A GPSS MODEL OF A QUEUEING PROBLEM WITH COMPLEX DECISION MAKING BEHAVIOR

ABSTRACT

This paper covers in detail the simulation
model as well as the associated GPSS computer
program of a complex queueing problem. Complexity
is manifested in terms of the use of the model as
well as the model itself, The former pertains to

experimental design aspects. The latter, on the
other hand, refers to structural considerations
(i,e., parallel queueing systems sharing

resources) as well as decision making behavior
concerning the allocation of these scarce
resources (i.e., a batch arrival and service queue
with two different forms of balking and reneging).

Following a general description of the model
and program, a detailed presentation of the
segment of code which represents decision making
is- made., Then several significant program
highlights are discussed. Finally tlie technical
considerations of the use of the program in a
research investigation are described.

The paper is intended for seasoned users of
simulation. These may either be research
investigators or simulation practitioners who at
one time or another have been challenged to bring
together the wmodeling requirements of their
problem with the modeling capabilities of GPSS.

INTRODUCTION

Since the introduction of GPSS more than
twenty years ago a large number . of papers
describing simulation models using this language
have appeared in the literature. Most of thesé
application articles have attempted to coanvey to
the rteader an understanding of the essential
features of the problem, be it an engineering,
business or other type of system. They have also

sought to instill some appreciation for the
contribution of simulation to the "solution" of
the problem {"solution" of course wmeaning
different things to different people). By and

large coverage of GPSS in these papers has been
incidental, being limited to a GPSS flowchart and
sometimes a small part of the code. Few such
articles, a good example. being Degen and
Schriber(6), have taken up as their main theme the
Proceedings of the 1982
Winter Simulation Conference
Highland * Chao * Madrigal, ®Bditors

82CH1844-0/82/0000-0015 $00.75 © 1982 IEEE

15

Leonidas C. Charalambides, Ph.D.

College of Business Administration
Marquette University)
Milwaukee, Wisconsin 53233

use of GPSS in a particular class of ‘problems.
This paper belongs to the latter category of
work. Thus, it seeks to demonstrate some of the
ways in which the modeling capabilities of GPSS
can be "stretched to their limit." By providing a
considerable amount of techical detail, it is
hoped that this presentation will serve as a case
study of the rewards as well as penalties that a
problem solver may expect to encounter when using
GPSS to study a particularly challenging queueing-
type problem. '

In this case the problem is generalized in
it represents an abstraction of realistic
situations. There is also a considerable amount
of complexity. This is because, in addition to
being subjected to dynamic and stochastic,
environmental inputs, the system .exhibits activity
interdependence, i.e., the progress of a service
activity is directly affected by the progress of

that

another service activity elsewhere in the
system. Therefore this problem is an example of a
large category of queueing (usually network)

problems where

a) in~parallel and/or in-series . queueing
systems affect one another's demand for
and/or supply of service as well as

b) unusual customer behaviour (e.g., balking)

or server behaviour (e.g., preemptive
priorities) occurs.
Such problems are encountered in production,
communications and transportation, to mname a
few.
THE SIMULATION MODEL
The simulation model includes a number of
Customer Queueing Systems (C.Q.S.) that are
arranged in parallel. Each serves its own set of
customers using a first-come-first-served

discipline (see Figure 1). The total number of
servers in the group of these C.Q.S.s——otherwise

referred to as the Customer Service Echelon
(C.S.E.)--is fixed. Inbound and outbound server
transfers are initiated at a C.Q.S. independently

Each C.Q.S. uses the same generic,
This

of the others.
heuristic, event-triggered operating policy.

S

A GPSS Model of a Queueing Problem With Complex

Decision-making Behavior (continued)

policy is based upon simple feedback control of a
performance criterion called the server utiliza-
tion factor (u.£.). This criterion, calculated
separately for each C.Q.S., is as follows:

B +W
u.f, = —mmmme
S+ T+ R
where
B is the number of servers in use at a C.Q.S.,
W is the number of customers waiting to be

served at that C.Q.S.,

s is the total number of servers
idle) at the same C.Q.S., ‘

T is the number of servers in transit to that
C.Q.S8., and

(busy and

R is the number of outstanding requests for
servers from that C.Q.S. at the Depot (see
below).

The policy includes four decision rules that
control the timing and extent of the increase or
decrease of the number of servers currently
assigned to a C.Q.S. These decision rules are of

the "stochastic review" type, i.e., the occasions
on which the u.f. is computed and compared to the
predefined control limits are the three
independent events in the operation of the
group. These are the events that are a function
of the stochastic processes that "drive" the
group. They are: ‘

a) the arrival of a customer at a C.Q.S.
(generated by the stationaiy Poisson
arrival rate process), .

b) the release of a server by a customer
(generated by the stationary Erlang-k
service time process), and

c¢) the completion of a requested inbound
server transfer at a C.Q.S. (generated by
the unknown request waiting and service
process).

