MICROSIM: A BASIC BASED, DISCRETE EVENT SIMULATION

LANGUAGE FOR MICROCOMPUTERS

Abstract

MicroSim is a simulation language developed specif-
ically for use on microcomputers. The package is
written in Basic, a language commonly found on
microcomputers, and is a generalized discrete
event simulator. The MicroSim language provides
the analyst with all of the necessary computa-
tional features such as random number generation,
time keeping, etc. that are used in simulation.
This language is event oriented and allows the
user to write subroutines in Basic to describe
discrete events. The language also allows for lim-
ited continuous modeling by the use of linear dif-
ference equations,

INTRODUCTION

Since the first "personal computer" appeared in
the market place some five years ago, the capabili-
ties of these machines has increased greatly. No
longer considered a toy, these devices are now
being used by corporations for computational tasks
such as planning, control, engineering analysis,
and simulation. The need for a simulation tool
that will run on a microcomputer has arisen from
the increased presence of the small computers per-
forming other tasks in both industry and academia.

Developing simulation models on a microcomputer
using a general programming language such as
Basic, FORTRAN or Pascal can be very tedious and
will usually result in a model that is difficult
to revise. A high level simulation language speci-
fically designed for microcomputer use is needed.

This language should provide the user with the
advanced computational features such as random
deviate generators, time and variable tracking,

trace controls, queuing, and other features found
in simulation models. MicroSim is a collection of
Basic routines that will provide the simulation
analyst with these features. These routines will
be discussed individually later. Because most
microcomputers have a maximum storage capacity of
64K bytes, the MicroSim package has been kept

Proceedings of the 1982
) Winter Simulation Conference
Highland * Chao * Madrigal, Editors

82CH1844-0/82/0000-0103 $00.75 © 1982 IEEE

103

Mark L. Spearman
Superior 0il Company
Houston, Texas

small in size to allow for the data requirements
of the model. The structure of MicroSim results in
an organized approach to modeling by requiring the
user to model the simulation activities in terms
of discrete "events." As in the FORTRAN based lan-
guage, GASP IV, the user writes event subroutines
to describe the modeled system. The world view

embodied in the discrete event orientation con-
sists of modeling a system by describing the
changes that occur in the system at discrete

points in time. The state of the system is defined
by a set of variables called the system image.
The system image in a MicroSim model is composed
of two types of variables: user defined varisdbles
and MicroSim variables. An isolated point in time
where the state of the system can change is called
an event time and the associated logic for pro-
cessing the changes to the system image is called
an event, A discrete event model of a system is
constructed by defining the events where changes
in the system image can occur and then modeling

the logic associated with each event type. A
dynamic portrayal of the system is produced by
causing system image changes according to the

logic of each event in a time ordered sequence.

The two types of events 'that are found in MicroSim

models are scheduled events and crossing
events. Scheduled events are generated Dby
event entities which are Ffiled (scheduled) in
an event file. Each event entity has a set of
at least two attributes. The first attribute is

always the event time. This is defined either
in the model initialization step or within the
logic of an event before the event entity is filed
in the event file. The second attribute is called
the event code. This code is used to reference
the appropriate event logic which the user has
written in a Basic subroutine. Other attributes
are available for the user to define to further
specify the event. Through judicious use of these
successive attributes the user can create general
event subroutines which can function for a number
of events within the simulation. The simulation
progresses wheh the MicroSim Executive routine
removes the next chronmological event entity and

MICROSIM {continued)

executes the appropriate even:t logic as specified
by the event code. These imstructions represent a
change to the system by alter.:-ing variablés in the
system image. Basically, schéduled simulation us-—
ing MicroSim proceeds as follows:

ENTITIES
having
ATTRIBUTES
cause
EVENTS
which alter the
'SYSTEM IMAGE..

|
As an example, consider a simulation to determine
the availability of a given |system which is sub-
ject to failures. An event entity which represents
the transition from an unfailed state to a failed
state (i.e. a failure event) will have attributes
for 'the failure time, an event code (to reference
the failure event logic) and perhaps an equipment
identifier. By using the third attribute as an

equipment identifier, the user can write a general -

"failure" event for more than one component. This
event will cause the failure of the specific equip-
ment by changing the discrete variable in the sys-—
tem image which represents the status of the
equipment, This example will be explored more ful-
ly with an actual MicroSim model,

