1982°
a comparison possible.
8. Bowen, B.A. and Buhr, R.J.A., The Logical De-

277

sign of Multiple-Microprocessor Systems,
Prentice~Hall, Inc., New Jersey, 1980

- -
-

Bus Architectures for Multiprocessors (comtinued)

Figure la
_TIMESHARED BUS SYSTEM: } : Figure 2
i ~ o . . MULTIBUS SYSTEM
]
CPU 1 } .] Mem 1 [T
- . MEM 1 | ’ cPU 1 | 4 I0P 1
CPU 2 . Tlvew 2 [
MEM 2 : CPU 2 0P 2
- ‘ ‘ &
IOP 1 A - L1l MEM 3
MEM 3
I0OP 2 F—
: Figuré.3
CROSS BAR SWITCH SYSTEM
-Fig‘ure 1b cPU 1 cPU 2
MULTIPLE TIMESHARED BUSES SY_STE!“. ‘
1 1
! N N . N VS
CPU 1 (- ’
- MEM 1 | I
- NN N N vy
CPU 2 } | -
MEM 2 | NN A N "MEM 8
I0OP 1
' | 10P 1 - I0P 2
MEM 3 ,
IDP 2 F

— - — —
. _
— — . s

278