FIGURE 1

THE SERVICE SYSTEM

" activity that can be followed after the u.f.
been

16

On any ope of these occasions a C.Q.S. may place
an order composed of one or more requests for
additional servers (ome request per server) with
the Depot. The latter is not part of the C,S.E.
but of a higher level echelon called the R.S.E.,
for Request Service Echelon. Thus the Depot acts
as a neutral "traffic policeman" of sorts to which
uaneeded servers are also dispatched from various
€.Q.8.s. Consequently, for statistics gathering
purposes, there are four different kinds of queues
in front of the Depot:

a) the order queue (from the C.S.E.),
b) the request queue (from the C.S.E.),

¢) the "segmented" order queue (one from each

c.Q. S), and
d) the "segmented" request queue {(one from

each C.Q.S.).
It should be stressed that the Depot serves
orders, not the requests that make up an order,
Furthermore it is postulated that the server
transfer times between the R.S.E. and the C.S.E.

are deterministic and uniform for all Depot-to-
€.Q.S. combinations (in both directioms).

model (2) has
and C.S.E.

Ongoing research with " this
investigated the effects upon C.Q.S.
performance of

a) features of the operating policy and
b) the structural parameters of the C,S$.E,

For instance, uuder the former category, the model
has been used to ascertain the control "limit
sensitivity of the operating policy. Experimental
factors in the latter category, on the other hand,
have included the size, degree of compactness and
homogeneity of the group. Performance has been
evaluated by means of criteria that measure
various aspects of queuing system behaviour, e.g.,
quality of service to customers as well as
utilization of servers.

" Figure 2 is a flowchart of the logic of the
simulation model., The first (upper) part shows
the typical tasks associated with every discrete
simulation model ‘(searching the future events
list, identifying the time of the next event,
etc.), the three independent events mentioned
above plus the two dependent events, i.e., server
arrival at the Depot and end of the simulation
run, The second part shows the three paths of
has
compared with the control limits. For
instance, if a reduction in the u.f. denominator
is indicated, the request queue and the segmented
request queue associated with that C.Q.S. are
checked for any waiting requests, If there are
some waiting, a suitable number 1is cancelled
("mandatory" reneging). On the other hand, if it
is desired to increase the u.f. denominator but
the request queue contains as many requests as the
total number of servers in both echelons, control
is transferred to the portion of the program that
searches the events list ("mandatory™ balking).
"Mandatory" balking and reneging should be
distinguished from "optional" balking .and
reneging. The "optional" characterization refers
to features that are integral components of the
operating policy in that they are under the
jurisdiction. of the imaginary "C.Q.S. manager.,"

As such they do not have to be invoked in every
simulation run. In Figure 2 "optional" reneging
is portrayed by the heavily drawn process box at
the lower left hand side of the second part, while
Yoptional" balking is depicted by the heavily
drawn off-page connector on the right side of the
figure.

FIGURE 2
THE COMPUTER MODEL FLOWCHART

¥

SERR%H tTuIE#Eng;
(S5TRRT) =] EVENTS ,
LIST NEXT EVENT
EXT MOVE CLOC
EVENT TQ TIME OF
\5) NEXT EVENT
LY] T T 1
CUSTGMER END OF END OF SERVER SERVER
EAVICE ARRIVAL ARRIVAL
geRigay RON RERVACE APRSE AT eror
JOIN RELERSE ADD 1O ADD TO
A (SioP) Qs CEPOT
CB%E?JEE SERVER STOCK STOCK
REMOVE
cusr%nzn
CUSTOMER
QUEUE 1
seize | [cALcuLate
SERvER | | YTiLizeT.=E
PART A

