AN EMPIRICAL COMPARISON OF
ADVANCED EVENT FILE SYNCHRONIZATION STRUCTURES

by

Luis C. Rodriguez, Texas A&M University
Gary L. Hogg, Texas A&M University
dohn H. Blackstone, Jr., Auburn University

ABSTRACT

Recent articles have presented new event file
synchronization structures for discrete event
simulation that project performance superior to
the Tinked Tist structure used in most simulation
systems. The three newly developed structures
are the time indexed 1ist, the Two List structure,
and the TL structure. This provides an empirical
comparison of these structures and the traditional
Tinked 1ist structure, within a simulation system.
The structures were adapted to the GASP IV simula-
tion language and tested with a set of discrete
event simulations under various conditions. The
results show that all three structures proved
vastly superior to the linked list structure, with
the TL structure outperforming its counterparts.

1. INTRODUCTION

In many cases the most important factor involved
in the total execution time of a simulation model
is the time required to file an event in the event
file. Thus the computer running costs are often
strongly influenced by the synchronization mechanism
embedded in the simulation language. Most general
purpose simulation systems utilize singly or double
Tinked 1ists in order to maintain the event file
during a simulation. A problem that users face
in applying the traditional structure is that as
the event file becomes larger, the time reguired
to file or retrieve an event may become quite large.
Over the past few years several new event file
synchronization structures for use in discrete
event simulations have been presented in the
Titerature (1), (2), (3), (4), (7). These advanced

Proceedings of the 1982
Winter Simulation Conference
Highland * Chao * Madrigal, Editors

82CH1844~-0/82/0000~0189 $00.75 © 1982 IEEE

189

synchronization mechanisms can increase the efficiency
of the event filing process and reduce the computer
time necéssary to file or retrieve an event.

Three major approaches have been suggested in order
to better the linked 1ist structure currently used
in most simulation systems. These approaches are
heaps, binary trees, and time indexed lists.

The use of heaps as the filing structure to
utilize in simulation systems was suggested by
Gonnet (5). Even though heaps were shiown to be more
efficient than linked 1ists, Vaucher and Duval (7)
demonstrate that they destroy the ability to order
simultaneous events by certain secbndary ranking
methods. Wyman (8) proposed the use of the time
indexed 1ist as an event file synchronization mecha-
nism and proved that it was superior to the linked
list filing structure. The possibility of-using
binary trees was studied by Vaucher and Duval. They
demonstrated that binary trees were supefior to the
Tinked 1ist; however, they also found that the tree
structures were inferior to the time indexed list.
Franta and Maly (3) introduced the TL (Two Level)
structure, a more efficient time indexed 1list
structure with two levels of jndexing, and after
comparing it with the time indexed 1ist they con-
cluded that the TL structure was superior, except
for small event file sizes. Franta and Maly (3)
also compared their structure with heaps and found
it to be superior. Blackstone, Hogg, and Phillips
(1) developed the Two List structure which utilized
two linked lists with different filing priorities
and compared it with the time indexed 1ist in large
scale simulations. They concluded that the two
structures were comparable, with the Two List filing
structure possibly somewhat faster. The Two List
structure contains some uniquée features which make
it particularly attractive when frequent event
cancellation occurs.

The purpose of this paper is to make a compari-
son of three mechanisms for event file synchroniza-

tion structures for discrete event simulation:

(1) the time indexed Tist, (2) fhe two list method,
and (3) the TL structure. The.linked Tist structure
will also be used in the study in order to illustrate
the improvements made by the neéw structures over

the traditional approach. The comparisons will be
made by incorporating each of the filing structures
into the GASP IV simulation language and running a
set of discrete event simuTations under varying
conditions for each structure, The source listings
of the GASP IV routines modified in order to incor-
porate each of the synchronizaﬁion structures are
available from the authors on request. A detailed
description of each of the structures is first
presented, then the theoretical merits of each are
compared and finally the experimental results
obtained by the study are presented.

