THE PROCESS VIEW OF SIMULATION IN ADA*

Abstract

Previously, the process view of simulation,
which represents a model as a set of competing and
cooperating entities, had been most successfully
implemented in the general purpose language SIMU-
LA. This paper describes such a system which is
currently being implemented in ADA. ADA's suita-
bility as the base language for such a package is
first discussed followed by a description of the
facilities offered in SAMOAT (Simulation and Model-
ling on Ada). SAMOA is a fully integrated, general
purpose, discrete event simulation package whose
features are illustrated through the use of ekam-
ples. -

The process view is a simple and natural way
to define discrete event simulation models. This
follows from the fact that a broad range of natur-
al human-made systems can be easily described in
terms of interacting concurrent processes [2],
[71, [9], [20]. Models defined using this process
approach are very similar to natural language
descriptions of the actual systems being modelled.
In fact, the process view -has been used in the
DELTA Language to structure system descriptions
which are intended solely as aids for human com-
munication about systems [8].

The SIMULA [5] programming language provided
an early implementation of the process approach
to simulation. This general purpose language was
designed to enable the definition of abstract
types in terms of both primitive types and other
abstract types. These abstract types can include
actions so that instances, or objects, of these
types are pseudo concurrent autonomous processes.

*
Ada is a trade mark of the U.S. Dept. of Defense
(Ada Joint Program Office). -

TThe name SAMOA is Graham Birtwistle's invention
following his DEMOS (Discrete Event Modelling on
Simula). The design of SAMOA is heavily based on
DEMOS [2].

Proceedings of the 1982
Winter Simulation Conference
Highland * Chao * Madrigal, Editors

82CH1844-0/82/0000-0077 $00.75 © 1982 IEEE

Greg Lomew and Brian Unger
University of Calgary
Calgary, Alberta, Canada

A process can invoke actions within other proces-
ses and thus they are able to interact. Unfortun-
ately, this process model has not been widely adop-
ted in the simulation community, particularly in
North America. The impact of SIMULA has been much
more pronounced in the computer science community.
SIMULA provided one of the earliest models of com-
municating concurrent processes, an idea which has
influenced the development of operating systems
such ‘as UNIX [10] and languages such as ADA [1],
[127.

Many other languages and packagés for discrete
event simulation have been defined. The general
purpose languages most widely used in North America
have been GPSS [18], SIMSCRIPT [11], and GASP [15],
[16]. GPSS is essentially a process based approach
embedded in a Fortran like language. SIMSCRIPT
and GASP are event based, although a process view
has been added to SIMSCRIPT [17]. None of these
approaches has the extensible expressive power of
SIMULA. Franta and others [7], [9] have shown how
SIMSCRIPT and GASP constructs can be implemented
in SIMULA, while Birtwistle has recently implemen-
ted a GPSS like SIMULA extension called DEMOS [2].
Specifically, DEMOS offers the simplicity and re-
port generation advantages of GPSS embedded in a
powerful general purpose language. Furthermore,
SIMULA and its process approach to simulation is
applicable to a wide range of special purpose
modelling problems, e.g. the OASIS simulation
package [21], [22]}, [23] for the simulation of
multicomputer systems and software. Despite the
advantages of these SIMULA extensions GPSS, SIM-
SCRIPT, GASP, and related approaches still predom~
inate. This situation was probably due to SIMU-
1LA's limited availability, especially on small
machines. Recently, however, a portable SIMULA
compiler system [13], [14] has been developed and
as a result SIMULA will become available on a
wider variety of machines, including microcompu-
ters. The relatively large SIMULA run time system
overhead of 15K to 30K memory words is also rap-
idly becoming negligible. Thus, the major disad-
vantages of SIMULA may soon disappear.

The Process View of Simulation in Ada (continﬁed)

ADA [12], the U.S. Department of Defense's
recently developed programming language represents
another alternative to SIMULA as a base language
for the process view of discrete event modelling.
This is because ADA offers some of the same fea-
tures introduced by SIMULA 15 years ago (e.g. con-—
current processes, definition of abstract data
types, and language extensibility) while enjoying
potentially wider availability. The SAMOA (Simu-
lation And Modelling On Ada) package. déscribed
herein is an initial attempt to apply ADA con-
structs to the development of a general purpose
discrete event simulation package. This package
is a fully integrated approach which employs the
process view of simulation and augments it by pro-
viding automatic statistics collection, report
generation, and tracing facilities. SAMOA's other
goals include 1) limiting, to a PASCAL size subset,
the amount of ADA the user is required to know,
and 2) allowing the user access to the full power
of ADA when it is necessary. -

This paper will discuss ADA's suitability as
the base language for a discrete event simulation
language, how models are represented in SAMOA,. and
what modelling facilities are provided by SAMOA.
Also, an example simulation will be defined using:
this package, 'This model will be compared with a
corresponding GPSS model and the strengths and
weaknesses of each implementation will be dis-
cussed.

Some of the fundamental advantages of imple-
menting any package in ADA are derived from ADA's
design goals as outlined in the Stoneman report
[19]. The most important of these goals for SAMOA
are:

1) Programming Support - the goal of an ADA en-
vironment is to support a basic set of com-
mon programming tools. These tools are to
provide continuing support in the develop~
ment and maintenance of ADA programs. - This
support ranges from the coding phase through
the debugging and software maintenance
phases. Tools to be provided include edi-
tors; debugging aids, and a set of project
management and software configuration tools.

