QUEUEING STRUCTURE MODELLING

ABSTRACT

A modelling scheme for simulation of
queueing structures is proposed. After

a general discussion about the special
properties of queueing structures and how
such usually are investigated, the scheme
follows. The scheme makes use of three
different concepts: Deterministic Analysis,
Load Analysis and Balance Analysis. These
concents are explained and thereafter used
in the modelling scheme. It is emphasised
that complex models are difficult to
handle and validate and that a simple model
which comprises the important features of
the "real" system is to prefer. The paper
discusses which' these features can be and
how to find them.

1. Introduction

Complex technical systems are nowadays
mostly designed and developed jointly by

a large number of people. The work has to
be organised in some way and one of the
most commonly used approaches to this
problem is to divide the system into
modules. Each module is assigned a specific
property or function and the design is
thereby simplified.

This approach makes room for two observa-
tions: firstly, that there are few, if
any, who have an overall view of the
entire system, and, secondly, that the
modularity could be used to enhance the
possibilities to analyse the system with
respect to its capacity.

The capacity of a system is usually ex-
pressed as waitingtimes, queue lengths,
utilization and so forth. The capacity
of a system is of interest since certain
demands may be put on it and the system
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designer would like to know if the system
can meet the demands. The measures can be’
estimated by analytical methods or by
simulation. The analytical methods avail-
able are queueing theory, queueing network
theory and similar methods which make use
of a mathematical formalism to express the
basic properties of the system and to
derive interesting performance measures.
The analytic methods do often need exten-
sive simplifications to be applicable, and
are consequently not always sufficiently
accurate. They do on the other hand pro-
duce results relatively fast and with
acceptable computational effort in most
cases, and are therefore attractive when
used in for instance dimensioning.

When analytic methods become difficult to
use, most people resort to simulation,
usually Discrete Event Simulation.
Contrary to analytic methods, there are
no formal limits to what can be described
in a simulation. In reality, limits are
always set, however, usually by the
computer on which the brogram is supposed
to be run or by the modeller”s ability to
handle a large program. As the technical
systems we surround ourselves with get in-
creasingly complex, attempts to analyse
them will more often reach a stage at
which the model gets difficult to handle.
Tf such a limit is reached, it seems to
be a reasonable requirement that the model
should comprise thé components of the
"real" system that can be assumed to have
impact on the performance measures we are
interested in. Important questions are
then which these components are and how
to find them.

All modelling call for simplification. The
simplifications that take place when ana-
lytic models are used are usually guided
by the mathematical feasibility of a
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solution to the stated problem. Since the
same limitations do not apply to a simu-
lation approach, it becomes tempting to
include as much as possible in the model.
The lack of an overall view of a modular
system makes it hard to judge the relative
importance of the individual components,
and introduces problems regarding
information acquisition and component
interaction.

Analytic models are usually prefered
since they are less expensive to develop
and ruh, and since they sometimes can
provide insights that are hard to get
from simulation models. The development
of a simulation model is often a tedious
process, and-at a certain stage of the
development it is almost impossible to
change the model since so much time and
effort already have been put into it.
Verification and validation have to be
extensive and may still not produce
confidence in the model (GASS 77).

A simulation approach could therefore
more readily be-used if more of the
modelling could be paperwork and if back-
tracking could be made at as early a
stage as possible.

The following is an attempt to form some
guidelines for modelling of queueing
structures which perhaps can make simula-
tion a tool which indeed can reveal system
behaviour that is hard to grasp with
analytic methods.

2., Some presuppositions

The measures of capacity mentioned in the
introduction relate to structures in which
some entities flow to receive service at
different service centres. Such a struc-
ture can be called a queueing structure.
The entities can be called jobs or
customers, and it is assumed that these
jobs appear somewhere outside the
queueing strueture and are let in through
some gate to enter one of the service
centres. Jobs are then routed among all

or a part of the total number of service
centres and do eventually leave the struc-
ture. The routing can be complex and
dependent on the state of the structure
or on other system properies.

A simulation implementation of such a
structure is in this paper assumed to be
based on a process approach, supported

by for example the 'SIMULA language

(BIRT 73, BIRT 81, FRAN 77). Each service
centre is modelléed as a process, and a
job that -enters the centre is, if necessa~
ry, queued and thereafter processed. The
processing may be complex and a more or
less elaborated scheduling may have to be
modelled.
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It is assumed that the simulation is a

- Discrete Event Simulation and that behav-

iour which is hard to model in detail ‘is
represented by some stochastic variable.
The world outside the structure is modell-
ed as a number of generators which in some
manner, more or less sophisticated, create
jobs and send them into the structure.
Either the generation of jobs or the
requests for service must have some degree
of randomness, so that deterministic
"simulations" are excluded.

