A SIMULATION MODEL OF A MULTI-COMPUTER SYSTEM

SOLVING A COMBINATORIAL PROBLEM

1

William M. r*k:Cormaclxc,2

F. Gail Gray, Robert M. Haralick

Department of Computer Science, Virginia Tech
Blacksburg, Virginia 2406l

Abstract

This paper describes a simulation of a multi-
computer system used to solve computationally
intensive combinatorial problems. The model is
traced from its conception through to the initial
experiments conducted using it and their results.
Included are descriptions of the combinatorial
problems being solved, thé language selection pro-
cess, the simulated multi-computer system, and the
model validation performed.

N

1. Introduction

For many computationally intensive problems,
the most promising direction for improving the
speed with which solutions can be obtained and for
increasing the size of problems solved is to use
many processors working together on the solution
of a single problem (5). Combinational problems,
which occur in numerous areas of applied mathemat-
jcs, are one example of computationally intensive
problems.

The paper discusses the simulation of a multi-
computer system solving combinatorial problems.
Simulation is being used to investigate the fac-
tors affecting the efficiency of such a system
prior to actual implementation. The development
of the model through its initial use is described.
The next section provides additional background on
the problem being studied. In the following sec—
tions the language selection process, simulated
system, validation process, and first experiment
are described. The paper concludes with an evalu-
ation of the simulation and discussion of changes
being made to it.

lSuppotted in part by the office of Naval Research
under Grant N0O14-88-C-8689.

2Now with Amdahl Corporation, P.O. Box 470,
Sunnyvale, CA 94086.

Proceedings of the 1982
Winter Simulation Conference
Highland * Chao * Madrigal, Editors

82CH1844-0/82/0000-0261 $00.75 © 1982 IEEE

261

2. Problem Solving on a Multi-Computer System

Combinatorial problem solving underlies num-
erous important problems in areas such as opera-
tions research, non-parametic statistics, graph
theory, computer science, and artificial intelli-
gence. Examples of specific combinatorial prob-
lems include, but are not limited to, wvarious
resource allocation problems, the travelling
salesman problem, the relation homomor phism
problem, the graph clique problem, the graph ver-
tex cover problem, the graph independent set prob-
lem, the consistent labeling problem, and proposi-
tional logic problems (6,7,8,18). These problems
have the common feature that all known algorithms
to solve them take, in the worst case, exponential
time as problem size increases. They belong to
the problem class NP.

Combinatorial problems require solutions which
do searching. 1In a very natural way, the algor—
jithm doing the tree search keeps track of what
part of the search space has been examined so far
and what part of the search is yet to be examined,
The mechanism, which represents the division bet-
ween that which has been searched so far and that
which is yet to be searched, can also be used to
partition the space which is yet to be searched
into two or more mutually exclusive pieces. This
is precisely the mechanism which can let a combi-
natorial problem be solved in an asychronous par-—
allel computer.

Now suppose that one processor in a parallel
computer is given a combinatorial problem. In
order to get other processors involved, the pro~
cessor divides the problem into mutually exclusive
subproblems and gives one subproblem to each of
the neighboring processors, keeping one subproblem
itself. At any moment in time, each of the pro-
cessors in the parallel computer network may be
busy solving a subproblem or may be idle after
having finished the subproblem on which it was
working. At suitable occasions in the processing,
a busy processor divides its current problem into
two subproblems, hands one off to the idle neigh-
bor and keeps one itself,

‘A Multi-Computer System (continued)

The research issues that arise are: what
effect - does the number of processors and buses
have, what is the most efficient way to arrange a
given number of processors and buses, and what
effect do alternative problem solving techniques
and problem passing strategies have on perfor-
mance.

3. Simulation Language Selection

To put the language selection process in per-
spective, when the project began only general
ideas about the system to be simulated were avail-
able. The physical system was to be modeled, but
only in enough detail to study processor communi-
cation, utilization and bus contention. In addi-
tion, it would be necessary to simulate the work-
load for the system.

