ASSE ~ ADA SIMULATION SUPPORT ENVIRONMENT

Abstract

An Ada Simulation Support Enviromment (ASSE)
presented. It covers all forms of combined continous
and discrete modeling techniques, including a trans-
action flow part. The ASSE is applicable on two
levels: on a lower level using different subprogram
packages and on a higher level, using interactive
model design and verification packages as well as
interfaces to data base managers, graphics and sta-
tistical analysis systems. For the 1lower level
packages the stress is layed on clear, simple, uni-
versal and nonrestricted concepts; for the higher
level packages on the fact, that simulation is a
human activity, where the "man in the middle" has to
be supported.

INTRODUCTION

We present in this paper a design of a Simulation
Support Enviromment. The computer language we have
chosen for this project is Ada. The basical layout
for this design is similar to the APSE (Ada Program-
ming Support Environment (14)}) concept. There, the
programming language Ada lays in the center and the
supporting tools are grouped around this center in
different layers. Here, different packages are
grouped in a hierarchical and parallel manner to
support the simulation model design, the software
development process, the data analysis and the model
programmers.,

Background

There are in principle three methods of proceeding,
when doing simulation on a digital computer (which

methods certainly cannot always be differentiated
exactly).

(a) one can choose a general purpose language like
FORTRAN, PL/I, Algol, APL ... and write ones own
program. There are millions (or more?) of examples
of FORTRAN programs (including some dozens of pro-
grams of the author himself);

Proceedings of the 1982
Winter Simulation Conference
Highland * Chao * Madrigal, Editors

82CH1844~0/82/0000-0089 $00.75 © 1982 IEEE

is

89

Heimo H. Adelsberger

University of Economics
Vienna, Austria

(b) one can choose a general or specific simulation
language like Simscript, GPSS, Simula ..., one has
to 1learn this language and wrlte ones program (much
more easily than in (a));

(c) one can use a package system or a kind of
preprocessor, written in a general purpose language,
one has to learn to use this system and/or pre-
processor and write ones program (much more easily
than in (a)), and has not to learn a new language;
examples are GASP and Simpas.

SLAM is somewhere in betwéen, perhaﬁs more close to
(b) then to (e).)
A well designed solution of the package or prepro-
cessor principle is in our opinion by far superior
to the other possibilities.

Arguments
If we consider the historical background, when e.g.
Simula and Simscript have been designed, the reason

hasn't been just only to make a simulation language,
but to overcome the deficiencies of the then availa-
ble programming languages (mainly FORTRAN). From the
preface to the first edition of "The SIMSCRIPT IIX
Programming Language":

"SIMSCRIPT II is a rich and versatile computer pro-
gramming language well suited to general programing
problems, though designed originally for discrete-
event simulation applications." (06)

For GPSS we can observe, that from the very begin-
ning there have been tendencies to break up the
rigid 1limitations of such a special purpose simula-
tion language, first in providing assembler inter-
faces, then through embedding GPSS in a more general
simulation language, which itself can be embedded in
a §eneral high level programming language (PL/I)
(10).

On the other hand neither the data nor the control
structure of a simulation program differs essential-
1y of programs in other fields. But what is typical
for simulation programs? On the one hand well known

tasks, used in different areas of data processing

Ada Simulation Support Environment (continued)

(like queue handling), on the other hand more spe~

cific problems (like to manage a next event logic in
discrete simulation).

‘Therefore a programmer, . who has to write simulation
programs, is primarily interested in as good a pro-
gramming language as possible, and-in good and easi~
ly applicable tools, which support all his needs.

Now we will (briefly) discuss a hot problem: What
means a good programmlng language and are there
(m)any? In owr opinion a good programming language
reflects the state of the art in programming techni-
ques and in software engineering (or the state of
the art not too long ago!); has a not too compli-
cated structure (or the approach to a very useful ,

standardized subset of the language is not to hard)
and is wldely used, i.e. compjlers are available on
practically every computer. Is there any? No! Is
there any chance that there will be a language,
vhich comes close to these regirements? Yes, we
hope, that Ada will be this language, because we
believe, that if it isn't Ada, there will be no
other such language for the next ten years.

What does Ada offer?

From the introduction to the "Reference Manual to th
Ada Programning Language" :

"... Thus the 1language is a modern algorlthmlc
language with the usual control structures, and the
ability to define types and subprograms. It also
serves the need for modularity, whereby data, types,
and subprograms can be packaged. It treats
modularity in the physical sense as well, with a
facility to support separate compilation.

In addition to these aspects, the language covers
real time programming, with facilities to model
parallel tasks and to handle exceptions. ...

Ada was designed with three overriding concerns: a
recognition of the importance of program reliability
and maintenance, a concern for programming as a
human activity, and efficiency. ...

Concern for the human programmer was also stressed
during the design. Above all, an attempt was made to
keep the language as small as possible, given the
ambitious nature of the application domain." (13)

What are the most important features of Ada? Data
abstraction and information hiding (packages, gene-
rics, private types, overloading, redefination of
operators), parallel processing and synchroniza<
tion, separate compilation.

Many critics mean, that the Ada design team has
failed in keeping the complexity of the language
urider control. But - and that is our personal view -
a language with a complex structure, and therefore
certainly not simple, simplifies the work, if com-
plex and large software products are to be deve-
loped.