3. Modelling issue$

A simulation model is indeed, as the name
indicates, a MODEL, i e it cannot - and
ought not ~ be a perfect copy of the
investigated system. The detailed behav-
iour of the "real" system has to be
simplified and extraordinary performance
overlooked. There is a risk however, that
important behaviour is omitted, while
unimportant details are modelled. Such
things may happen for a number of reasons:

- The modelling decisions are based on
incomplete knowledge of the system.
Intérnal, unknown, behaviour may have
great impact on the performance measures.
The model is in such a case not suffi-
ciently detailed.

-~ The degree of simplification for differ-
ent model components do not agree. Unless
the aim of the model is to study the
intrinsic properties of some specific
component, it seems to be unnecessary to
model some components in detail while
others are more crudely modelled. The
model is in this case too detailed for
some components and not sufficiently
detailed for others.

- Some components may be insensitive to
changes in the state of the simulation. A
component may, for example, always delay

a job equally long independent of the load,
and may still have a complex internal
behaviour which is time-consuming to simu-
late and difficult to model. Some of these
components may be omitted, and the model
simplified.

This list. is far from complete, and a more
thorough discussion can be found in (EKLU
82). -

In order to minimize the existence of
insufficient or overworked models in the
above sense, three concepts are introduced:
Deterministic Analysis

Load Analysis

Balance Analysis




These concepts are explained below and
employed in the subsegquent section to
form a modelling scheme.

Deterministic Analysis

Most things do, if we look into them,
seem to have a cause. The behaviour of a
system depends on the joint effects of
its subsystems which in their turn depend
on their subsystems and so on. But if we
continue this division, we sooner or
later find a level at which things appear
to happen at random. At this level we
cannot find the cause of individual
behaviours. Things do either not lend
themselves to be investigated or they do
require more information than we can store
and/or collect.

Random events can more or less adequately
be expressed by stochastic variables and
processes. A stochastic process does not
behave exactly as the sequence of events
it tries to describe, but can reproduce
certain measures and does therefore look
like the original process. A simulation is
a type of stochastic procéess that uses a
sometimes rather complex set of distribu-
tions from which the distances in time
between different events are selected.
These distributions have to be estimated
and expressed either as continuous
mathematical functions or as stepwise
constant probability distribution func-
tions (PDF). If time delays do not belong
to a limited set of constant times, they
have to be approximated, either by a
continous function or by'a limited set
from which the times are selected. This
approximation is, at least when the simu-
lation is fairly detailed, possible to get
sufficiently good.

But the distributions have to be estimated,
and two different cases can thereby be
observed:

a) The first case is when "reality" is not
known in detail. (Reality can of course
never be known in detail, but the level
refered to here is where reality does not
appear to behave randomly). Some part of
the simulation does in this case illus-
trate actions that cannot or should not
be a part of the simulation in the respect
that they could or should be modelled.
Typical examples can be found in actions
whose length depend on human behaviour.
How long people talk to eachother in tele~
phone, how long it takes for someone to
answer a question, etc. Times like these
can in some cases be broken down into
smaller pieces, but at the bottom we
always find times that are extremly hard
to estimate. We do, in cases like these,
have to rely either on our own ability to
estimate the times and how they vary, or
on measurements. Whichever we find feasi-
ble, we have to fit some distribution to
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either our estimates or to the results of
measurements. To fit a distribution to our
own estimates is by no means simple, and
does at any rate contain a great deal of
arbitrariness. This has to be remembered
when the rest of the systen is modelled,
since the ambiguity of one part is not
compensated by the accuracy of antoher.

b) The second type is when we indeed can
examine the behaviour of a system and
break down complex series of events until
deterministic times remain. This does not
imply that we have perfect knowledge of
the internal behaviour of some subsystem
of the investigated system, only that the
time it takes for it to perform its task
is constant and known in advance. The
level at which this happens may be very
low, but it is formally possible to
describe the times involved in the actions.
Examples of this can be found in computer
systems and in communication networks.
Provided we know the length of all packets
in a packet swithching network, the load
(described as number of instructions to be
executed in a partic¢ular node) and the
priority structure, we are able to simu-
late the transport times of a specific
packet. Such a simulation requires the
packet to carry large amounts of data and
the operating system of the switching
computers to be described in detail, which
would mean an extremely complex and heavy
simulation. Simplifications are therefore
nade, but it is essential that these are
not arbitrary, but performed in consis-
tency with other system components.

Times of the second type could be exactly
reproduced in a simulation provided that
the necessary information is available
when the time is to be selected. This is
usually not the case howewver, and the
constant times are therefore concatenated
to form a distribution from which the
times are selected. To reproduce the exact
times would in most cases mean to describe
the system in detail and perhaps to
picture it completely.