Emshoff and Sisson (2j discuss two considera-

tions in the selection of a language: operational
characteristics (e.g. availability, costs) and
problem—-oriented characteristics (world view,

flexibility, random variate generators, etc.). At
Virginia Tech most general purpose and simulation
languages were available; however the simulation
languages were only available on the university's
configuration and not department computers for
which there would be no charges. Ultimately, the
chief considerations in the selection were the
type of system to be simulated and the expected
complexity of the task. By using a simulation
language, the need to develop basic simulation
tools would be eliminated and full attention could
be focused on the problem itself. Secondly, since
the basic entity in the simulation would be a pro-
cessor solving a problem and communicating with
other processors, it would be much easier to model
the system using a process world view. Because of
these, the decision was made to use a simulation
language supporting a process world view over
using a general purpose language with an event
world view.

Once the type of language had been chosen, the
actual choice of language wa$ straightforward.
GPSS is not flexible enough and numerous changes
were expected to be necessary to the initial
design. 'The choice then was either Simscript or
Simula, both known to the author and available.
Simula was selected since the process view is a
natural part of the langblage and was not added
later. In addition the clear programming struc—
ture of Simula would mean later modifications
should be easily and quickly done. This was
indeed the case. Major changes were made on a
number of occasions as new ideas were found to be
worthy of investigation. Some of the ideas were a
direct result of being able to focus on the prob—
lem by using a process view language.

4. Simulation Model

It is easiest to describe the simulation model
by dividing it into three parts. These are speci-—
fication of the physical system, specification of
the combinatorial problem to be solved by the sys—
tem, and how the relation of the two result in

262

numerous factors affecting problem solving on a
multi-computer system. The program collected var-
ious statistics to measure the performance of the
system, to aid in understanding results, and for
use in validating the model. ‘Some of these sta-
tistics were the time the problem was completely
solved (the key performance measure), counts of
subproblems passed between processors, the percen-
tage of time each processor was in each state
(busy, idle, etc.), and usage statistics for each
bus.

4,1 Physical System Specification

The processor/bus configuration can be des-
cribed using a labeled bipartite graph. The nodes
are either labeled as being a processor or as
being a bus. A link between a pair of nodes means
that the processor node is connected to the bus
node. In the model, it was restricted that each
processor (bus) be connected to an equal number of
buses (processors). For a given number of proces-
sors and buses, many interconnection configura-
tions are possible and can affect system perfor-
mance. Separate work is being done to generate
all graphs of given characteristics and will pro-
vide input to the simulation model.

Each processor is assumed to be the same and
have its own local memory. Thus, there is no
memory contention, but contention can occur for
buses shared by processors: A processor can be in
one of four states: working on .a portion of the
combinatorial problem; sending a subproblem to
another processor; receiving a subproblem from a
processor, and idle. A working processor with
extra subproblems periodically checks neighboring
processors and, if one is found idle, initiates a
subproblem transfer,

4.2 Problem Specification

The combinatorial problem solved by the simu-
lated system is the consistent labeling problem
which arises in artificial intelligence problems
including scene analysis, graph coloring, and pro-
position theorem proving (4). The problem is to
determine all possible labelings (assigrment of L
labels to U units) without violating consistency
constraints. The constraints are typically const-
raints on pairs of unit-labels, e.g. whether unit
2 having label A is consistent with unit 4 having
label B. The N~queens problem, placing N queens
on an N by N chessboard so that no capture is pos-
sible, can be formulated as a consistent labeling
problem,

Besides specifying U and L, it is necessary to
specify the constraints. TwWo ways are use an
actual problem (such as the N-queens) or randomly
assign vwhich constraints are true and which are
false. Both of these require, when doing the tree
search, to keep numerous tables and to do all
necessary constraint checks to test a partial
labeling of the wnits., A third way is mathemati-
cally solve the random constraint version. ‘This
permits simulation of the problem testing which
results in considerable savings of execution time
and memory for large values of U and L.

4.3 Factors Affecting Problem Solving

The factors that can affect problem solving on
a multi-computer system can be divided into two
classes, those independent of the architecture and
those related to it. Some of these were only
uncovered while testing the simulation and it is
not yet clear how major an effect they will have.