But to prevent seeming too enthusiastic: we have
some criticism ourselves. We will shortly touch one
problem, because it is strongly related to our

90

project and concerns the important principle of data
hiding or encapsulated data. Data hiding is designed

to prevent the user from unintentionally erroneus

access of data. Ada supports this idea in form of
packages and (limited) private types. The basic
principle in Ada is hierarchical: a (standard)
package - like a queue manager - hides its informa-
tion (e.g. about pointers) from the calling pro-
gram. Access to the data is only possible via sub-
programs, provided by the package. Therefore a hie-
rarchical model: The using program on top, the hi-
ding package underneath! We think, that there are
also symmetrical situations, where two packages
share common resources and each package 1likes to
hide its information from the other package. There
is no possibility in Ada to implement such a situa=
tion in a natural way without producing an over-
head. We shall come back to this point in discussing
our entities - attributes ~ sets ~ manager.

A short but incomplete survey about Ada for usetrs
not familiar with Ada:

Ada is a language with a context-free syntax and

with identifiers of in principle arbitrary length to
provide a readeable code, and it is based on the
principle of strongly typing.

(1) Scalar types: enumeration, character, boolean,
integer, floating and fixed point reals; arrays and
records ‘as composite types with components of any
types and with an optional dynamical structure;
access (= pointer) types.

{2) Overloading of subprogram identifiers (procedure
and function/operator symbols) and enumeration lit-
terals. Subprograms can be called recursively and
are reentrant.

(4) Packages: information hldlng and exact defini-
tion of the interface, which is given in the visible
part of the package declaration; private and limited
private types.

(5) Tasks: parallel processing with entry, accept,
select, delay and abort statements and the possibi-
lity to set priorities.

(6) Seperate compilation.
(7) Exeption handling.

(8) Generic program wnits.

THE ADA SIMULATION SUPPORT ENVIRONMENT

The DoD Ada project not only consists of the 1lan-
guage description, it specifies as well requirements
for the Ada Programming Support Ehv1ronment (APSE),
known as "Stoneman”.

The structure of a APSE is represented in form of
layers or levels:

the hardware and host software as
Minimal Ada Program Support Envi-
which provides & minimal set of
and support Ada programs, lies

In the center lies
appropriate. The
ronment (MAPSE),
tools to develop

around a Kernel (KAPSE), which consists of communi-
cation and run-time support functions, and which
enables the execution of an Ada program. In the
outer layer, the APSEs, a fuller support of particu-
lar applications and methodologies are provided.

We have chosen the same concept for our project of a
simulation support package system, which itself as a
particular application will lie in one APSE. We call
this package system Ada Simulation Support

Enviromment (ASSE) in accordance to the similar
KAPSE ~ ¥ .PSE -~ APSE concept.

level 0O:

YHardware and host software as appropriate": the Ada
programming language and the VMAFSE.

level 1i:

Kernel Ada Simulation Support Environment, which
provides utilities to execute simulation programs:

queue manager: a general queue management

random variates: a package to generate random
nunbers and variates from specific distributions

simple statistics: perform basical statistical
computations (mean, variance, maximum, minimum,
histograms ...) for time- and value weighted variab-
les

level

Minimal Ada Simulation Support Enviromnment, consists
of the actual simulation packages:

eas manager: a general entities - attributes -
sets manager

simulation control: a powerfull package, which
allows to control all types of combined continous,
discrete event, activity scanning and process orien-
ted models

transaction flow manager: a package to build mo-
dels similar To GPSS, C-GERT and the network part of
SLAM

level 3t

fda Simulation Support Enviromment, which consists
of packages to support the whole task (software
engineering process around a simulation project from
system data analysis and preparing model input data
over interactive model design and verification until
validation together with model output data analy~
?igg, therefore supporting the "man in the middle".
1

A list of the packages:
model design

model verification
model documentation
screen_printer 10

data manager

graphics
statistical analysis

Where standard packages can be used, we provide just
interfaces to these standard packages, specifically

"tuned for simulation purposes. We expect, that soon

packages for statistical analysis, graphics, data
base managers and use input -~ output systems will be
available in Ada. The later, a powerful, universal
and uniform screen 1/0 and printer output package is
developed by ouverselves, because we think, that such
a package is a sine qua non for good software pro-
ducts., But the heart of the ASSE consists of inter-
active model design; documentation and verification
packages, which, under the control of an Ada syntax
and semantic check(!) renders possible a fast,
simple and well structured model design and documen-
tation, and includes as well a powerful facility to
test and to update a model interactivily.

We can not give in this paper a full documentation
of the ASSE (01). We pick up some important parts of
our design and give some rationals of our form of
implementation. We explain the eas manager more in
detail, to show, that the complexity of Ada simpli-
fies the user's work and renders possible a clear
and self documenting form to write programs. We give
an example too, which shows how the Ada Simulation
Support Enviromment is used. At last, we give a
glimpse of how the transaction flow manager is de-
signed and how it can be used. ’

But first, we are going to expose the main ' guide~-
lines for our packages:

(1) Our packages shall be usable at two levels:

-- on a high level, which is very user~friendly and
where the usage is decidely simple, but with a
possible disadvantage of occasional limitations;

-~ on a low level, where a deeper insight of all
concepts is neccessary, but with the advantage, that
the user can do practically everything he wants to
do (e.g. to use the eas manager in a non simulation
context just to keep track of different entities and
set/queues; or to exchange our queue manager with an
user written package to test for instance different
gueuing algorithms for the event calender).

We feel, that the effort to use our packages on the
lower level is e.g. for discrete event models a
little bit higher than in GASP/SLAM, Simscript or
Simpas; for the transaction flow manager much higher
than in GPSS and higher than in Q-GERT/SLAM; but
with the advantage of using such a powerfull lan-
guage like Ada and the additional advantage, that
every exceptional situation in a simulation model
design can be mastered.