2) Programmer Portability --this goal ensures
that a programmer who moves. from one ADA en-
vironment to another will be able to work in
the new environment with minimal retraining.
The ADA language and the basic set of pro-
gramming tools found in all environments
will be consistent.

3) Program Portability ~ this goal is related to
programmer portability and it .ensures that
programs which are moved from one ADA en-
vironment to another will compile and run
without major modifications. This is impor-
tant because it allows the SAMOA package to
be portable and ensures that any special
purpose,; user defined simulation tools will
also be portable.

8

Besides these design goals of ADA, SAMOA ben-
efits from features of the ADA language itself.
ADA's Pascal based syntax has language features
which are intended to encourage modular program
design and the separation of a program's specifi-
cation from its implementation. This separation
can be used by the ADA programmer, as it is in
SAMOA, to provide and enforce a level of abstrac-
tion between a program's user and its implementa-
tion details, The most important of these langu-
age features are strong typing, data abstraction,
generic units, libraries, subunits, and tasking.

Strong typing ".., ensures that each object
has a clearly defined set of values and prevents
confusion between logically distinct concepts. As
a consequence many errors are detected by the com-
piler which in other languages would have led to
an executable but incorrect program™ [1].

Data abstraction allows the definition of
modular program units each of which encapsulates
the data structures and operations of a single ab-
stract data type (e.g. a stack with the operations
"pop' and 'push').

ADA's basic unit of concurrency is the 'task',
which allows a problem to be solved as a series of
parallel activities. It is this construet that
SAMOA uses to represent the actions of each active
component, or entity, in a simulation. 'Two points
should be noted about the use of tasks in conjunc—
tion with SAMOA. First, even though tasks rumming
in a multi-processor ADA enviromment can run con-
currently they have been restricted in SAMOA to
run as coroutines. This is so that the effect of
a SAMOA simulation can be guaranteed to be deter~
ministic, that is, so that the results are repro-
ducable. ‘Second, even though tasking is one of
the most complicated features of ADA, the SAMOA
package has been designed so that when describing
the actions of each entity, or active component,
in a simulation, the user is not required to use
any of ADA's tasking facilities. Instead, a set
of simulation routines is provided by SAMOA (to
be described later) which provide a level of ab-
straction between the user and the implementation
details.

Generic units allow the definition of a pro-
gram unit to be independent of the type of value
which it 1is to manipulate. This allows a single
piece of code to serve as a template for the cre-
ation of program units which perform the same op-
erations but perform them on different data types.
This allows us to write a general purpose program-—
ming tool at one level but delay its full defini-
tion until the point where the user creates it:

Libraries and subunits support the design and
implementation of large systems. ADA allows pre-
defined libraries of program units to be construc-
ted and accessed so that a system can be built in
a bottom~up fashion. Alternatively, the use of
subunits allows the definition of program units
to be delayed so that a system can be specified
and built top-down.

It should be noted that the SAMOA user is not
required to have an extensive knowledge of generic
units, libraries, or subunits. ' They are mentioned
here because these features are available to the
SAMOA user, and their use can simplify the design
and development of medium to large scale software
projects. The fact that many simulation projects
fall into this size range strengthens ADA's poten-
tial as the base language for a discrete event
simulation package.

These ADA language constructs are now used to
describe the SAMOA package. This discussion can
be broken down into several parts, First the cen~
tral component of SAMOA, the entity, is defined.
Secondly we examine the set of routines.provided by
SAMOA to manipulate these entities (e.g. hold()
cancel()). The third part focuses on the synchro-
nisation operations which allow entities to coor-
dinate their activites in up to four different
ways: 1) competing for limited resources, 2) es-
tablishing producer/consumer relationships, 3) wait-
ing for other entities to provide services, and
4) waiting untdl arbitrary conditions are satis-
fied. And in the fourth part we survey additional
features of SAMOA such as automatic statistics
collection, random number generation, automatic
tracing and report generation. Throughout this
discussion features of SAMOA will be illustrated
via example.

The principle example used to illustrate
SAMOA is the simulation of an open-stack policy
library. "At such a library, anyome wanting a
book must present a checkout slip to a clerk work-
ing behind the checkout desk. The clerk then goes
into the stacks to find the book and returns to
the desk with it. The rest of the checkout proce-
dure then takes place, and the person leaves with
the book. If more than one person is waiting for
service, a clerk often economizes on the time re-
quired to travel between the checkout desk and
stacks by picking up checkout slips from more
than one waiting person. Because the number of
books a clerk can conveniently carry is limited,
however, the number of slips a clerk is willing
to pick up at any one time is also limited" [18].
Furthermore: each person requests only one book;
the requests are satisfied on a first-come, first-
serve basis; if more than one clerk is available
and there is more than one slip then the clerks
do not divide the work evenly but rather the first
clerk takes as many slips as possible before the
second clerk can take any; and a clerk will take
a maximum of four slips. Additiomally, the exam-
ple specifies 1) various random number distribu-
tions concerning how long it takes clerks to per-
form their actions, and 2) that the simulation is
to run until 100 customers have been completely
served. This example is drawn from Schriber [18].
Its GPSS solution is reproducéd in Figure 5 and
an initial definition of a process style solution
is shown in Figure 1.

i

Figure 1
Process Style Solution to the Library Example

entity customer is

begin i
~~ get checkout slip for one book
—— wait in line until book is checked out
—- leave library

end customer;

entity clerk is
begin
~— wait until a customer needs service
-~ geét up to four book 'slips
-~ get each book
—— return to check out counter
—— checkout each customer in order
—- repeat
end clerk;

When applying the process view to the library
example we can view the customer/clerk relation-
ship in one of two ways. The first view is as a
producer/consumer relationship in which the cus-
tomers produce checkout slips that the clerks con-
sume, and the clerks produce books that the cus-
tomers consume. The second view would be as coop-
erating entities, where the customers wait while
the clerks perform services for them. A solution
based on this second approach is outlined in
Figure 1, this example will be fleshed out as we
discuss each relevant feature of SAMOA.