4.2.1 Architecture Independent Factors

In the single processor case, various algor-—
ithms have been proposed and studied to effi-
ciently solve problems requiring tree searches.
These wusually involve investing an additional
amount of computation at one node in the tree in
order to prune the tree early and avoid needless
backtracking. In work on the consistent labeling
problem (4), the forward checking pruning algor—
ithm was found to perform the best of six tested
and standard backtracking the worst. For the same
reasons, it seems clear that pruning the tree
early should be carried over to a multiple proces~
sor system to reduce the amount of computation
necessary to solve the problem. Only forward
checking and backtracking have been implemented so
far, since only for those algorithms have mathe-~
matical solutions to the random constraint problem
been obtained.

Search strategy, a second important factor,
explains the action taken by a processor after
testing a partial labeling -~ does it next test
another label for the most recent unit in the
labeling (a breadth-first search) or does it add
the next unit to the labeling and test a label for
it (a depth-first search)?

When a problem involves finding all solutions,
like the consistent labeling problem, the entire
tree must be searched. In a unjprocessor system
the particular order in which the search is con-
ducted, i.e., depth first of breadth first, has no
effect. In a multiple processor system, however,
this is a critical factor because it directly
affects the complexity of the problems remaining
in the tree to be solved and available to be sent
to idle processors from busy processors. A depth
first search will leave large problems to be
solved later (that is, problems near the root of
the tree), whereas breadth first search would tend
to produce problems of approximately the same
size.

The other factors concern a processor that has
a number of problems of various complexities to
send an idle processor. The question is how many
should be sent and of what complexity(ies), espe—
cially in a situation where the processor is aware
of more than one idle processor. In such a situa-
tion, how should the available work be divided and
still leave a significant amount for the sending
processor?

Furthermore, the overhead involved in syn-
chronizing the various processors and transmitting
problems to idle ones could eventually reach a
point where it will be more than the amount of
work left to be done (an analogous situation
exists in sorting (7)). In this case, it would
appear that a point could be reached where it is

263

more effective for a processor simply to complete
the problem itself rather than transmit parts of
it to others.

4.2.2. Architecture Dependent Factors

It is clear that the architecture configura-
tion will affect performance (how much is uncer-
tain for a fixed number of processors), but two
additional factors arise if the architecture is
asymmetric. One is the initial processor to
receive the problem. The multi-computer system is
envisioned as a special purpose one attached to
another system (e.g. a VAX 11/786). The problem
is given to one processor initially which, as sub-
problems are created, distributes it to other pro- .
cessors. It is anticipated the effect of the ini-
tial processor will diminish (much like a
transient of a simulation) as the problem sizes
tested are increased.

The second factor involves a processor with
extra subproblems that has more than one idle pro-
cessor as a neighbor. In the simulation, subprob-
lems are passed to only one processor at a time,
thus it is necessary to have a rule to decide to
which processor to send work first.

5. Validation

The validation of the model used technigques
described by Sargent (12); however many of the
techniques could not be used since there was no
actual data with which to compare. The major
objective was to gain confidence in the model's
ability to predict the relative performance of
different systems. The principal methods used
were internal validity, parameter variability and
sensitivity analysis, comparison to other models,
and face validity. These were employed after
hand-tracing small systems to help insure the cor-
rectness of the program.

The same system was to run with different ran-
dom number seeds to see how much variability there
was in results (internal validity check). There
was very little which was expected due to the size
of the problems tested. This was also important
as it meant fewer replications would be needed
when conducting experiments.