2. THE EVENT LIST STRUCTURES .,
The Linked List Structure

This 1inked 1ist structure is the synchroniza-
. tion procedure currently found in most simulation
systems. It consists of a Tinear list of synchroni-
zed events to be carried out in future simulated
time (Figure 1). GPSS, SIMSCRIPT, GASP IV, and SLAM
use linked lists. SLAM Il uses a binary tree. GEMS
uses the two list structure.‘:
In a forward search linked 1ist structure,
when a new event is created the new event time is
compared with the event time of the first entry
in the events list. If the event time of the new
event is less than that of the first entry, then it
is placed at the front of the 1ist. If the event
time of the new event is greater than the event
time of the first event, subsequent events are
checked in ascending order of event time. When
the first event having a larger time is located,
the new event is inserted in front of this event,
and the appropriate file pointers are updated.
Assuming a uniform event time distribution and
a constant file length n, approximately n/2 entries
are searched on the average in order to file one
event. Englebrecht-Wiggans %nd MaxwelT (2) demon-
strate that for non-uniform distribution the search
Tength of n/2 is an approximation. If the shape
of the distribution is known in advance one can
exploit the shape to choosé either forward or back-
ward searches in order to achieve a search length
of less than n/2.

190

Figure 1: The Linked List Structure

OO0

The Time Indexed List Structure

This filing structure consists of a linked 1ist
of events and a vector of index pointers indicating
the locations of events that subdivide the events
Jist into a set of unique time intervals (Figure 2).

When a new event is created, the index pointers
are searched in order to determine the time interval
in the events list where the new event will be filed.
Upon determination of the interval, the events inter-
nal to that interval are scanned in the same fashion
as the linked Tist procedure and the new event
Jocation is determined. The new event is then
properly placed into the events Tist.

When all the events in the first interval have
been exhausted by the simulation, the index poirter
associated with the first interval is redefined.

The existing final interval is scanned in order to
locate the first entry of what will be the new final
interval. Then the first interval index pointer is
redefined as the new Tast interval index pointer.

Assuming uniform event time distribution and
a constant file length n, Wyman shows that the
optimal number of index pointers is nV2 and that
on the average each of the intervals should contain
n]/2 events {8). These results indicate that
approximately n]/2 entries are searched on the
average in order to file one event in.the event file.
Englebrecht-Wiggans and Maxwell have extended these
results to non-uniform distributions, and present
a general formula for optimizing the number of
intervals. [As a part of this research the authors
have created an internal mechanism for creating a
near optfﬁa] number of indices, thereby eliminating
the need for the user to make this computation.]

Figure 2. The Time Indexed List Structure

index vector

The TL Structure

This structure is based in part on the time
indexed list and in part on the notion of balanced
trees (3). The structure consists of: (1) linked
Tist of events that is subdivided into sublists, the
last of which is an overflow sublist; (2) a linked
1ist of primary and secondary keys, where the primary
keys point to dummy events that bound sublists of
equal-sized time intervals in the events list, and
the secondary keys point to normal events that bound
sublists created by the balancing mechanism of the
structure; and (3) a vector of index pointers that
indicate the primary keys in the key 1ist (Figure 3).

When a new event is to be filed, first the index
vector is utilized to find out between which two
primary keys in the key 1list the new event time '
occurs. Then the key 1ist is scanned between the
two primary keys in order to locate the proper sub-
Tist where the new event will be filed. Finally,
the sublist of the events 1ist is scanned and the
new event is properly Tlinked into the Tist.

The notion of balancing the sublists is incor-
porated into the structure in order to limit the
number of entries which must be scanned for the
insertion of a new event. During the insertion
process, if a sublist becomes too large then the
structure is balanced by either moving the new event
into an adjacent sublist or by creating a new
sublist with an associated secondary key. These

Figure 3: The TL Structure

secondary keys are created and deleted as necessary.