ENTITY REPRESENTATION

In SAMOA each active simulation component is
represented as an entity. An entity is defined in
two parts. The first part, the 'entity record’,
is defined within SAMOA and contains data struc—
tures relevant to all entities. SAMOA uses the
information in these entity records to implement
the various entity manipulation facilities. The
entity record is, in effect, that portion of an
entity that SAMOA assumes is present in all cases
for compilation and execution. The second part of
an entity is user defined and it consists of the
following two structures: 1) the entity's global-
1y accessible attributes or data structures, and
2) the entity's set of actions.

The reason that the user portion of an entity
must be defined in two 'parts is that ADA does not
allow a task to directly access the data struc-
tures inside of another task. Because the activi-
ties of an entity are defined within task objects
the only way to allow an entity to access status
information about another entity is to place it in
a separate structure. An example of this would
be an 'entity dumptruck' where we need to know
both its total capacity and its remaining capacity.
If these values were internal to the task which
represents a dumptruck's activities then they
could not be inspected from other entities, there-
fore we place them in a separate structure. A re-
finement of the library problem taking this basic
entity representation into account is shown in
Figure 2.

The Process View of Simulation in Ada (continued)

The activities of an entity are defined as an
ADA 'task type'. The tasgk type is used so that
many instances of that entity type can be created.
The activities of each different entity type, or
each task typée, are specified in the 'task body'
definition. A particular entity type can have its
activities described within the task body using
three kinds of statements:

1) Basic ADA statements. This includes such con-—
structs as loop statements, case statements,
assignment statements, and if statements.

It would also include use of arrays, records,
strings, and simple variables.

2) The routines provided in SAMOA (and described
in the next two sections) offer a flexible
set of primitives for creating and manipu-
lating entities.

3) The entity actions could also be represented
by user defined routines which are specific
to the model which is under consideration
(e.g. an 'unload' routine for a simulation
involving dumptrucks).

Figure 2
Library Example Outlined in ADA

procedure library is

type customer reéc is record
null; ~-- No global data structures
end record;

task type customer;

task body customer is

begin

-- get checkout slip for one book

~— wait in line until book is checked
out

—— leave library

end customer;

type clerk rec is record
null; -~ No global data structures
end record;

task type clerk;

task body clerk is
begin
laop .
-- wait until a customer needs
service
~- get up to four book slips
~- get. each book
—- return to ¢heck out counter
-~ checkout each customer in order
end loop;
end clerk;

begin
—— Start of Main Body of Simulation

-- create entities .
-~ walt for 100 customers to be served
end library;

At any point in a simylation there may be some
entities which are active and others which are sus-
pended (either because they have terminated or be-
cause they are awaiting the actions of other enti-
ties). All active entities are kept, in order of
increasing 'event_time', on the 'events_list'. An
entity's event_time is the simulation time at which
its next activity is to take place. The entity at
the head of the events list has an event_ time which
is at least as low as any other active entity.

This entity is said to be the 'current' entity and
it is the entity whose actions are being performed.
The events list is continually being updated as
each entity performs its actions (which may affect
other entities). The main program of a simulation
(in Figure 2 this is the main body of the proce-
dure 'library') is also treated as an entity.

This allows the main program to use the same rou-
tines and synchronisation devices which are pro-
vided for other entities.

Both portions (the system defined section and
the user defined section) of an entity are linked
together and the entire entity is accessible by an
access value (ADA's term for a pointer or refer-
ence value) which is initialised and returned when
the entity is created. This access value must then
be passed to SAMOA routines which manipulate enti-
ties so that these routines can identify who they
are operating on.

ENTITY MANIPULATION ROUTINES

To manipulate entities, SAMOA provides a set
of simulation primitives. These routines can be
classified into the following categories: 1) the
creation of entities, 2) providing status informa-
tion about a particular entity, 3) routines that
allow an entity to manipulate the events list by
starting, stopping, or interrupting other enti-
ties, and 4) routines which allow an entity to
suspend itself either to represent the passage of
simulation time or to await the actions of other
entities. '

1) Creation of Entities

* PROCEDURE CREATE ENTITY (entity_access; title);
- this procedure creates all the portioms of
an entity, links them together, initialises
any relevant values, and returns a single ac—
cess value which points to the new entity. A
string must be passed as a parameter to this
procedure and the returned entity will have
as its title that string concatenated with a
two digit serial number. This title is then
used in reports, trace listings and error
messages.

2) Entity Status Routines

* FUNCTION ACTIVE (entity_gccess) RETURN BOOLEAN;
— this function returns 'true' if the entity
in question is ‘active', that is, if it is
currently on the events list.