A second test was of the system's sensitivity
to some of the parameters chosen to represent the

speed of the processors and buses. A range of
reasonable values were tried and, although there
were some changes in absolute results, there were

no changes in relative performance. Other parame—
ters were varied to see if the results produced
(e.g. problem completion time, processors' utili-
zation, etc.) changed as expected. In a few cases
this was not initially true, .but after further
tests and analysis, it was apparent the model was
correct and our intuition was in error,

The other major way used to validate the model
was to compare the performance measures for the
simulation model to the measures obtained using
other models and submodels. The effect of simu-
lating the problem solving was tested by comparing
the results of simulating the testing and actually

A Multi-Computer System (continued)

doing the tests for the random constraint version.
The closeness of the results confirmed earlier

results, albeit on a single processor system (4),
of the wvalidity of simulating the testing.
Finally, statistics gathered on the work done by

the system and the tree search were in agreement
with analytical results obtained.

Thus, through these steps confidence was
achieved in the ability of the model to accurately
predict the performance of the system under a var-
iety of configurations, workloads, and parameter
values.

6. First Experiment

- Because of the large number of factors, it was
decided to concentrate on those factors indepen-
dent of the architecture. This was done because
these factors were better understood and because
of the large number of architectures we wished to
test. The goal was to select the best combination
of the problem-solving factors and to understand
the interactions between them before proceeding to

the architectural features and factors. This
experiment is described in -detail in (3). The
model is a terminating simulation (9), the termi-

nating condition is when the problem has been com—
pleted (all labelings have been found); thus,
there is no initial transient to remove. The per-
formance measure is the time the simulation termi-
nates, ’

In this experiment each problem factor was
tested at two levels in a full factorial design.
The factors and levels tested are given in Table
1. From previous testing and validation it was
very clear that forward checking was significantly
better than backtracking, so all experiments used
the forward checking algorithm. In order that the
results be applicable for different architectures
and problem sizes, two problem sizes (small and
medium) and two very different architectures (in
terms of the number of communication paths) were
used.

The architectures chosen (1) were symmetric
to eliminate the need for assumptions about the
architecture related factors discussed earlier.
The ring architecture, due to the limited inter-
connection structure, will have difficulty passing
work from the initial processor to distant proces-
sors. The Boolean 6-cube, however, should be able
to effectively utilize most of the 64 processors.

Finally, one replication was run for each com-
bination. More would have been desirable, but the
simulation was very costly and time consuming to
run. From earlier testing and validation it was
felt performance differences would be much greater
than the random error. ‘This was found to be the
case.

Analysis of variance was used to determine the
significance of the problem related parameters and
to determine interactions of the parameters (11).
The analysis showed statistically significant @if-
ferences in the means (at a level of 6.06001) for

264

TABLE 1 — EXPERIMENT SUMMARY
FACTORS TESTED

FACTOR LEVEL 1 LEVEL 2
search strategy depth-first breadth-first
size of sub~- largest smallest
problem passed
no. of sub- 50% of total I sub-problem

problems passed

cutoff point none

4 units left

EXPERIMENTAL CONDITIONS

Architecture Ring 6~cube
no. of processors 64 64
no. of buses 64 192
Size of problem
(no. of units
and labels) 12 (small) 16 (medium)

all main effects, and second and third order
interactions for the search strategy, size passed,
and number passed. 'The means for the two cutoff
point levels were not statistically different.
Because the three way interaction among strategy,
size, and number was significant, the combinations
of these three factors were treated as eight lev-
els of one combined factor for further analysis.

Duncan's multiple range test was performed
(11) to divide the levels into groups with similar
performance. ‘This test showed that one combina—
tion is clearly superior, depth-large-58%, and
should be used in further experiments. There is a
logical explanation for this result. For each
factor one value can be classified as positive
(i.e., it should contribute to improved perfor-
mance regardless of other factors), and the other
negative (i.e., it should result in poorer perfor-
mance) . ‘The positive factors are indicated as
level 1 in Table 1. Using this idea of a positive
level for each factor, only one combination has
all 3 levels positive and this was found to be the
optimal combination.

The analysis of variance also indicated signi-
ficant interactions between the combined factor
and the experimental conditions of problem size
and arhitecture. These could be easily explained
and clearly showed the importance of the correct
problem solving combination on performance (3).