On the higher level, using the interactive model
design package, the effort to do simulation is much
lower than in the above .mentioned languages, and
here the user comes to the total advantage of the
power of our Ada Programming Support Envirorment.
Just one example: There 1is no need anymore for
transaction flow models, that the user has to act as
his own interpreter to transform his network model
in a statement form (like in GPSS or SLAM). In our
system, the network will be designed graphically at
the screen, using a light pen, if possible, and will
be debugged in the same manner too.

(2) user orientation and simplicity

Ad; Simulation Support Environment (continued)

A software designer has many choices how to imple-
ment such a package system. We stated, that the
user's interests, who should be able to use these
packages in a way as naturally and simple as possib-
le, has to be the principal aim.

(3) no (unnecessary) limitations and a clear, well
structured, approach

We shall describe by two examples, what me mean:

(a) eas_manager: no limitations on numbers of queves
and entities (apart from memory limitations); no
differencies between permanent and temporary enti-
ties; one entity can be a member of one, more or no
Queue at all; queues can contain entities of diffe-
rent kinds. ‘

b) transaction flow manager: The network as a
wiocle, a part of a network and one node are objects

of the same type! This brings the big advantage that .

all the good concepts in programming techniques,
like structured programming, modularity, generic
wits and informastion hiding are transferable to the
design of transaction flow models.

A short survey of the project state:

At the moment we still have to fight against contra-
ry working conditions: we have to use only a micro
computer and can use only a subset of Ada (e.g.
without tasks). But we hope to move soon with our
project onto a VAX.

The packages deperding on tasking are only designed;
the eas manager, the simulation control and the
transaction flow manager are inplemented in @ non
tasking verSion.” The screen printer 1/0 package, a
combined and uniform screen 1/0 and printer output
systém, a very useful and powerful general tool not
only for simulation projects, is allready finished.
The interactive system design package exists for the
most part, but dependS still on the Ada syntax and
semantic check program, which will be finished soon.
The graphic package will be developed 2s soon as we
can get access to a good graphic terminal and gra-
phic software. The interadtive model trace program
exists in a simple version and will be improved as
soon as we can get access to a graphic package. Then
a visual trace of a network model can be performed
too! The random variates package is implemented in a
preliminary version, using the standard algorithms.
The data analysis package will be the last package
we dré going to work on, hoping that until then such
standard statistical packages will be available in
Ada, with - hopefully - well defined interfaces, so
that these packages and our packages can be linked.

QUEUE_MANAGER:

A generic package, used by the eas manger, to manage
sets, FIFO, LIFO and ranked queues, with a special
queue-type for event-calendars. This special type 6f
a 'low value first out' queue type is intended to
implement specific fast algorithms for event calen-
dars. Currently all these queues are simply imple-
mented as double linked lists. This package is nor-
mally not directly visible for the user, because he

92

‘accesses queues on a higher level via the eas mana-
ger.

EAS_MANAGER:

A generic package to manage entities, attributes and
set/queues.

Principles of the design:

As already mentioned, our requirements have been:
easy to use, no limitations! Before we will give an
extract of the generic package declaration, we will
show the easy use of the package by means of exam-
ples. This shall demonstrate as well, that Ada enzb~-
les to write self-documenting code. Then we shall
give some rationals for our form of implementation:

The different entity types are introduced by:
type entity name is (person, car);
and queues by

type queue name is (teller cne, special teller,
traffic light);

The attributes are introduced by

type attributes (kind: entity name) is
record
case kind is
when person =>
sex: gender;
age: integer range 0 .. 130;

when car =>
seats: integer range 1 .. 8;
end case;

end record;

Entities have to be declared before they can be
used:

.alan, bernard, charles, henry, jean: entity;
-- SOme persons
entity; -~ will be used to
-~ denote an unspecific person
-~ a car

next person:
a_car: entity;
before they can be

tueves have to be initialized,
used:

queue_init (teller one);
queue_init (special teller, HVWFO, 10);

If the second parameter in 'queue init' is missing,
FIFO ranking is the default queue Fanking order. The
third parameter, if present, restricts the queue
capacity. HVFO means high value first out.

The exception queue size error will be raised, if an
attempt will be madé to Tnsert in a full queue or to
remove from an empty queuve. Two boolean functions,
queue full and queue empty, can be used to check the
state of the queve.

To 'create' a person, one has to say:

entity create (henry, person);
or with autematical insert in a queue:

entity create and insert (teller one,
henry, person);

Assignments to attributes can be made by

henry.age:= 18;
henry.sex:= male;

To insert this person in queve special teller too
(vhy not!), one has to say

queue_insert (special teller, henry, 15.0);
where 15.0 denotes the priority value,

To remove the first member of a queue, one has

say
queue remove (teller_pne, nexp_person);
or

queue remove (spec1a1 teller, next person,
urgencyy;
for a ranked queue. If the next person would be
'henry', urgency would be 15.0 .

To remove a specific person, one has to say
queue remove (teller_one, henry, thi§_person);

To remove a person from a specific place (e.g. from

the third place), one has to say
queue_remove (teller one, next person,3);
To destroy an entity, a
entity destroy (henry);

is sufficient. It will be removed from all queues,
where it is a member, and afterwards no access to
its attributes via henry.age or henry.sex is possib-
le anymore.

If ranked queues are used, a floating point real
type has to be passed to the eas_manager at package
instantation time, declaring the type of variables,
on which ranked queues are ordered. Furthermore, two
optional procedures can be passed as generic parame-
ters:

entity init (e: in out entity);
which can be used to initialize the entity's attri-
butes (which will be automatically called by the
entity create procedure) and

do sanethlng (e: in out entity;
vi out ranking);

which is automatically called for each entity when
the 'for-all-entity-loop' procedure queue_loop(ge:
queue name) is used.

Kealisation:

93

“ter,

useless Tor FIFO and LIFO queues.