Load Analysis

Jobs are routed among the service centres
in a more or less complex manner. It is
usually possible however, to estimate the
fraction, of the total number of jobs that
leaves a specific centre, which goes to
some other specific centre. This fraction
can be interpreted as a routing probabili-
ty. The estimate will only be true on -
average, but it does not significantly
differ from a measurement on the "real"
system. The estimates of the routing
probabilities can be used to estimate the
arrival rate at each service centre, The
arrival rate is that part of the total
number of jobs emitted from the generators
that reaches a specific centre. Each job
type has to be treated separately since
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these may differ what service requests
are concerned. The load will be a number
in the range (0,1), and is the product of
the effective arrival rate and the mean
service time.

Balance Analysis

The most relevant parameter in a simula-
tion is time. Time is the concent around
which the modelling turns, and it can be
described differently accurate. A discrete
event simulation centers, as the name
indicates, on events, and these are
measures of time. The time can be moved
forward by many events occuring with
small intervals or by few occuring with
longer. The accuracy of a model is,
generally speaking, related to thé number
of events used to describe an activity in
the "real" system. An activity can either
be described as a series of events
occuring with smaller intervals {which
perhaps are more easy to estimate the
length of) or by one large that is drawn
. from a distribution illustrating the
smaller subintervals.

A process is a structure which forever
goes on in a loop and which within this
loop has a number of welldefined states
in which it stays some time before it
does on to the next. The time a process
stays in a state is related to the time
it takes for the "real' system to perform
the tasks illustrated by that particular
state. Depending on how states are
identified and concatenated, differently
many states, and relating delays, are
described. A complex and multifacetted
process can contain a large number of
states while a more simple usually
contains less. The individual processes
of a process simulation are usually
modelled and programmed almost indepen-~
dently. The intervals between consecutive
events in different processes can there-
fore differ greatly, and some processes
may loop several times before even a
single event occurs in some other process.
In a discrete event simulation, time is
stepped forward from one point to the
next, with an amount equal to the
distance in time between to successive
events as they occur if the system is
viewed from above, where all processes
are visible at the same time. Events are
therefore related to different processes
and their frequence depend on the inter-
vals with which thé individual processes
create new events. b

Different processes can therefore be said
to reside on different levels of the
system. At the lowest level fast processes,

i e processes which have short intervails between

successive events, rotate. From this

level and upwards, processes have longer
and longer intervals between events, and
there is some process of the system that
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is the slowest, and which consequently

-will give rise to the least number of

events in a simulation of given length.
The time it takes to run a simulation is
mainly dependent on the number of events
that occurs during the run. Many processes
at low levels will require a large number
of events and the simulation will be very
heavy to run.

If now the interesting properties of a
simulation of the above kind are related
to events occuring at a high level,
measurements will be difficult to make.
The studied quantities are random varia-
bles. We do therefore need a "large"
number of samples to be able to make a
statistical analy51s of the result, and
do consequently have to make a large
number of measurements. Every event, which
is of the type that makes it possible for
us to performe a measurement, will involve
a large number of events at lower levels
and will therefore occur "seldom" in theé
simulation. If the level of detail of the
processes at the lower levels couldbe re-
duced, less timeé would have to be spent
before the required number of events at
the higher level had occured and the simu-
lation would be less expensive to run. The
question is when this reduction can be
performed without lessening the accuracy
of the simulation.

4. A modelling scheme

A number of decisions can be identified in
the development of a Discrete Event Simu-
lation model based on a process approach:

- What is the aim of the model. Which
performance measures are of interest?

~ How much of the system context should be
incorporated in the model,
the border between the simulation and the
outside world be set?

- Which processes should the model consist
of?

- How detailed is it necessary to make the
model in order to be able to derive per-
tinent information?

The existence of these guestions is well
known (see for example (ZEIG 76, PREN 81)),
but there is a lack of guidelines to -
follow when answering them. The main

reason for this is probably that simulation
is applied to so many diverse kinds of
problems that general rules are hard to
find, What follows below is an attempt to
form guidelines for the limited application
of cueueing structures.

Space does not permit argumentation of
each step of the scheme, but the interested
reader is refered to (EKLU 82) for a

i e where should




detailed discussion.
Scheme
Step 1:

Identify interesting performance measures.
Set an approximate border between the
simulation and the outside world. Identify
possible processes without mixing separate
components and behaviour.

Step 2:

Perform a Deterministic Analysis as
described in the previous section, and
bring the investigation down to a level
at which one of the two endpoints are
reached.

This investigation will give the time
scale of the individual processes, the
average service time and the level at
which stochastic variables have to be
used.