% FUNCTION PRIORITY (entity_pccess) RETURN INTEGER;
- this function returns the relative priority
of an entity. All queues in SAMOA are main-
tained in priority order and these priorities
are determined and set by the user.

% FUNCTION TERMINATED (entity access) RETURN
BOOLEAN; - this function returns 'true' if
the entity in quéstion has run to completion
and is therefore no longer eligible for exe-~
cution. '

3) Event List Manipulation Routines

* PROCEDURE SCHEDULE (entity access; activate
time); - places the entity pointed to by
entity access onto the events list. The
entity's new event_;iﬁe will be the current
simulation time plus activate time. If an
entity is scheduled now (i.e.

SCHEDULE (some entity, now);), that entity
will preempt the currently running entity.

* PROCEDURE CANCEL (entity access); - removes an
entity from the events_list.

* PROCEDURE INTERRUPT (entity_access; int_type);
-~ interrupts an entity's current activity.
Int_type is a user defined range of values
which allow the interrupted entity to deter-
mine why it was interriupted and, therefore,
what actions are appropriate.

4) ©Entity Suspension Routines

% PROCEDURE HOLD (hold time); - is used to model
the passage of simulation time while an ent~
ity completes an action. The amount of sim-
ulation time that will elapse before control
is returned to the entity (barring inter-
rupts) is determined by the value passed as
hold time.

* PROCEDURE PASSIVATE; - suspends an entity. An
entity may wish to be suspended when it can
no longer continue executing until another
entity satisfies some requirement.

* PROCEDURE TERMINATE ENTITY; - is called by an
entity when it has finished its activities
or there is no longer any need for it to
continue with its actions. This procedure
cleans up the entities data structures and
ensures that it terminates gracefully.

With the addition of these entity manipula-
tion routines we can continue our definition of a
solution to the library problem. In Figure 3 we
have added to the example calls to the above rou-
tines. Notice that the main simulation routine
only creates the clerks and one customer, each
subsequent customer is created and scheduled by
its predecessor.

Figure 3
Library Example with Entity Manipulatlon Routines

procedure library is

type customer_rec is record
null; -- No global data structures
end recoxd;

task type customer;

task body customer is
next : entity ref := null;

begin
create_entity (nmext, “Customer');
schedule (next, 'sometime in the future');
—-— get checkout slip for one book
— wait in line until book is checked out
terminate entity;

end customer;

type clerk rec is record
null; -~ No global data structures
end record;

task type clerk;

task body clerk is
begin
loop
— wait until a customer needs service
~-- get up to four book slips
hold (travel_ time);
hold (get_ books_time);
hold (travel time);
~— checkout each customer in order
end loop;
end clerk;

clerk : entity ref := null;
customer : entity ref := null;
clerk num: integer := 4y

begin

for 1l..clerk num loop
create_entity (clerk, "Clerk™);
schedule (clerk, 0.0);

end loop;

create entity (customer, "Customer');
schedule (customer, 0,0);

—— wait until 100 customers have been served

-- report statistics
-— terminate simulation
end library;

ENTITY SYNCHRONISATION ROUTINES

Besides the entity manipulation routines,
SAMOA provides another level for describing the
actions and interactions of entities. This second
level of abstraction is the entity synchronisation
routines and it consists of four basic sets of
operations for specifying entity communication and
cooperation. These four sets of routines allow
entities to 1) compete for limited resources, 2)
establish producer/consumer relationships, 3) wait

‘The Process View of Simulatdion in Ada (continued)

while other entities perform services (a master/
slave relationship), and 4) wait until arbitrary
conditions are satisfied. Each of these four func-
tions implies blocking an entity (i.e. suspending
the execution or operation of an entity) if the re-
sources or conditions it requires cannot be satis-~
fied. Because of this each of these sets of oper-
ations is based on a set of queueing primitives.

The queueing facility for entities consists
of a set of rouytines for creating queue objects,
for manipulating entities on a queue, for report-
ing and resetting a queue's usage statistics, and
for listing the entities currently waiting in a
queue. Queues are implemented as two-~way linked
lists, and an entity is kept on a queue in priori-
ty order. The following is an outline of the
queueing facilities:

* PROCEDURE CREATE QUEUE -(queue access; title); -
returns an access value that points to a new
queue object. The queue object is initialised
as empty and it uses the string passed to
this procedure as its title for trace list-
ings, statistics reports, and error messages.

. % PROCEDURE INSERT (entity access; queue access);
- places the entity denoted by entity access
into the queue demoted by queue access. The
enitity is placed into the queue in priority
order (priority is a value which is local to
an entity). If the entity is already in
another queue when this procedure is called
it will be removed from that queue, and
placed on this queue.

* PROCEDURE REMOVE (entity_access); — deletes the
entity from any queue on which it is current-
1y residing.

* FUNCTION LENGTH (queuq_gccess) RETURN INTEGER;
- this function returns the number of en-
tities which are currently residing in this
queue. The length of a queue is keep as a
running courit so this function call is not
required to traverse the entire list to de-
termine the queue's current length.

* Procedures REPORT (), RESET (), and LIST ()
~ this set of procedures allow the user to
report a queue'$ éurrernt statistics, reset a
queue's statistics, and list the entities
currently in a queue.