A useful characteristic of Ada is, that subprogram
names can be overloaded and, if a subprogram decla-
ration specifies a default value for an ‘'in' parame-
then the corresponding parameter may be ocmmit-
ted from a call. Further on, actual parameters may
be passed in positional order or by explicity naming
the corresponding formal parameters. Positional
parameters and named paraneters may be used in the
same call.

These features of Ada render possible a very natural
formulation of the queue insert and queue remove
procedures. There are in principle two different
meanings of insert and remove: We can speak of an
unknown entity on a specific place or we can speak
of a specific entity on an unknown place in the
queue., Therefore the meaning of the parameter ‘'rank!
in these procedures shall be:

If rank in 1 .. integer'last, we mean this specific
place in the queue, whereby a value greater than the
current size of the queue denotes the end of the
queue; if rank = 0, then the place is determined by
the default ranking criterion of the queue. There-
fore we stated the default parameter for 'remove'! as
because 'remove' has normally the first member
in view; and :=0 for 'insert', because normally
entities are ranked according the default queue
ranking criterion. If value ranked queves are invol-
ved, there is a need for an additional parameter,
the rank value (the "priority"). Such a parameter is
Moreover , because
we think it so important, that a code is easy to
read, we overload all these procedures with pro-
cedures, where first member, 1last member and
this_member can be used Instead of 1, ~T and O.

-
=1

The sequence of parameters for ranked queues is
queue name - entity - rank - rank value;
for FIFO and LIFO queues just the first three.

We think, that our examples above have been self
explaining. We have to anote, that for remove calls,
the entity parameter acts logically partly as an in
and partly as an out parameter: We have chosen in
our examples the variable name 'next person', if the
parameter acts as a parameter of mode 'out', which
means, that an unknown queue member is referenced
via a specific place (=rank). The contrary holds for
variables like 'henry' 2.s.0.

-~ package declaration eas manager

with queue manager;
generic
type entity name is <>;
type queue 1 hame is <>;
type attributes (kind: entlty name)
is limited private;
type entity is access attributes;
type ranking is digits <>;
with procedure entity 1n1t (e: out entity) is <>;
with procedure do : somé_thing (e: in out entity;
v: out ranking);) is <O;
with procedure connect info (e: in out entity;
get_hidden_info,
assign flag in boolean) is <>;

Ada_Simulation Support Environment {(continued)

package ea;_pmnager is

type hidden info is limited private;

type queue Tanking is (FIFO,LIFO,HVFO,LVFO,EVCA);

type queue place is (first member, thls } member,
last nmmber),

procedure set 11nk (e: in out entity;
. pp: in out hidden _info;
get | hldden r_info,
a551gn 1 flag: in boolean);

procedure queue init (
ge: In queue name;
r: in queue ranking := FIFO;
m: in integér 1= 1nteger'last);

from the following subprogram declarations, as
-- queue destroy, queue irifo, queue full,

-~ queue empty, queue size, queve_insert,

-~ queue remove, entiy create, entity destroy,
- entlty create and, 1nsert, queue loop,

«~~ most are overloaded; we give as an

example the procedures queuve_insert:

i

-~ rank=0 ... default queue ranking!!

procedure queue insert (
ge: in queue hame;
e: in out entity;
" rank: in integer :=z 0);
procedure queue_insert (
. ge: in queue hame;
e: in out entity;
rank: in queue place);
procedure queue insert (T
ge: in queue hame;
e: in out entity;
rank: in integer := O;
rank value: in ranking);
procedure queue _insert (
Qe:"in queue name;
e: in out entity;
rank: in queue place;
rank value: in ranking);
private -

package entity queue is new queue manager (
entity,
ranking);

use entity gueue;

type hidden record is record

. pointer :Tentity;

queue_info: array {queue ! name) of TPRLink;
end record;
type hidden info is access hidden record;

end eas manager ;

-= end backage declarat .on eaé_manager

We see, the type entity is an access type for the
record type attributes. But because the eas manager
has to have control over the record too, there has

to be an additional component added to the record,

94

variable itself,

called ‘'info', which is from type 'hidden info'.
This type is provided by the eas manager, and is
limited private. This means, that the user has abso-
lutely no access to this infbrmation, he can make no
assignmments to this component nor can he compare for
instance

henry.info /= king.info

(the only possibility for the user would be to
g§c1§re variables of this type, but he can't use
em).

The type ‘hidden info' is limited private, and is
described in detail in the private part of the
package declaration:

To have access to the private type tpr link (in
package queue manager), which contains "the link
information of a specific queue, a generic package
instantiation of the queue manager is needed first,
Then the type 'hidden record! is declared, which
contains the component "pointer', the entlty access
a principally redundant informa-
tion, and the component queue info, an array of
link pointer's for each user-defined queue. Then,
the Type 'hidden info' can be declared as an access
variable to the type hidden record.