Step 3:

Illustrate the outside world by identi-
fying a number of generators which create
jobs and enter them at some place of the
network.

Step 4:

Steps 1, 2 and 3 make it possible to
perform a Load Analysis as described
above.

Step 5:

Exclude from the simulation model those
centres that are not of specific interest
and which are lightly loaded.

This point has to be discussed a bit
further, since there are a few exceptions
and since it may not be quite obvious.

A server which is lightly loaded will in
most cases form no queue. The delay caused
by the server will consequently consist
almost entierly of the service time. The
randomness of the service reguests and the
arrival pattern will undoubtly give rise
to gueues at times, but the question is if
this will have any observable effect on the
performance measures that are possible to
measure in the simulation program. In most
cases it will not. When in doubt or when
the variance of service times and/or
arrival intervals can be expected to be
extremely high, keep the service centre in
the model.

Another reason to keep the centre is if it
is lightly loaded but has long service
times compared with other centres. This
can be the case if the centre has internal
parallelism making it able to serve many
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jobs, each for a long time. This time will
be almost constant due to the light load
and could be added to the service time of
the previous centre that the job has
visited. If routing is complex, this may
be unfeasible however.

Step 6:

Concatenate service times obtained in step
2 until a balanced model is obtained.

The speed of the individual processes will
determine the required running time for
statistically significant data to be
produced. If the simulation is too detailed
at the present stage, simplifications
should be made at the lowest levels by
making detailed models at low levels more
crude. This can be done by letting the
processes of one or more centres contain
fewer scheduling stateménts.

Step 7:

Simulation models are used mainly because
analytic models are too inaccurate or can~
not illustrate the beéhaviour of the "real"
system. It is therefore essential that the
simulation model indeed comprises behaviour
that is hard to model analytically. One
way to get a list of such behaviocur is to
look at approximate analytic models where
"difficult" behaviour is treated. A good
overview can be found in (CHAN 78). The
following is a list of tricky behaviour
which should be considered for incorpora-
tion if present in the "real" system:

Dependent Service Times
Special o;der of service
Priorities

Qverlapping service requests

Blocking (finite waiting room, always true
in real systems)

Parallelism, forking and joining
Flow control and routing

Experience has shown that some of these
properties are more important than for
example a correct estimation of service
time distributions (EKLU 81).

5. Obtainable results and: conclusion

The reader may have objections against the
rather crude modelling scheme proposed
above. Objections do of course exist, since
it always is possible to find cases for
which a scheme of the above kind does not
hold. But the scheme has to be related to
what simulations actually can be used for.
The most crusial steps of the scheme are
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those that omit servers and concatenate EKLU 81 Eklundh, B. "Simulation of
events to speed up the simulation and . Large and/or Complex Systems;
create fewer events. These steps will also is it Worth~while?", Proceed-
make the simulation less complex and ings of the 1981 UKSC Confer-
therefore easier to handle, verify and ence on Computer Simulation,
validate. Westbury House 1981.
Even lightly loaded servers do at times EKLU 82 Eklundh, B. "Simulation of
get long gueues and a single measurement Queueing Structures - A Feasi-
would yeild a queue length that substan- bility Study", Ph. D. Thesis,
tially differed from the average value. Department of Telecommunication
But measuring such a value is a very 8ystems, Lund Institute of
unlikely event, and unlikely events are Technology, Lund 1982.
extremly hard to estimate in a simulation.
FRAN 77 Franta, W. R. "The Process
‘The goal of a simulation study is to tell View of Simulation”, North-
something about the "real" world. An Holland, New York 1977.
unlikely event in a simulation does not
say much, if anything, about how likely GASS. 77 Gass, S. I. "BEvaluation of
such an unlikely event is in the "real" Complex Models"™, Computing &
world, and are therefore not worth Operations Research, Vol 4
measuring. The only things a simulation 1977, Pergamon Press.
can give information about are the .
quantities that have some degree of ZEIG 76 Zeigler, B. P. "Theory of
statistical significance. There are better Modelling and Simulation",
. means than simulation to investigate if an Wiley-Interscience, New York
event ever can occur in "reality". That 1976.
information is for example available
already when the model is built and there OREN 81 Oren, T. I. "Concepts and
is conseguently no reason to write a Criteria to Assess Accepta-
program and make simulations te f£ind it bility of Simulation Studies:
out. A Framework of Reference",
Communications of the ACM,
Too large and detailed models are diffi- April 1981.

¢ult to handle and it is likely that they
contain unnecessary information as well as
programming errors. The above scheme could
be used when a simulation is needed with
short notice and extensive runs have to

be made to investigate a large number of
situations, in which case a large and
heavy model would be difficult to use.
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