Each set of synchronisation operations des-
cribed below manages an implicit queue. This im-
plicit queue is maintained on a priority basis
and is used to determine which entity is next el-
igible for service. Also, each set of operations
includes procedures such as REPORT (), RESET (),
and LIST (), and functions such as LENGTH (),
which are modelled after the routines defined
above for queues.

The first set of synchronisation routines de-
fine the manipulation of a 'res'. A res repre-
sents a limited number of resources for which mu-
tual exclusion must be provided. This mutual ex-~

82

. mer relationships between entities.

clusion is implemented on a semaphore basis, That
is, an entity must request a portion of a res be-
fore using it, and must also return that res when

» it has finished with it.

A res is created and returned by a call to
the procedure

CREATE RES (res_access; title; total number);

The parameter 'title' is used for tracing and
reporting purposes while "total number' defines
the maximum number of this res which is available.
An entity may request any portion of this total
number by calling the procedure 'ACQUIRE (res_
access; num requested);'. TIf enough of the res
is presently availlable to satisfy this request
then the entity is allowed to continue after the
res count 1s decremented by 'num requested'. If
the request cannot be satisfied then the entity is
blocked on the res until 1) enough of thé res is
available, and 2) the entity is next in line for
service (remember that the entities are queued for
service on a priority basis). An entity returns
portions of a res by calling 'RELEASE (res_access;
num returned), . This call will increment the res
count by 'num returned' and, if enough resources
are now available will unblock the first entity
waiting on this res. This process is illustrated
by an example where a number of entities need ex-
clusive access to a file while updating it. Af-
ter the file res is created:

CREATE RES (fiile res, "File", 1);

Each entity must access the file as follows:

ACQUIRE (file res, 1);
-~ update file
RELEASE (file res, 1);

In the period between the call to ACQUIRE ()
and the call to RELEASE () the entity will have
exclusive access to the file.

The second set of synchronisation routines
define how a 'bin' is manipulated. The bin faci~
lity allows the usér to establish producer/consu-
In such a
relationship one set of entities, the producers,
make items available to a second set of entities,
the consumers (and hence the name bin, which re-
presents a storage bin into which producers place
items and from which consumers retrieve items).

A bin is created and returned by a call to
the procedure

CREATE BIN (bin acceSS' title; initial _number};

The parameter 'title' is used for tracing and
reporting purposes while 'initial number' defines
the number of items initially in this bin. A con-
sumer may request items from a bin By caliing the
procedure 'TAKE (bin_access; num requested);’

If enough items are presently available to satis—
fy this request then the consumer is allowed to'
continue after the bin count is decremented by
'mim requested". If the request cannot be satis-
fied then the consumer is blocked on the bin until

1) enough of the bin becomes available, and 2) the
consumer is next in line for service (remember that
the entities are queued for service on a priority
basis). A producer entity places items into a bin
by calling 'GIVE (bin access; num given);'. This
call will increment the bin count by 'num given'
and will, if enough of the bin is now available,
unblock the first entity waiting on this bin.

Whereas, the res and bin synchronisation op=-
erations can be termed entity - resource synchro-
nisation, the third type is more appropriately
labelled as entity - entity synchronisation. This
third facility is implemented as a 'waitq' and it
allows the user to model master/slave relation-
ships between entities. This type of coordination
device is useful when one set of entities (the
masters) provides a set of services for a second
set of entities (the slaves). To implement this
Y"we arrange for one set of the entities to domi-
nate and let it treat the other as a resource to
be coopted, retained as a passive slave through-
out the period of cooperation, and then be re-
leased for independent progress at the end of this
period of cooperation" [2].

A waitq is created and returned by a call to
the procedure

CREATE WAITQ (waitq_access; title);

A waitq is implemented internally as a set of
two queues, one for blocked masters and one for
blocked slaves. A master entity acquires a slave
by calling the function 'COOPT (waitq access) RE-
TURN entity access;'. If a slave is avajlable
then it is returned to the master who is allowed
to continue, otherwise it must wait until one be-
comes available. Slaves block themselves for
masters by calling the procedure 'WAIT (waitq_
access);'. This process is illustrated by an ex-—
ample where boy scouts (masters) do their good
deed for the day by escorting other people
(slaves) across a busy roadway. After the wailtqg
is created:

CREATE WAITQ (crosswalk, "Crosswalk');
People wait for a boy scout as follows:

WAIT (crosswalk);
and boy scouts acquire people as follows:

my current person := COOPT (crosswalk);

When boy scouts are finished providing their
services to people they allow them to go on their
way by scheduling them to start up at the current
simulation time:

SCHEDULE (my_current_person, 0.0)3

This relationship is also illustrated in the
library example in Figure 4 where the customers
are the slaves and the clerks, who are providing
the services, are the masters.

The last set of operations for specifying

synchronisation withih a’ simulation is the 'condq’.
A condq (short for 'conditional queue') is a

83

facility for allowing an entity to wait until an
arbitrary condition is satisfied. Because of its
wide scope the condq is both the most difficult
synchronisation facility to learn and the most
powerful to use.