7. Evaluation

This paper has described the simulation pro-
cess, from design to initial experiment, used to
analyze the performance of a multi-computer sys-
tem. It seems appropriate, therefore, to evaluate
the effectiveness of the simulation in 1light of
subsequent developments.

The simulation already has proved invaluable
in understanding the system to be built, even
though experiments are just beginning. Testing
with it is allowing critical decisions, and mis-
takes, to be made now prior to implementation.
Simula worked quite well by allowing concentration
on the model and its f£lexibility and structure
allowed the necessary changes to be made easily.

Unfortunately, when the experiments began
problems were discovered which have resulted in a
change in the language used for the simulation.
Because of the number of cases to test, it was
convenient to do many experiments in one run.
This requires leaving and reentering the Simula
"simulation class" to reset the clock, empty
sequencing set, etc. to do the next experiment.
This would usually result in a runtime error for
the large problems on our system. At this point
it 'was discovered that Simula was no longer being
maintained by our computing center. Thus, it was
necessary to run the experiments, and collect the
results one by one.

In addition, the next experiment planned would
be much more expensive due to the variety of
architectures to be tested and the architecture

related factors. Finally, the
architecture-graph~generator program, which pro-
vides much of the simulation's input, had been

265

moved to a different system (VAX), in part for
economic reasons, and there was no easy communica-
tion between it and the university's IBM system.

Thus, the decision was made to convert the
entire program (about 2080 1lines) into Pascal to
run on the department VAX. This would eliminate
costs to run, allow multiple experiments with one
run, and immediate access to the input architec-
tures. Because Simula and Pascal are similar and
the code was very modular, conversion to Pascal
was not too difficult, It was only necessary to
write a few random variate generators, a time flow
mechanism, future event list handler, and turn the
process world view into an event view.

Despite this conversion, the choice .of Simula
was still correct as the system was not understood
well enough earlier to begin with Pascal and an
event world view. ‘The conversion and testing are
complete and further experiments are underway.

A Multi-Computer System (continued)

2

5.

References

Anderson, G. A., ard E, D,
Interconnection Structures: Taxonomy, Charac-
teristics, and Examples", Computing Surveys,
Vol. 7, Dec. 1975, pp. 197-213. °

Jensen, "Computer

Emshoff, J.R. and R.L. Sisson, Design and Use
of Computer Simulation Models, MacMillan Publ—
1sh1ng Co., Inc:, New York, 1978.

Gray, F.G., W.M. McCormack and R.M. Haralick,
"significance of Problem Solving Parameters on
the Performance of Combinatorial Algorithms on
Multi-Computer Parallel Architectures,” 1982
International Conference on Parallel Process-—
ing, 1982.

‘Haralick, Robert M. and G. Elliott, "Increas—
ing Tree Search Efficiency for Constraint
Satisfaction Problems", Artificial Intelli-
gence, Vol. 14, 1988, pp. 263-313.

Haynes, L.S., "Highly Parallel Computing:
Guest Editor's Introductlon" Computer, Jan.
1982. '

266

9.

14.

11.

12,

Research,

Hillier, F. S. and G. S. Lieberman, Operations
Holden Day, Inc., San Francisco,
1979,

Knuth, D. E., The Art of Computer Programming,
Sortmg and Searching, Addison-Wesley PUblish-

ing, Reading, MA, 1973.

Kung, H. T., "The Structure of Parallel Algor—
ithms", in Advances in Computers, Vol. 19,
edited by M. D, Yovits, Academic Press, 1980.

Law, A.M., "Statistical Analysis of the Output
Data from Terminating Simulations®™, Naval
Research Logistics Quarterly, Vol. 27, March

1989, pp. 131-143.

lee, R. B.; "Empirical Results on the Speed,
Redundancy and Quality of Parallel Computa-
tions", Proceedings of 1988 International Con-
ference on Parallel Processing, 1988. -

An Introduction to Statistical
Doxbury Press,

ott, Lyman,
Methods and Data Analysis,
North Scituate, MR, 1977.

Sargent, R.G., "Validation of Simulation
Models", Proc. Winter Simulation Conference,
1979, pp. 497-503.,