When the first interval is exhausted, the dummy
event and its associated keys are redefined by
incrementing their present time frames by a fixed
time quantity. The redefined entries are then relo-
cated in the structure where their new frames are
located. Secondary keys are destroyed when their
sublists are exhausted.

Franta and Maly point out that this filing
structure is more efficient than the time indexed
Tist; therefore, under ideal conditions the average
number of entries scanned for an insertion is less
than n1/2, where n is constant file size (2).

The Two List Structures

This structure consists of two linked lists with
different filing priorities. The first file contains
a synchronized list of all the events with times
Tess than a previously determined break time. The
second file contains all the events with times
greater than or equal to the break time in FIFO order
(that is, the order in which they were created).
Thus, placing an entry in this file requires no
search (Figure 4).

Figure 4; The Two List Structure

File 1: 1.1 2.5 2.6
File 2: 18.7 5.6 3.4 14.9 6.3 12.4 12.3
Break Time: 3.0

index vector

o

key:

Q - Dummy event
C::) - Primary key
(::) ~ Secondary key

191

~

_ The filing process for a new event is simple.
First the new event time is compared against the

the behavior of each one than the example would
provide without modification.

break time. If the event time is less than the break

time then the event will be filed in the first file,
and this process is that of a traditional Tinked
Tist. If the event time is breater than or equal

to the break time, the event is placed at the front
of the second file {no synchﬁonization).

When the first file is exhausted a search pro-
cedure is invoked. This procedure first increments
the break time by some predeﬁermined or internally
calculated time interval. Tﬁis time interval may
be updated on each occasion that the search proce-
dure is invoked. The second |file is then searched
from: the front and all the edtries‘having event
times less than the new break time are relocated and
properly linked in synchronized order in the first
file.

' Assuming a constant file size of length n,
Blackstone, et. al. prove that the average number
of entries scanned per event‘is nV2 or ldss (1).

3. FILING STRUCTURE COMPARISON
Methodology ‘

In order for an event ﬂ%st filing structure to
be incorporated as part of 4} general purpose simula-
tion system, it is required to operate under a wide
variety of conditions. It is difficult to deter-
mine theoretically how a method will perform in
actual practices since many‘éimpTifying assumptions
must be fincorporated into a rigorous mathematical
analysis. An alternative method of comparison is to
adapt these structures into a general purpose simu-
lation system and to run a‘typicai set of simulations
for each structure under varying conditions. This
latter approach was employed in this paper.

The GASP IV simu]ation;was utilized as the
test vehicle not only because of the authors'

* familiarity with it, but also because it is

FORTRAN based as are many sﬁmulation Tanguages and
programs. Further GASP IV,;its forerunners and more
recent extension such as SLAM are commonly used.

Three discrete event simulations were chosen
as the test set: an inventory system simulation,
an 0il tanker fieet simulation, and a drive-in
bank simulation. Source listings and more detailed
information on these simulations can be found in the
GASP IV textbook (6). Each simulation was run under
varying event file sizes for each of the filing
structures thus providing more information as to

Structure Comparison

The theoretical comparisons in the literature
lead one to believe that the structures should have
comparable perfdrmahces. Nevertheless, many
characteristics of real problems would appear to
present some hardships to some of the structural
formats presented previously. These are discussed
below.