A condq is created and returned by a call to
the procedure

4
CREATE CONDQ (condq_access; title);

An entity uses a condq by calling the proce-
dure 'WALTUNTIL (condq_access; condition);'. If
the condition evaluates to 'true' then the entity
continues execution, otherwise the entity is
blocked. Because of the extreme expense inherent
in having the simulation continually testing to
see if these conditions have become 'true' after
every simulation state change; the responsibility
for 'signalling' relevant state changes is rested
squarely with the user (for a complete discussion
of this see Birtwistle [2]). Whenever the simula-
tion changes in such a way that one of these con-
ditions could have become 'true' the user must in-
sert a call to the procedure 'SIGNAL (condq_
access);'. This results in the re-evaluation of
the waituntil conditions of the entities waiting
on that condq. If the condition has become 'true'
then the entities are allowed to continue.

OTHER SAMOA FACILITIES

We now describe SAMOA's data collection, ran-
dom number generation, and report facilities.
SAMOA offers the user another set of data collec-—
tion devices besides those provided by queues and
by synchronisation devices. These include facili-
ties for recording time dependent data (tally ob-
jects), for recording time independent data (accu-
mulate objects), and for recording and displaying
data in histogram form (histogram objects). Also,
at any place in the simulation the user may re-
quest a report ranging from a report of all data
collection devices, to a report of one collection
type (e.g. all waitgs), to a report of one &speci~
fic collection object.

The pseudo-random number generation routines
provided in SAMOA are taken from DEMOS [2] and
there they are described as "a Lehmer generator"

published by Downham and Roberts [6]. It is
Xo = some seed generated by DEMOS
Xk+l = (8192 * Xk) modulo 67099547
and has a cycle length of 67099546'" [2]. The ran-

dom number routines are defined in three sets:

six return a float value (NORMAL, UNIFORM, NEGEXP,
ERLANG, CONSTANT, and EMPIRICAL), two return an
integer value RANDINT, and POISSON), and one re~
turns a boolean value (DRAW). ‘In a simulation
each random number generator is created separately
and each can have different initial parameters.

SAMOA also provides an automatic trace facil-
ity. The procedure TRACE turns this facility on,
while NOTRACE turns it off. Each trace listing
entry is placed on a separate line and traces a
single SAMOA defined event. Also included in the
trace listing is the simulation time and current

The Process View of Simulation in Ada (continued)

entity associated with the traced event. The user
can direct output to different files (trace, er-
ror, and report) so that different types of data
can be easily identified.

With the addition of these other simulation
facilities and the synchronisation routines we can
finish constructing our library example (Figure 4).
As previously mentioned, we use the waitq facility
to allow customers to wait while the clerks pro-
vide the service of retrieving requested books
from the stacks. Also, a bin is used to determine
when the simulation has terminated. Because the
simulation is to continue until 100 customers have
been completely served we will have each customer
deposit an item (their checkout slip?) into a bin
as they leave. By havirg the main program (remem-
ber it is also represented as an entity) take 100
items from this bin we can guarartee that it will
wait until exactly 100 customers have beern served.
Also four random number generators have been added,
values are returned from these distributions by
passing the proper access value to the procedure
SAMPLE (). Note that because neither a customer
nor a clerk has any global data structures we have
. omitted the definitidn of both 'customer_rec' and
"clerk rec¢' from Figure 4.

In Figure 5 we see the GPSS solution, from
Schriber [18], to the library example. The GPSS
solution models the transactions within the simu-
lated system by following the path of each custo-
mer's request for a book. The GPSS model is very
‘similar in many respects to the SAMOA solution:
the definition of customers and clerks are sepa-—
rated, these entity types synchronise their acti-
vities with one another, and their basic set of
actions are similar to the SAMOA solution. Speci-
fically, the GPSS code between the comments MODEL
SEGMENT 2 and CONTROL CARDS represents the
clerks. In the GPSS example the code which allows
the entities to synchronise is difficult to deci-
pher and the logic of this synchronisation is im-
plemented in both entities. This destroys the
clarity, modularity, and extensibility of this
solution, qualities which are desirable in large
simulation projects. Another problem is that
code for simple control structures liké if-then-
elses is hard to recognize and the structure of
the program is hard to follow. In contrast, the
SAMOA example models each active component in
the simulation in terms of how it sees the rest
of the world and its variety of synchronisation
primitives allow a more natural and modular re-
presentation of the entity - entity cooperation
(in this case the waitq provides the necessary
level of abstraction). Also, SAMOA has access
to the full syntax of its base language, ADA.
This makes the coding of loops and other control
structures trivial because such constructs are
built directly into ADA itself.

In the GPSS example statistics are gathered
by the statements TABULATE DELAY and TABULATE
SLIPS. In SAMOA statistics are automatically
gathered by all queue and synchronisation objects.
In the case of the library example the statistics
that would be collected and reported include:

1) average customers waiting time, 2) average

Figure 4
Library Example with Synchronisation Added

- procedure library is

next cust time : poisson;
travel timeé ¢ uniform;
get_books_time : normal;
checkout_time : uniform:
custs served : bin;
checkout_line : waitgq;

task body customer is
next : entity ref :=
begin
create entity (next, "Customer');
schedule (next, sample (next_ cust time));

wait (checkout line):
give (custs served, 1):
terminate entity;

end customer;

nulls

task body clerk is

slip num : integer := 0;

cust : array(l..4) of entity access:
begin
loop

slip num := 1;

cust (slig_num) i~ coopt (checkout line):

while length (checkout 1ine)>0 and slip num<4

loop
slip num := slip num + 1;

cust (slip_num) :=coopt (first (checkout_line));

end loop;

hold (sample(travel time));
hold (sample(get books time));
hold (sample(travel time));

for i in 1..slip num losp
hold (sample(checkout time));
schedule (cust(i), 0.0);
end loop;
end loop;
end clerk;

clerk num : integer := 4;

clerk : entity access := nullj;
customer : entity access := null;
begin

create poisson (next cust_time, 0.5);
create_uniform (travel time, 0.5, 1.5);
create normal (get books time, 3, 0.2);
create_iniform (checkout time, 1.0, 3,0);

create waitq (checkout line, "Checkout™);
create bin (custs_served, 'Custs_Served", 0);

for 1..clerk num loop
create_entity (clerk, "Clerk');
schedule.(clerk, 0.0);

end loop;

create _entity (customer, "Customer™);
schedule (customer, 0.0);

take (custs_served, 100);
report;
end library;