If we focus on the generic parameter part at the
beginning of the package declaration, we see, that
the entity and queue types are passed as enumeration
or integer types (it is possible to declare the
discriminant for the entities and queues as integer
types). The attributes record type is passed as a
limited private type, only the discriminant is known
by the eas manager (and this uncomplete information
is -~ as Wwe will see soon - the reason for the al-
ready mentioned troubles). The next three parameters
are obvious: the type on which a queue can be ranked

and the two above mentioned procedures. The last
parameter, ‘the procedure 'connect info', is at first
sight dubious. But this procedure is the tribute to
the fact, that the eas manager has no access to the
structure of records from type 'attributes'. So this
procedure, which is part of the user's main package,
calls the procedure set link, which is again in the
package eas manager. Procedure connect info just
makes possible the access to the so important infor~
mation e.info. (To make it clear: only the eas mana-
ger can process the information, stored in e.info;
only the user's program, which defines thé record
type 'attributes', knows, where the information is,
but is on the other hand wnable to process it). Two
flags are needed to convey, how the informations
have to be interchanged.

that this procedure connect info breaks
“because the

We concede,
the principle of complete date hiding,
user could change this standard routine. But this
would be wilfulness, and we think, that in this
context, data hiding has to prevent from unintentio-
nal, not wilful errors,

A comp&eﬁe example,
later.

using the eas_manager, is given

SIMULATION CONTROL

We see, similar to SLAM, the necessity to allow all
forms of combined modelling techniques: continous,
discrete event, activity scanning and process inter-
action approach. Furthermore, a complete interaction
between all these model types and the transac-
tion_flow manager shall be possible. This can be
managed easily, because a transaction flow model can
be seen as a specific form of a combined discrete
event, activity scanning and process interaction
model.

There are two forms, how this simulation control can
be implemented: in a tasking or in a non tasking
form.

Tasking:

(1) Process interaction approach can be implemented
in a simple and natural way, using entry calls like

hold(15.0);
to block a running process.

(2) If Ada is implemented on a computer with multi-
processor architecture, where different tasks exe-
cute on different processors, one can implement
event proceduwres as tasks, with the advantage, that
the simulation program runs faster than on a single
processor computer, because different events can
execute at the same (real!) time, but at possible
different model times, provided, that the synchroni-
zation and the access to common data resources are
managed correct.

Advantages for the user:

ad (1): the feasibility of a straight foreward for-
mulation of a process interaction model

ad (2): faster execution; but possibly a deeper
analysis of the model is necessary as mentioned
above.

Advantages and disadvantages for the package desig-
ner. ¢

It is obvious, that a package, consisting of task
and task types is more complicated to design and to
write than one without tasks.

On the other hand, with such a powerful language
like Ada, a multiprocessor discrete event simulation
is certainly much more easily to implement, than
without such a help (O4).

he have implemented for the present non tasking
versions of the simulation control package, restric-
ted to discrete event and combined discrete event,
activity scanning and transaction flow approach. 4
simple sketch for a processoriented, discrete-system
simulation control package in tasking form is given
in Bryant (03).

ke give here only a synopsis of the discrete event
part of the simulation package. It works similar to
SLAM: Events are implemented as user-written proce-
dures, where the event-name acts as procedure name.
An enumeration type 'event name' is introduced too.
The enumeration litterals have the same identi-

95

fiers as the event procedures (and therefore are
overloaded). At each event time, the control is
passed to a user-written procedure ‘user event',
where in form of a case statement the transfer to
the appropriate event procedure is performed. An
entity can be passed together with the event notice,
when the scheduler is called, and this entity is to
the event procedure's disposal, as soon as the
'user_event' procedure is called at the event time.

The package

The user passes the procedure 'user event' and his
types ‘'entity' and ‘'event name' To the generic
package. Then four more user written procedures are
gassed, which render possible to set initial condi-
ions 'and to gain control at simulation end:

In ‘'system init' global variables can be set 1like
time to start and stop the simulation; ‘'system end'
is called after each simulation run and can be used
to perform multiple runs. (These procedures corres-
pond to the SLAM Control Statements.)

tuser init' is given control at simulation start;
'useﬁzpnd' is called at the end of the simulation.
(These procedures correspond to SLAM INTLC and
OTPUT.)

The types event time, a floating point real type to
denote event Times, and event notice, a limited
private type, are introduced through the visible
part of the packasge. This later type is the particu~
lar entity type of the simulation control package,
and these event notices are queued in the 'event ca-
lendar'. User variables of the type event notice are
used to mark specific events in the event calendar
(in Simseript ... "CALLED" ...; in Simpas the named
clause), but can only be used as parameters for
subprogram calls. The basic design for the schedu-~
ling purposes is similar to Simseript (and Simpas}.

The scheduling of a new event notice is possible in
a named and in an anonymous form. Additionally an
enumeration type 'kind of scheduling' with litterals
(at_time, now, delayed, before, after) is introduced
to-denote, how the event time is indicated. Events
can be rescheduled in a similar form. (But no "can~
cel" is needed, if just the time of an event has to
be changed; it can be done directly.) To eliminate
an event notice, the procedure 'destroy' is pro-
vided. To get all information for a certain event
notice, procedure event info can be used.

We provide overloaded procedures with default para-
meters, which render possible to write simple, self

documenting scheduling calls.
Some examples:

type event name is (customer_arrival,

end of service, bank robbery);
a customer, gang: entity;
bank closing: event notice;
schedule (customer arrival, now);
schedule (end_of_ sérvice, at_time, 150.0,

a customer);

reschedule (bank closing, delayed, 15.0);
schedule (bank robbery, after, bank closing, gang);

—
|
1

Ada »Simulation, Support Environfnent (continued)

There are subroutines to control the simulation run:

set start and stop: ‘
t5 initTate simulation begm and end;

trace start and stop: to set the begin and the
end of a Trac€;

stop_simulation: to end a simulation rum;

time now and time next: functions returning these
inTormations, TConsidering . the principle of data
hiding, the user has no dlrect access to the
simulation clock!)