Crossing events are the second type of event found
in MicroSim models. Although scheduled events
could be used in their place, crossing events are
more efficient in certain modeling applications,
These events are generated yhen a continuous vari-
able, represented by a difference equation,
crosses a specified wvalue in a specified direc~
tion. Thée MicroSim EXECUTIVE routine detects and
calculates the time of the crossing and then calls
the appropriate event logic. The event then pro-
ceeds 1like a scheduled eyent. Crossing events
drive the simulation as follows:

CONTINUOUS VARIABLES !
represented by

DIFFERENCE EQUATIONS
‘ which have crossed

DEFINED VALUES

cause EVENTS
which then change
the SYSTEM IMAGE

The shutting down of an oil well because of high
inventory is an example of a crossing event. Here
the inventory which is represented by the contin-
uous variable I(t), is calculated by the equation:

1(t) = I(ty) + PR¥(t-ty)

where t is the current time, t. is the time of
the previous update, and PR is ehe pumping rate.
This difference equation would be incorporated
into the MicroSim model in a special subroutine
called DIFFEQ (GOSUB 19000) where the user codes
the equation using MicroSim variables. In an ini-
tialization step the user defines the crossing
events, Parameters of these events are the identi-

fier for the equation used, the value to cross,
|

)

104

and the direction of the ctossing. After the
crossing event has been detected the changes to
the system image occur like a scheduled event. In

‘this case the variable PR will most likely be set

to zero which, in effect, turns the pump off.

THE MICROSIM SIMULATION LANGUAGE

Because most microcomputers have Basic interpret-—
ers available, the MicroSim language was written
using Microsoft Basic and runs on a Radio Shack
Model II microcomputer. To insure the portability
of the package, none of the special features found
in Microsoft Basic have been used in MicroSim.
Using Basic does present problems that are not
found in FORTRAN. Because all of the routines are
in "common" a variable naming convention is re-
quired, This was solved in MicroSim by declaring
that all wvarisbles starting with the letters A
through N are MicroSim variables and all others
are available to the user, This eliminates the pos~-
sibility of the user accidently using a MicroSim
variable name an event routine. A second problem
is that subroutines in Basic are distinguished by
line numbers. The FORTRAN statement, CALL FILE(1),
is more meaningful than the equivalent in Basic,
GOSUB 13000. For this reason the MicroSim documen-
tation and this paper refer to the Mi¢roSim subrou-
tines by déscriptive names as well as line
numbers,

To use the MicroSim package the simulation analyst
first loads the MicroSim Basic code into the RAM
of the microcomputer, The user then writes the
Basic code needed to describe the events of the
model as well as other initialization, comntrol,
and display routines. Also required is a '"Main"
program which calls the MicroSim EXECUTIVE rou-
tine. This is done by the Basic statement, GOSUB
11000, With the model entered into the computer,
the analyst can now run the model., After the Main
routine calls the MicroSim EXECUTIVE the simula-
tion proceeds as follows:

1, Initialize all "sizing variables" with de-
faults and call user routine, INIT1 (GOSUB
20000), to change from default. Sizing vari-
ables are used to allocate space for the
arrays used in MicroSim.

Set up filing structure for the Event file
and any other user files.

Call the second user initialization rou-
tine, INIT2 (GOSUB 20500), to initialize
certain MicroSim variables and to file any
initial events. The model can allow for us—
er interaction at this point by allowing
for parameter input from the keyboard.

4. Display the MicroSim Menu.

2.

The MicroSim menu provides the user with features
to allow for verification and debugging. The menu
is displayed in figure 1.

MICROSIM (continued)