84

number of customers waiting, 3) average clerk wait~
ing time, and 4) average number of clerks waiting.
Also, the user can gather statistics explicitily bv
using SAMOA's built in data collection devices
(e.g. tally objects for time dependent data). All
statistics are printed by calling the procedure
REPORT.

Major advantages, not readily available in a
GPSS approach, can be derived by implementing a
simulation in SAMOA. Two of these advantages re-
late to the extensibility which can be achieved
using ADA and SAMOA. 1In the first case, a speci-
fic, large scale library simulation could be writ=~
ten in two sections. The first section would de-
fine a simulation context (in this case a library)
which would include definitions of all types of
system processes (clerks and customers). The
second section would specify a particular simula-
tion environment, including the number of clerks,
the number of customers, and appropriate values
for the random number generators. This logical
separation of the description of a system's com—
ponents and the creation of a particular simula-
tion enviromment illustrates the modular design
which can be achieved using ADA's packages and
which is especially important in the development
of large models. The second advantage derived
from extensibility is that because each entity is
represented as a logically distinct objects its
actions are independent, except at synchronisation
points, of other entities. For example, if we
changed the definition of a customer in the library
problem so that they go to both school and the
store before coming to the library we would only
have to change the definition of customer, the de-
finition of a clerk would be unaffected. This is
because SAMOA allows us to construct the model so
that a customer and a clerk are only dependent on
one another when they synchronise at the checkout
counter. In large simulations this allows the
simulationist to build sets of predefined entities
and routines whose definitions are independent of
the model being constructed and who can therefore
be plugged into a simulation whenever necessary.

Before concluding, two points have to be not-
ed. First, all SAMOA entities, no matter what they
represent, have the same information structures
(i.e. entity record, global data, and activities)
and each of these structures has its own basic
format. This consistent format allows SAMOA to be
augmented by a separate, interactive program which
generates the outline of these structures from a
list of entity names supplied by the user. 1In
essence, this rudimentary program generator cre-
ates the skeleton of the final SAMOA program into
which the user simply inserts the simulation code.
For example, by applying this skeleton program
generator to the library example it would generate
outline code similar to that in Figure 2 (without
the comments). In a large simulation this could
result in considerable savings in time and effort.
The second point to note is that the SAMOA package
owes much of its style, syntax, and philosophy to
DEMOS [2]. DEMOS (Discrete Event Modelling on
Simula), is a general purpose discrete event simu-~
lation package written in SIMULA by G. M.
Birtwistle.

The use of the process style in the construc-

Figure 5
GPSS Solution to Library Example
*1.0C OPERATION A,B,C,D,E,F,G
* EQUIVALENCE DEFINITION(S)
slip equ 10,1
* FUNCTION DEFINITION(S)
snorm function - rnl,e25

20,-5/.00003,-4/.00135,-3/. 00621 -2, 5/ 02275,-2
.06681 -1.5/.11507,-1. 2/ 15866, -l/ 21186,-.8
.27425,—.6/.34458,—.4/.42074,—.2/.5,0/.57926,.2
.65542,.4/.72575,.6/.78814,.8/.84134,1/.88493
1.2/.93319,1.5/.97725,2/.99379,2.5/.99865,3
.99997,4/1,5
xpdis function ral,c24
0,0/.1,.104/.2,.222/.3,.355/.4,.509/.5,.69/.6
.915/.7,1.2/.75,1.38/.8,1.6/.84,1.83/.88,2.12/.9
2.3/.92,2.52/.94,2.81/.95,2.99/.96,3.2/.97,3.5
.98 3. 9/ 99,4.6/.995,5.3/.998,6.2/.999,7/. 9998 8
STORAGE CAPACITY DEFINITION(S)

storage s$busy,3
* TABLE DEFINITION(S)
delay table ml,360,60,26
slips table x$count,1,1,5
* VARIABLE DEFINITION(S)
doubl bvariable x$count 'e'4+wSwait’ e'O
gnorm fvariable (fn$snorm/5+1)*180%p2
* MODEL SEGMENT 1
generate 120,fn$xpdis,,,1
wait advance
gate ls slip
%
assign 1,x$clerk
savevalue count+,1
test e bv$doubl,l,bypas
*
logic r slip
TABULATE DELAY
terminate 1
* MODEL ‘SEGMENT 2
bloka generate sss3
assign 1,n$bloka
blokb test g wlwait,0
enter busy
save value count, O
savevalue clerk,pl
%
logic s slip
buffer
* .
assign 2 ,x$count
TABULATE SLIPS
advance 60,30
advance végnorm
advance 60,30
bloke advance 120,60
logic s pl
buffer
%
loop 2,bloke
%
leave busy
transfer ,blokb
* CONTROL CARDS, AND STG CAPACITY RE-DEFS
start 100
clear
end