A simple call of the procedure start_simulation,
performed in the user's main rprocedure, starts the

simultion run. l
I

-~ package declaration simulaéion__éontrol

with eas manager;
generic
type entity is pr1vate,
type event ,_name is <>;
with procedure user event (p: in event . name;
e: In out entity) is <;

with procedure system init is <>;
with procedure system _end is <>
with procedure user init | is
with procedure user_end is ¢

package simulation_conﬁrol is

type kind of scheduling is ’
(at_time, now, delayed , before, after);

subtype event ._time is f‘loat'

type event | notice is limited private;

function time now return évent_time;
function tine next return event time;

procedure start simulation;
procedure stop . Simulation;
procedure set start and stop
= (£T,tIT event _time);
procedure trace_start and stop
(t1,T2: event_time);
procedure event info (event: in event . notice;
whehn: out event ,_time;
whatt: in out event name;
" withh: in out éntity);
procedure schedule
(whatt: in event name;
how : in k1nd of ~_scheduling;
whenn: in event _time := time now();
withh: in en’c1ty null);
procedure schedule o
(whatt: in event name;
how : in kind of ~_scheduling;
whenn: in evént notJ.ce,
withh: in entity:= null);
procedure schedule ‘
(whatt: in event name;
how : in kind of *_scheduling;
whenn: in event time;
called: out evenf’__notlce;
withh: in entity:= null);

procedure schedule
(whatt: in event name;
how < in kind of scheduling;
whenn: in event notice;
called: out event notice;
withh: in entityT= null);

~~ similar for reschedule, cancel and destroy

private

~- private declarations;

-~ instantation of the eas manager;

-- (event notice is a particular entity type of
-- the simulation control manager)

end simulation control;

-- end package declaration simulation control

INTERACTIVE MODEL_DESIGN

We think, it is a big advantage, if a simulation
model can be designed, updated and tested interacti-
vely. An absolute necessity for such a project is a
very powerful screen and printer input output sup~-
porting package, which we have finished already. A
further advantage can be noticed, if the design and
update process is supported by a syntax and semantic
check of the target language, what we intend to do
as well.

We can only demonstrate here few aspects of these
packages and we think, the best way is to do it by
means of an example (given by Pritsker (10)).

Example: Drive-in bank with jockeying

A drive-in bank has two windows; customer arrivals
are exponentially distributed (mean:=0.5); service
time is normally distributed (mean:=1.0; std:=0.3);
customers prefer the shortest lane or lane one, if
neither teller is busy or- if the waiting lanes are
equal. A customer can change lanes, if he is the
last one in his lane and if there is a difference of
two customers between the two lanes.

Limitations:

A maximum of eigth cars in the system; if the system
is full, an arriving customer balks and is lost to
the system..

Initial conditions:

Both tellers are busy; two customer in each queue;
first customer arrives at 0.1 time units.

Goal:

1. Teller utilization

z. Time~integrated average number of customers
3. Time between departures from the windows

4, Average time a customer is in the system

5. Average number of customer in each queue

6. Fercent of arriving customers who balk
7. Number of times cars jockey

The system is to be simulated for 1000 time units, a
trace is to be obtained for the first 10 time wunits,
from 500.0 to 510.0 .

End of -example description.

It is not easy to reproduce an interactive dialogue
in printed form. We show the sequence of screen
forms, first only the empty form without the user
input, underneath the word “input:" and the lines,
where an input is made. If a form provides only a
choice, the form is given directly with the marked
fields. The dialogue looks quite lengthy, but this
is misleading: Beside the two event procedures and
the entity init procedure the input can be per formed
in less than five minutes.

- Ada Simulation Support Environment -

- *%k model design ¥¥¥ -
vers.: 1 - -
rel.: 3 -
date: 87 8/ 1982

model name (short form): seceessseccse

input:
model name (short form): jockeying

- Ada Simulation Support Environment
- . %%% model design %#¥

vers.: 1. -

rel.: 3

8/ 8/ 1982

LI T I I

date:

last update: date: 00/00/00
time: 00.00.00

new model :

model vers.: 1

by t sessescssscssesrerecnasensssesos e
model name

L]

eersesvenssesessecssesRsaEsIERGIORSS

input:
by : Heimo H. Adelsberger
model name : Drive-in bank with jockeying

- Ada Simulation Support Environment -
- ¥%¥% model design ¥¥¥

Give your entity names:

type entity name is

input:
type entity name is
(custemer);

97

- Ma Simulation Support Envirorment
- **% model_design ¥*¥

Give your gueue names:

type queue name is

t

input:
type queue hame is
(teller_one, teller two);

- Ada Simulation Support Envirorment
- ¥%* model design ¥**

Give your event names:

type event name is

input:
type event name is
(customer_arrival, end of service);

- Ada Simulation Support Envirorment
- %% model design ¥¥*

Give your attributes:

Entity: customer

[I A B I A

input
arrival_time: event_time;
teller: queue_hame;

- Ada Simulation Support Envirorment
- X% model design ¥*¥

You can change the print form:

//mask 101
arrival time: < >
teller: < >

t

L 2 I I |

input: no input

- Ada Simulation Support Enviromment
- % model design **¥

Give your global declarations:

-

[I I B B |

input:

number of customers,
number_of_balks,

number of jockeys: integer := 0
percent of balks: float;

last departure : event time;

Ada Simulation Support Environment (continued)

I
i

|

- Ada Simulation Support Environment
- **% model design #¥¥

You can change the print form::

//mask 102 -

number of customers < > -

number of balks < > -

number of jockeys < > -

percenf'df balks < o> -

last departure < Lo -
| -

input: no input

- Ada Simulation Support Envirorment

- ¥ model design ¥¥#

Give your variables for automatlc
collection of statisties:

Value weighted:
called

LI T O B I)

input:

time in system: event tlme;
called

"time in system" i

input:
time between departures event ,_time;
called

"time between departure"

- Ada Simulation Suppoﬁt Environment
- *%%¥ model design ¥

Give your variables for automatic
collection of statistics:

Time weighted;
called

LI D N NN B B B N N |

1nput.

busy: array (queue name) of boolean;
called

"teller utilization"