One problem encountered in real world problems
is that skewness in the event time distribution is
generally expected (contrary to most theoretical
comparisons). The time indexed 1ist structure is
at a disadvantage, unlike the other structures, when
this occurs. Since its interval sizes are fixed,
skewness in the event time distribution will cause
some intervals to be more densely populated than
others. These same intervals are those 'where most
of the filing will take place, thus hampering the
performance of the structure. The TL structure, by
way of its balancing mechanism, handles this problem 1
well. As the sublists grow too large it creates new
sublists, thus maintaining a reduced filing time.
Meanwhile, the Two List structure can dynamically .
update its break time increment after each first list
exhaustion. In this manner it can increase or
decrease the increment so that the first 1ist will |
approach a near optimal number of entries. |

Another problem is that of dynamic changes in
the number of events found in the event file. Again,
the structure that would appear most handicapped is
the time indexed 1ist. As the number of events in
the 1ist grows, the accomodation of the new events
in the fixed intervals will cause some of the inter-
vals to be densely populated. This should in turn
result in longer search times. The adaptiveness of
the other two structures helps to avoid the problem
of dynamic event file changes, to some degree.
Clearly the TL structure should perform better than
the Two List structure since the Two List structure
must wait for the first file to be exhausted each
time before it can dynamically update the break time
increment size. The dynamic balancing of the TL
structure is virutally immediate.

Finally, a potential difficulty found in two
of the structures (time indexed and TL) is that
they require user defined static parameter estimates
which give shape and form to the filing structure.
192 Utilizing static user defined parameters to develop

the structure is not a pleasing philosophy since: (1)

Table 1: Execution Times

the user will then need to be familiar with the filing
structure utilized; and (2) depending on the complexity
of his simulation, the required parameters may be
difficult to obtain and the performance may be good
or bad depending on whether good choices for the
parameters were made. Instead, a better form is to
make the user unaware of the filing structure used

in the simulation system by permitting the system to
provide some 'ball park' estimates in order to develop
the structural format. The authors revised the time
indexed and TL methods to include an internal estima-
tion of the required parameters. The manner in which
this was accomplished was to utilize a linked 1ist
synchronization structure until the first 100 events
were removed from the event file. At that time an
event was created that caused the system to invoke a
procedure that would estimate the required parameters
(e.g.s number of pointers) and then create tﬁe
appropriate filing structure. In this manner both

the structures were made into more general purpose
structures at a very low cost in terms of exeuction
time. The two 1ist method was initially designed to
include this user transparency and thus no modifica-
tion was required.

Looking at the different strucutres and the
manner in which they operate, one can come to the
conclusion that all three new structures should per-
form much better than the linked Tist structure. The

Inventory Simulation

Event File Size

Structure 10 100 500° 500
Linked List 9.68 220.00 341.20 3412.0
Two List 10.11 140.98 155.70 1557.0
Indexed List 11.00 97.69 124,67 1246.7
TL Structure 10.51 98.07 38.35 383.5
Tanker Simulation

Event File Size
Structure 10 100 500° 500
Linked List 12,18 252,50 393.77 3937.7
Two List 12.57 169.69 106.69 1066.9
Indexed List 12.92 136.54 126.72 1267.2
TL Structure 12,45 " 134.68 75.09 750.9
Bank Simulation

Event File Size
Structure 10 100 450* 450
Linked List 11.83 178.79 363.15 2269.7
Two List 12,29 157.73 294,10 1838.1
Indexed List 13.18 133.48 B8.56 553.5
TL Structure 11.83 113,00 75.91 474.4

* Runs with shorter simulation times, last column
contains corrected times.

adaptive abilities of the TL structure make it the
theoretical choice as the best of the filing structures
presented in this study. It seems that the time
indexed 1ist should not perform as well as the other
two newly developed structures because of jts static
nature. The experimeéntal results of this study are
presented in the next section.

Results

As mentioned previously, three examples from the
GASP IV test were chosen to benchmark the procedures.
These include two queueing systems and an inventory
system. The parameters of the arrival distributions
in the models were adjusted to produce three different
average event file sizes for each of the discrete
event simulations. Table 1 summarizes the execution
times in seconds for all the runs made on an AMDAHL
470/V6 at Texas A8M University,

193

Since the simulations with large event file
size require very large execution times, the simula-
tion run length for these ‘cases was reduced. These
execution times therefore had to be corrected in
order to make comparisons to the other cases. These
cases were run 1/10 of the run length and thus the
execution time is multiplied by 10. This will result
in some magnification of the experimental error. In
the table, the corrected execution times appear as
the last entries in each row.