MICROSIM MENU

1. DISPLAY USER SYSTEM.

2. FILE/REMOVE ENTITIES INTO/FROM FILES.
3. SET TRACE PARAMETERS.

4. DISPLAY CONTENTS OF FILES.

5. CLEAR FILES.

6. REVIEW/UPDATE CROSSINGS AND EQUATIONS.
7. RESUME SIMUIATION.

PRESS NUMBER OF SELECTION AND <ENTER>?
Figure 1

The first selection calls the user written rou-
tine, TRACE (GOSUB 23000), which is used to dis-—
play intermediate results of the model and/or to
provide for interactive input. The second selec-
tion allows the analyst to perform filing func-
tions. The third option is used to set the trace
parameters which control the frequency the
EXECUTIVE routine calls the user written TRACE rou-
tine. The user can select options that call TRACE
either after each event is processed, or at spec-
ified time intervals, or whenever a logic flag
(LF) is set within an event. The last option
allows the user to pinpoint the conditions that
cause infrequent occurrences which is particularly
useful in debugging and in model verification.
Option four allows the user to examine the con-
tents of any or all of the files either on the
screen or dumped to a printer. The fifth option is
used to remove all stored entities from all of the
files., Selection six allows the user to review the
current and previous status of the difference equa-
tions used in the model as well as the conditions
define crossing events. The last selection is used
to resume the simulation by returning control to
the EXECUTIVE routine. Because of these interac-—
tive features, MicroSim provides the user with ca-
pabilities that are usually found only within
large (and expensive) mainframe simulation pack-
ages. The user may halt the simulation at any time
during execution by pressing the "M" key which
will cause the EXECUTIVE routine to return to the
Menu. At this point the user can examine all perti-
nent variables in the simulation., He can also set
up tests by filing events directly into the event
file and resuming the simulation. This allows for
greater confidence in validation of the model with-
out the use of a trace printout.

When option 7, Resume Simulation, is selected, con-—
trol over the simulation is returned to the
EXECUTIVE routine. The EXECUTIVE first checks the
event file and records the time of the next event
if one is scheduled. It then updates the differ-
ence equations by calling DIFFEQ (GOSUB 19000) and
determines if a crossing has occurred before the
time of the next scheduled event. If so, the sim-
“ulation is wupdated to the time of the crossing,
otherwise it is updated to the time of the next
scheduled event. The EXECUTIVE also determines
whether _the TRACE routine should be called and
when. The simulation proceeds in this manner until

the current simulation time exceeds the predefined
end of simulation time (Basic variable FT) or the
end of simulation flag (Basic variable ES) is set
to a positive value, or it is interrupted by the
user, When the simulation is ended the EXECUTIVE
calls the user routine, FINISH (GOSUB 24000). This
routine is used to report results such as
statistics collected during the run and the final
conditions of the model. .

To use MicroSim, the modeler will make use of
three types of variables that are used within the

MicroSim routines. These are sizing variables,
information variables, and control variables.
Sizing variables are wused to dimension the
MicroSim arrays. These variables are defined
below:

Sizing Variablées

Name Description

NA Number of attributes for' each entity stored
in the MicroSim files.

NE Maximum number of entities to be stored in
all of the files at any one time.

NF Number of files to be used in the model in-
cluding the event file.

NK Number of crossing events defined in the
model.

NQ Number of difference equations defined in
the model.

NR Number of random number streams used in the
model.

MicroSim information variables contain information
that is pertinent to the status of the model.
These variables may be accessed by the modeler but
should not be directly changed within an event
routine,

Information Variables

Name Description

CT Current simulation time.

LT Time the simulation was last updated,

CK Used to indicate which crossing’ event has

. been detected.

v Deviate returned from RANDOM (GOSUB 12000).

EQ(i) Current value of the ith difference
equation.)

EL(i) Value of the ith difference equation at the
last simulation update,

FE(i) Pointer to the first entity stored in file
i.

LE(i) Pointer to the last entity stored in file
i,

MN(i) Number of entities stored in file i.

The control variables are used to control the sim-

ulation and act as passing arguments for the

MicroSim subroutines.

Control Variables

. Name Description

AT(i) Attribute buffer used to store an entity
before it is filed into the MicroSim
files. .

AR(i) Pointer to the ranking attribute for the

105

ith file. All MicroSim files are ranked
low value Ffirst on this attribute with
FIFO as tie breaker,

I
MICROSIM (continued)

!
i
|

|

CR(i,j) Array of parameters for the ith random
number stream.

ES Setting ES to & positive value in an
event will terminate the simulation.

F1 Used as a passing .variable for various
routines to indicate a particular
MicroSim file. :

FT End of simulation time. The simulation
will terminate whenever the CT is greater
than FT,

KK(i,j) Array of parameters used to define the
ith crossing event,

LF Causes the EXECUTIVE to call the TRACE
routine when set to a positive value in
an event, ;

MF Causes the EXECUTIVE to return to the
MicroSim menu when set to a positive
"value. ‘

N Passing argument- fér filing routines to

indicate the location of entity within
MicroSim files.