- Ada Simulation Support Environment
- ¥*% model design *¥¥

Give your procedures:

procedure entity init:

{2 I A |

[]

input :
procedure entity init (a _customer: out entity) is
begin

a_customer.arrival time:= time now();

if busy(teller one) and busy(teller two) then

-~ both tellers are busy;
-- place customer in shortest lane

if queue size(teller one) <=
queve size(teller two) then
a_customer.teller:= teller one;
queue_insert (teller one, a_customer);
else
a_customer.teller:= teller >_two;
queue insert (teller two, a custcmer);
end if;

elsif not busy(teller one) then

-~ teller one is free

busy(teller one):= true;
a customer.teller:=z teller one;
schedule (end of service, delayed,
normal(1.0 0._,2), a customer);
else - -

-« teller two is free
busy(teller twe):= true;
a customer.teller:= teller two;
schedule (end of service, aelayed
normal{ 1.0, 0.4,2), a custcmer),
end if;

end entity init;

- Ada Simulation Support Envirorment
- ¥X% model design k%

Give your procedures

[B R B B I

procedure»useﬁ_init:

-

]

input

procedure user init is
a customer: entity;
begin
- creates two customers for each teller; they
-= wWill be inserted automatically in the gueues
—- via procedure entity init.
-~ schedules a customer arrival for C.1
for i in queue name'first .. queue_name'last loop
busy(i):= false;
entity create (a_customer, customer);
entity ‘create (a customer, customer):
end loop;
schedule (customer arrival,at time,0.1);
end user_init;

98

input
- Ada Simulation Support Enviromment -
- *¥% model design *¥% - « procedure end of service
(a customer: in out entity) is
servicing_teller, other_teller: queuve name;

Give your procedures,

. - begin
procedure user_event: - time in system:=
- time now() - a customer .arrlval tlme,
- - time between depaFtures:=
- time now() - last departure;
input: last_departure:= time now();.
procedure user_event -- set 'servicing teller!' to teller just ending
b (p event | name; e: in out entity) is -- service, ‘other teller' to other teller
egin . -— -
case p is servicing teller:= a customer.teller;
when customer arrival => customer_arrival(e); -
when end_of service => end_of_service(e); if servicing teller = teller one then
end case; ; other_teller:= teller two;
end user_event; else -
other teller:=teller one;
- end if; = -
- Ada Simulation Support Environment - - -
- ®¥% model design **¥ - -- test number of waiting customers
Give your event procedures . . - if queue size(servicing teller) >= 0 then
Event procedure: custome:- arrival - -~ lane is occupied, therefore process the first
- -~ customer in this lane
- queue_remove(servicing_teller, a__cust:omer);
- - a customer.teller:= servicing__teller;
. schedule (end of service, delayed,
input normal(1.0,0.3,2), a_customer);
procedure customer arrival if queue_size(other teller) >=
(a customer: in out entity) is queue size(servicing teller) +2 then
begin - - - - -
- -~ if the number in the other lane exceeds the
-- cause next arrival and increments -~ number in this lane by two, then jockey
-=- number_of custcmers -~ last customer from other lane
schedule (custaner;arrival, delayed, queue_remove (other_teller, a customer,
exponential(0.5, 1)); ‘ last member),
. queue ! insert (ser'v1c1ng teller,a customer) H
number_of customers:s nunber‘_of_custorners+1; end if;™
if quege_gsize(teller cne)+queue size(teller two) elsif queuve size(other teller) >= O then
>= hen - - - - - -
- =~ servicing lane is empty and other lane is
-- if system full, then balk -- occupied, therefore jockey from other lane
nunber of balks:= nunber_of_balks+1; queue_remove (other _teller, a customer,
else last member'),
- a customer.teller:= servicing teller;
-~ look entity init for initialization of attributes schedule (end of service, delayed,
-- and choice of lane or teller normal{1. 0, 0._,,2) , & customer),
- number_of jockeys:= nunber_of_Jockeys+1
entity create (a_customer, customer);
end if; else
percent of balks:= 100. O¥float(number of balks)/ - .
float(number_of customers); -- both lanes are empty, therefore set
end customer arrival; ‘ -- servicing teller idle
- Ada Simulation Support Environment busy(servicing_teller):: false;

- *¥¥ model design **¥
) end if;

Give your event procedures .
end end of service;

Event procedure: end of service

99

Ada Simulation Support Environment (continved)

1

INTERACTIVE MODEL VERIFICATION

The simulation model is under control of the mo-
del verification package during the whole simulation
run. At each time the trace feature can be switched
on and off. When being in the trace mode, all vari-

ables can be displayed and changed, all reports on’

queues and entities can be called,; queue characte-
ristics can be changed, entities can be created,
destroyed, inserted and removed from queues. We just
give a glimpse on some few screen forms:

- Ada Simulation SUPPOHt Environment
- ¥** model verification *¥#

t

System initialization

LI B I I |

Simulation: begin end

sesese

Trace: <>on < > off. -
begin cscase end sesaves -

input

Simulation: begin 0.0 end 1000.0

Trace: <x> on <>off
begin 500.0 end 510.0

. e L
- Ada Simulation Support Environment -
- ¥¥% model verification *¥ -

queue name: teller one:

queue ranking ?
<> FIFO < > LIFO

<> HWO < > LVFO
(default: FIFO) ;

queue capaCily sevses
(default: integer'last)

input : i
queué capacity 3 E

/14144 similar for teller tw; 1771/

- Ada Simulation Support Environment

- Ada Simulation Support Enviromment
- ¥¥% model verification *¥¥

At what action shall be traced:

< > eas manager action
<x> simulation control action

system -
<x> global variables ’ -
<> watched variables: value weighted -
<2 watched variables: time weighted -
eas manzger : -
<> all actions on entities -
<> all actions on queues -
<x> global informstions entities -
<x> global informations queuves -
<> involved entity -
simulation control -
<x> ~ events -
<x> involved entity -
- Ada Simulation Support Enviromment -
- ¥¥% model verification **# -
time now: 500, 101 time next: - 500. 103

¥¥¥ event notice:
this event:
system time:

next eévent: -
500. 101 at: 500, 102 -
event: end of service event : customer arrival-
entity: customer entity: null =~

¥ entity: entity name: customer

arrival time TG9.671

teller — teller one

- - - - - - W - - - - - - - - - -

¥x% olobal variables)
1048

- - - - - - - - - - - - - - - - -,

number of customers -
number”of balks 86 -
number of jockeys 135 -
percent of balks 8.206 -
last_departure 499,728 -

%*¥ eas manager

- ek model verification ### - ¥gqueues: curr. length max .averagé -
) . - teller one 2 3 1.3812 -

Model output Trace output - teller two 2 3 1. 1774 -

Screen 7 <> <x> - ¥eritities: curent total -
Printer <x> <> - customer 7 1048 -
File < > < - total 7 1048 -
At the end, similar to the trace mode, all reports

can be called and the values of all variables can be

displayed

- Ada Simulation Support Envirorment
- *** model verification *¥
time now: 1000, 000 time next: ERREXEER

¥kXXEX ond of simulation reached *%EX%x¥x%

‘Indicate yowr reports

system -
<x> global variables -
<x> watched variables: value weighted -
<x> watched variables: time weighted -
eas_manager Y-
<x> global informations entities -
<x> global informations queues -
simulation_control -~
<x> events -
- Ada Simulation Support Environment -
- *%¥ model verification *¥# -
Reports: -

- - - - L - - - - - - -

*%% olobal variables

- - - - - - - - - - - - - - - - -

numnber of customers 2016 -
number”of balks 179 -
number of jockeys 257 -
percent of balks 8.927 -
last_departure 999,204 -

TRANSACTION FLOW MANAGER

We see transaction flow models as a specific form of
a combined discrete event, activity scanning and
process oriented approach. Furthermore, we distin-
"guish exactly between what can be represented in the
form of a network and what exists besides the net-
work.

This eliminates unnaturally constructs like "super-
visors", clock transactions, and immaterial enti-
ties, which e.g. rotate only to open and close
gates. We think, that networks shall be more iso-
morph to the real system and not overloaded with
artificial constructs.

Furthermore we model networks as an abstract data
type, which is equal for networks as a whole, sub-
networks and nodes. This concept renders possible a
clear and simple design, because it enables to
transfer useful programming techniques to the design
of networks like:

modularity (subnetworks like subprograms)
top-down design
generics (generic subnetworks)

The number of "atomar" nodes is reduced in compari-
son to GPSS and SLAM, more complex node types are
introduced as generic composite nodes, whereby the
standard nodes of this type are provided by the

network manager itself, but which nodes can be de-~
clared by the user too.

The network part of the ASSE is well supported by
the interactive model design and verification
packages. It renders possible an interactive, gra-
phical design and there is no need anymore for the
user to translate the graphic form of a network into
a statement form.

The interactive model verification package supports
the network part too. It is possible to introduce
new nodes, to display and change all nodes and to
follow a graphical trace of the network on the

_ Screen.

We know, we have given here a very incomplete
description of the ASSE. The reader, who is interes-~
ted in more details, is refered to (01), which shall
soon appear in print.

BIBLIOGRAPY

/01/ Adelsberger, H.H., "Ada Simulation Support
Enviromment -~ a Report", forthcoming.

/02/ Brayant, R.M., "SIMPAS -~ A Simulation Language
Eased on Pascal", Proceedings of the 1980 Winte
Simulation Conference, 25 - 40, 1980.

/03/ Brayant, R.M., "Discrete System Simulation with
Ada", Computer Sciences Department Technical
Report # U458, University of Wisconsin--Madison
(November 1981).

/08/ Comfort, J.C., and Miller, A., "The Simulation
of a Pipelined Event Set Processor", 1981 Winte
Simulation Conference Proceedings, Atlanta 1981

/05/ Ledgard, H.F., and Singer, A., "Scaling Down
Ada (Or Towards A Standard Ada Subset)!, Comm.

706/ Kiviat, P.d., Villanueva, R., and Markowitz,
H.M,, The SIMSCRIPT II Programming Language,
CACI, Los Angeles, 1975.

/07/ Pritsker, A.A.B., The GASP IV Simulation
Language, John Wiley & Sons, 1974.

/08/ Pritsker, A.A.B., Modeling and Analysis Using
Q-GERT Networks, John Wiley & Sons, 1977.

/09/ Pritsker, A.A.B., Introduction to Simulation
and SLAM, John Wiley & Sons, 1979.

/10/ Rubin, J., "Imbedding GPSS in a General
Purpose Programming Language", 1981 Winter
Simulation Conference Proceedings, Atlanta,
1981.

/11 Schriber, T.J., Simulation using GPSS, John
Wiley & Sons, 1974,

/12/ Shub, Ch.M., "Discrete Event Simulation
Languages", Simulation with discrete Models: A
State-of-the Art View, Winter Simulation
Conference 1980, University of Cttawa, 198C.

/13/ U.S. Department of Defense, "Reference Manual
for the Ada Programming Langusge", Military
Standard MIL-STD-1815, Naval Publications and
Forms Center, Philadelphia, 1980.]

/147 U.S. Department of Defense, "Requirements for
Ada Programming Support Envirorments -
'Stoneman'", 1980.