It can be observed from the tabuliated results
that the three suggested structures performed vastly
superior to the Tinked list structure. This obser-
vation is better illustrated by the graphs of
execution time, t, (in seconds) versus event file
length, n (Figure 5). These graphs distinguish
clearly the differences in efficiency between the
structures. The results suggest that the TL struc-
ture is far superior to all its counterparts. The
time indexed Tist and Two List structures performed
about the same, except in the drive-in bank (multi-

- channel queue) simulation. Th%s seems a Tittle
surprising, since the theoreti¢a] foundations tend

to lean towards the Two List sﬁructure. After

close examination, it appears that the drive-in bank
simulation provided very good initial parameter es-
timates for the development of the time indexed 1ist
structure and the simulation also behaves in a rather

uniform fashion, as the intervals in the time indexed

1ist approach contained about the same number of
entries. These characteristics permitted the time
indexed 1ist structure to'pérfdrm‘nearly at its
ideal for this example such that it approached the
TL structure. ‘

Figure 5: Test Results

Inventory Simulation
4000, ‘

30004
t 20004

10004

100 200 300 400 500

n
Tanker Simulation
4000, i : . A
30004
t 200¢ Key:
c A- Lfnked
1000 B List
D B - Two
List
v v T " € - Time
100 200 300 400 500 Indexed
n | List
Bank Simulation D - TL
4000y ‘ Struc-
A | ture _
30001
’ A
t 20001 B
10001
c
D
100 200 300 400 500

194

4, CONCLUSION

Theoretical examination of the different filing
structures examined in this study suggested that they
would outperform the 1inked 1ist structure currently
utilized in most simulation systems, with the TL
structure probably outperforming its competition.

The experimental results for some realistic examples
obtained in this study support the theoretical con-
clusions. The only apparent discrepancy between the
theory and the experiments occurred when the time
indexed list vastly.outperformed the Two List struc-
ture for one case. Both of these structures should
perform about the same according to the theory.

There is a need to incorporate filing structures
that are more efficient than the Tinked Tist into
simulation systems. This report comprises the first
computational study of advanced event filing struc-
tures and provides strong evidence that these methods
should be incorporated in general simulation programs.
It is hoped that this paper will motivate others to
consider incorporation of advanced filing structures.
It seems apparent that substantial amounts of computer
time and money can be saved through more widespread
use of these mechanisms.

REFERENCES

1. Blackstone, J. H., G. L. Hogg, and D. T. Phillips,
“A Two List Synchronization Procedure for
Discrete Event Simulation," to appear in
Comm. ACM 24:12, Dec. 1981.

2. Engelbrecht-Wiggens, R. and W. L. Maxwell,
“Analysis of the Time Indexed List Procedure
for Synchronization of Discrete Event Simula~
tions," Manage. Sci. 24:13, Sept. 1978.

3. Franta, W. and K, Maly, "An Efficient Data Struc-
ture for the Simulation Event Set," Comm ACM
20:8, Aug. 1977.

4, Franta, W. and K. Maly, "A Comparison of Heaps
and the TL Structure for the Simulation Event
Set;" Comm. ACM 21:10, Oct. 1978.

5. Gonnet; G. H., "Heaps Applied to Event Driven
‘Mechanisms," Comm. ACM 19:7, Jul. 1976.

6. Pritsker, A. A. B., The GASP IV Simulatjon Lan=
guage, John Wiley & Sons, Inc., New York,
1974.

7. Vaucher, J. G. and P. Duval, "A Comparison of
Simulation Event List A1gor1thms," Comm. ACM
18:4, Apr. 1975.

8. Wyman, F, P., "Improved Event Scanning Mechanisms
for D1screte Event Simulation," Comm. ACM 18:
6, Jun. 1975,