85

The Process View of Simulation in Ada (continued)

tion of system models is a procedure by which each
system component is modelled in terms of how it
sees the world. A one to one mapping of actual
system components to simulation components sup-
ports the modular description of large systems.
Further, our process based approach can be extend~
ed to represent special purpose simulation en-
vironments or packages. For example, the process
approach as implemented in 0ASIS, 211, [22],

[23] an extension of SIMULA, supports: the model-
ling of computer system hardware, the dmplementa-
tion of concurrent program units, and the simula-
ted execution of these program units by the model-
led hardware. 1If a base language compiler were
available for the modelled hardware compomnents,
e.g. for the Mptorola M68000 and the system being
modelled was a local network of M68000s, then the
model's program units could ultimately become the
actual network software. This same modelling
power would be available in an ADA based simula-
tion environment and it is probable that the Moto-
rola M68000 compiler that SIMULA lacks will soon
be available for ADA.

The use of ADA as the base language for a

. discrete event simulation package could thus pro-
vide large improvements in modelling power over
the current GPSS, SIMSCRIPT, and GASP approaches..
Looking beyond SAMOA, it is possible to visualize
a complete simulation environment as described by
Birtwistle et al [3] based on ADA. Such an en-
vironment would provide the simulationist with
special purpose tools, some of which would: 1)
generate simulations and documentation from formal
simulation specifications, 2) provide the user
with animated traces of running simulations, and
3) simplify project management and software confi-
guration. Furthermore, ADA's potential availabi-
lity and the portability of ADA programmers and
ADA programs make both a simulation package such
as SAMOA and a simulation environment as outlined
above very attractivé proposals.

BIBLIOGRAPHY

Barnes, J.G.P.; Programming in ADA, Addison~
Wesley, 1982.

Birtwistle, G.; DEMOS — A System for Discrete
Event Modelling on Simula, MacMillan, 1979.

Birtwistle, G.; Liblong, B.; Unger, B.; and
Witten, I.; "Simulation Environments", in-
vited paper for 'Conference on Simulation:
A Research Focus', ORSA, SIGSIM, Rutger's

University, May 1982.

I3
b
.
bl

Bryant, R.M.; "Dlscrete System Simulation with
Ada", submitted for publication to Simula-
tion, 1983.

5. Dahl, 0.-J.; Myhrhaug, B.; and Nygaard, K.;
Simula 67 Common Base Language, Norwegian
Computing Center, ‘0Oslo, 1970.

6. Dowhham, D.Y.; and Roberts, F.D.K; "Multiplica-
tive congruential pseudo~random number
generators", Computer Journal, Vol. 10,

86

10.

11.

12.

13.

14.

16.

17.

18.

19.

20.

21.

22.

23.

#1, 1967, pp. 74-77.

Franta, W.; A Process View of Simulation, El-
sevier North-~Holland, 1977.

Holback—Haussen, E.; Handlykken, P.; and
Nygaard K.; System Description and the
DELTA Langgage Norwegian Computing
Center, Oslo, 1975.

Houle, P.; and Franta W. ""On the Structural
Concept of Simula™, Australian Computer
Journal, Vol. 7, #l, March, 1975, pp. 39-45.

Kernighan, B.; and Mashey, J.; "The UNIX Pro-

gramming Environment'',
#4, April 1981.

‘Computer, Vol. 14,

Kiviat, P.; Villaneuva, R.j; and Markowitz, H.;
The SIMSCRIPT II Programmlng Language,
Prentice-Hall, 1969.

Ledgard, Henry, F.; ADA: An Introduction,
Springer-Verlag, New York, 1981.

Norwegian Computing Center, "S-port, a port-—
able Simula compiler', Available from the
Norwegian Computing Center, PO Boks 335,
Blindern, Oslo 3., Norway, 1980.

'Wax Unix Simula",
#3, August,

Norwegian Computing Center,
Simula Newsletter, Vol. 10,
1982, p. 7.

Pfitsker, A.; The GASP IV Simulation Language,
John Wiley, 1974.

Pritsker, A.; and Pegden, C.; Introduction to
Simulation and SLAM, John Wiley, 1979.

Russell, E.; Simulating with Processes and
Resources in SIMSCRIPT II.5, CACI Inc.,
Arlington, 1974.

Schriber, T.; Simulation using GPSS, Johnh Wi-

ley, 1974.

""Stoneman", Requirements for the Ada Program—
ming Support Environments, United States
Department of Defense, February 1980.

Unger, B.; "Programming Languages for Computer
System Simulation', Simulation, Vol. 30,
#4, Aprii, 1978, pp. 101-111.

Unger, B.; and Bidulock, D.; "The Design and
Simulation of a Multi~Computer Network
Message Processor", Computer Networks,
Vol. 6, #5, August 1982.

Unger, B.; Bidulock, D.; Lomow, G.; Balanger,
P.; Hankins, C.; and Jain, N.; "An OASIS
Simulation of the ZNET Microcomputer Net-—

work", IEEE Micro, Vol. 2, #6, August 1982.
Unger; B.; and Lomow, G.; OASIS 4.0 Reference

Manual, University of Calgary, Research
Report 82/93/12.