MICROSIM SUBPROGRAMS

]

The principle MicroSim subprograms that are avail-
able to the modeler are listeéd below.
Name Line Description

{
Routine , which controls
progress: of the simulation.
Routine that is used to gener-
ate a random deviate (Basic
variable DV) which can be used
in user coded events, RANDOM
can generate uniform,
exponential, normal, weibull,
poisson,: erlang, and
triangular deviates. The
parameters for the ith random
number set are initialized in
the CR(i,j) array in -the INIT2
{GOSUB 20500) routine.
Allows the modeler to file the
contents of the attribute buff-
er, AT(i), into the MicroSim
file defined by ¥I,
Allows the analyst to program
a pause within an event, This
allows the user to either con-
tinue with the simulation or
to return to the menu.
Allows the copying of the Nth
entity from the MicroSim files
into theé AT(i) buffer,
Allows 'the modeler to remove
the Nth entity from the
MicroSim file, FI, without dis-
turbing the contents of the
AT(i) buffer.
This routine returns the loca-—
tion, N, of a specific entity
within the MicroSim files
based on specified criteria.
Once located the modeler may
use thee COPY of REMOVE
routines. ‘

EXECUTIVE 11000

RANDOM 12000

FILE 13000

PAUSE 13500

COPY 14000

REMOVE 17000

LOCATE 15000

the

106

‘Name

USER WRITTEN SUBPROGRAMS

MicroSim requires that the analyst write a number
of specific routines depending on the model. All
of the routines have defaults within the MicroSim
package so only those needed in the model must be
written.

Line Description

INIT1 20000 Used to define all sizing vari-
‘ ables which are used in dimen-
sioning of MicroSim arrays.
This routine must only be writ-
ten if the user wishes to
change from default.
Used to initialize any dimen-
sioned MicroSim variable and
all user defined wvariables.
Can also be used to file any
initial events into the event
file.
Used compute
value of any
equations,
Is called by the EXECUTIVE and
is used to call the appropri-
ate event routine.
Used to display or print inter-
mediate values. This routine
can be made interactive to al-
low for user intervention and
decision making during the
simulation.
Used to display or print
summary report for
simulation.

INIT2 20500

19000 the current

difference

DIFFEQ to

EVENT 22000

TRACE 23000

FINISH 24000 the

the

EXAMPLE OF A MICROSIM MODEL

The concepts of MicroSim are best demonstrated
with the use of a simple example.

The purpose of this example model will be fo deter-—
mine the expected availability of a component that
is subject to failures. Assume that the distribu-
tion of the time to failure is distributed as a
Weibull with a location parameter of 400 hours and
a shape parameter of 3. This yields an expected
time between failures, TBF, of 357.36 hours. If
the repair time distribution is triangular with a
minimum of 5, a mode of 10, and a maximum of 20,
then the expected time to repair, TTR, will be 15
hours. Therefore the availability will be:

357.36 = 0.960

357.36+15

A = TBF =

TBF+TTR

The simulation should converge to this value after
sufficient run time. For this model the. run time
will be 10000 hours. The user defined variable,
ST, will denote the status of the component with 1
representing the unfailed state and 0 the failed
state. The states of the model and their respec-—
tive transition events are shown in figure 2.

MICROSIM (continued)

failure event

repair event

Figure 2

There will be two events defined in the model. The
first one will be a failure event. This will arbi-
trarily have an event code of 2 (1 is reserved for
crossing events). The other event will be the re-
pair event with an event code of 3. The logic of
the events is as follows:

Failure Event (Event code 2)

1. Shut down component by setting the .user vari-
able, ST, equal to zero.
2. Schedule repair event.

Repair Event (Event code 3)

1. Bring up component by setting ST equal

to one.
2. Schedule next failure. :

A difference equation may be used to compute the
total time in the unfailed state. At the end of
the simulation, EQ(1) will contain the total time
that the component’ was in an unfailed state. This
equation, using both MicroSim variables and the
user defined variable, ST, will be:

EQ(1) = EL(1) + ST#(CT-LT)

Then, using CT for the total elapsed time, the. sim-
ulated availability will be:

A = EQ(1)/cT for CT > 0
In the user routine, INIT2 (20500), the parameters
for RANDOM must be defined. These are stored in
the array CR{i,j) and are given below:

Event I cr(1,1) ,2 +3 .4 5

mode/mean min max shape type
Failure 1 400 0 1820 3 4
Repair 2 10 - 5 20 0 7

INIT2 will also be used to file the initial fail-
ure event that starts the simulation,

Below are the listings with remarks of all of the
Basic routines that are written by the user. Note
that a colon is used as a statement delimiter.

T 20520

" EVENT

23020

107

MAIN Program

100 REM MAIN ROUTINE
110 GOT011000 :REM CALL MICROSIM EXEC

DIFFEQ Routine

19000

EQ(1)=EL(1)+ST*(CT~LT)
19010 :

RETURN.

INIT1 Routine

NA=2:NE=2: NF=1:NK=0: NQw1: NR=2
RETURN

20000
20010

IﬁiTZ Routine -

20500
20510

DATA 400,0,1E20,3,4 :REM SET DISTN PARMS
FOR X=1TOS5:READ CR(1,X):NEXT X

DATA 10,5,20,0,7

FOR X=1TOS5:READ CR(2,X):NEXT X

REM SET STATUS TO ON

ST=1

REM FILE FIRST FAILURE

N=1:GOSUB 12000 :REM CALL RANDOM FOR FAILURE
AT(1)=DV:AT(2)=2 :REM FILL AT BUFFER
FI=1:GOSUB13000 :REM FILE IN EVENT FILE
FI=10000 :REM SET FINISH TIME

RETURN

20530
20540
20550
20560
20570
20580.
20590
20600
20610

Routine

22000
22010
22100
22110
22120
22130
22140
23150
22160
22170
22180
22190
22200
22210
22220
22230

ON AT(2) GOTO 22010,22100,22170
PRINT"ERROR, AT(2) = 1":STOP
REM FAILURE EVENT

ST=0

REM CALC TIME TO REPAIR
N=2:GOSUB12000 : REM CALL RANDOM
AT(1)=CT+DV:AT(2)=3

GOSUB13000 :REM FILE REPAIR EVENT.
RETURN .
REM REPAIR EVENT

ST=1

REM CALC TIME TO NEXT FAILURE
N=1:GOSUB12000
AT(1)=CT+DV:AT(2)=2

GOSUB13000

RETURN

TRACE Routine

CLS: REM CLEAR SCREEN

PRINT"TIME = ";CI;"COMPT = ";ST
PRINT"AVAILABILITY = ";

IF CT>0 THEN PRINTEQ(1)/CT ELSE PRINT 0
GOSUB13500

RETURN

23000
23010

23030
23050
23060

FINISH Routine

24000 REM PRINT MESSAGE, CALL TRACE AND STOP
24010 CLS:PRINT"END OF SIMULATION":PRINT:PRINT
24020 GOSUB 23010

24030 STOP

MICROSIM (continued) |

RESULIS I

The final output is shown in figure 3.

END OF SIMULATION

TIME = 10132 GOMPT = 1 |
AVATLABILITY = .968589

HIT ENTER TO CONTINUE.

Figure 3 i

t
|

. . .
The model and the MicroSim routines used about 12K
bytes of memory. The total éxecution time for the
run was 24 seconds.

CONCLUSIONS

MicroSim provides the microcomputer user with a
general simulation tool. Although MicroSim does
require the user to be familiar with details of
the language such as variabie names and line num-
bers, it has features which ,make the modehng task
very efficient. Using the interactive features the
analyst can qulckly develop, debug, and verify a
simulation model, Models developed on microcomput-
ers are portable and can be‘made very user friend-
ly. The use of mcrocomputers for simulation is
extremely cost effective especially when the model
needed is not terribly large and does not draw up-
on existing data sources. As microcomputers become
more abundant so will the simulation applications
which utilize them.

108

REFERENCES
(1) Shannon, Robert E., Systems Simulation the
Art and Science, Prentice~Hall, Inc.,

Englewood Cliffs, N.J., 1975
(2) Pritsker, A, Alan B,, The GASP IV Simulation
Language, John Wiley & Sons, Inc., New York,
1974

(3) Spearman, Mark L., "Dynamic Interactive System
Simulation: Simulation as .a Tactical Decision
Making Tool", Summer Computer Simulation
Conference, Seattle, Washington, Aug 1980

(4) The MicroSim User's Guide, 1Industrial

Management Consultants, 15223 Woodhorn, Suite

200, Houston, Texas, 77062, 1981

(5) Kapur, K. C., Lamberson, L. R., Reliability
in Engineering Degign, John Wiley & Sons, . New

York 1977