CANCEL
SUITRBLE
INUMBER

OF
REGUESTS

REMOVE &
DISPRTCH
SERVERS

=1 REQUEST
QUEUES

SCHEBULE REMOVE

ARRIVAL REQUESTS REMOVE &
oF FROM == DISPATCH
SERVERS REQUEST SERVERS
AT _DEPOT QUEUES f

REMOVE CANCEL SCHEDULE
S
OROE iy RESPECTIVE
OROER ORDER

QUEUES BASE

PART B

17

THE GPSS COMPUTER PROGRAM
General

The digital simulation literature advocates
the choice of a high level simulation language
(such as GPSS) over a general purpose programming
language (such as FORTRAN) because of the
provision of such "built-in" housekeeping chores
as maintenance of events lists, data gathering,
etc. In this case these were essentially the same
reasons behind the elimination of FORTRAN.” On the
other hand, choosing GPSS over other high level
languages was prompted more by availability than-
anything else. still, the preference of this
jnvestigator for the transaction orientation of
GPSS was a strong motivating force. Another was
readability. Bobillier et. al. (1) are among the
many authors who maintain that the "readability
(of GPSS) is a special advantage whenever several
people must work on the problem" [p. 384]. It
should also be added that this feature is very
helpful when one has to 'overhaul", 1i.e.,
drastically modify, the program——especially after
a long period of inactivity! This particular
program went through at least three such
overhauls, It was originmally writtem and tested
in a GPSS V environment (7). However, it sub-
sequently had to be modified to be run under the
Xerox version of GPSS which is called GPDS (for
General Purpose Discrete Simulator) (9.
Conversion would have been completely painless
were it not for a strange problem with MACRO
expansions, to this date remaining unresolved due
to the almost complete lack of vendor support.
Nevertheless GPDS itself is a truly outstanding
product. As evidence is offered the fact that,
even though it was developed in the early
seventies, it possesses interactive execution
capability. It is the opinmion of this author (3)
that for anybody with an 'unusual"” simulation
model this feature should more than make up for
any drawbacks a particular version of GPSS may
have.)

Program Structure

Transaction activity im a C.Q.S5. is modeled
using six distinct operating modules of code (see
Table 1). A module is a group of blocks of which
the first is a GENERATE block and the last is a
TERMINATE block. Transactions of course assume
different roles depending upon the function of the
module. In the first they are customers, in the
second server inventory clerks, in the third
€.Q.S. decisionmakers, in the fourth order and
requests for servers and in the fifth and sixth
servers. Since eight queueing systems are
postulated, there are a total of forty eight
C.Q.S. operating modules plus a single Depot
module which models the imaginary Depot clerk.
FEach wmodule collects statistics associated with
the respective C.Q.8. It also contributes to the
updating of the relevant C.S.E. statistics,

The Operating Modules

The first operating module is made up of four
segments of code:

a) modeling of the interarrival and service
distributions using ASSIGN and LOOP blocks

Model of a Queueing Problem With Complex Decision-

making Behavior (continued)

b) QUEUE & DEPART blocks at C€.Q.S. and C.S.E.
quéues,

c¢) ENTER, ADVANCE & LEAVE blocks at C.Q.S.
and C.S.E, storages to simulate the number
of busy servers, and

d) LINK & UNLINK blocks
activate respectively
transactions waiting to be served.

to deactivate and
customer

The second operating module contains the following
three segments of code:

a) the "initialization"™ of the appropriate
€.Q.S. and C.S.E, storagés which model
current server capacity as follows:

ENTER RENT1,R$RENTL
LEAVE RENT1,XSINCR1
assuming of course that the following

statements have been inserted elsewhere:

STORAGE S$RENT1,50
INITIAL X$INCR1,6

b) the increase of the C.Q.S. server
"ecapacity"”, wupon a '"signal" (to be

explained below) from the fifth module,
using LEAVE blocks as above, and

¢) '‘the decrease of the C.Q.S. server
"capacity", upon a signal from the sixth
module, using ENTER blocks. as above.

TABLE 1
CUSTOMER QUEUEING SYSTEM (C.Q.S.)
COMPUTER PROGRAM OPERATING MODULES

Operating
Module Number of
Number Function Blocks
FIRST Simulation of the processing of 44
customers by a C.Q.S. (arrival,
service, exit).
SECOND Stock control of all inconing 32
and outgoing servers to and
from a C.Q.S. respectively
THIRD Activation of the decision 96
rules at a G.Q.S. Balking
(optional and mandatory) plus
mandatory reneging. Management
of Depot queue departures due
to balking or mandatory reneging.
FOURTH Simulation of the processing at 81
the Depot of orders and requests
from a C.Q.S. Optional reneging.
i
FIFTH Simulation of the transfer of 19
servers from thé Depot to a C.Q.S.
SIXTH Simulation of the tranmsfer of 26

servers from a C.Q.S. to the Depot.’

18

In the third module a comparison of the u.f. with
the appropriate upper and lower control limits’
takes place first. Then the decision making
transaction is routed to ome of two HELP blocks
which use the same FORTRAN subroutine to determine
the size of the intended server capacity change.
If an increase is indicated, a message is sent to
the fourth module after the current contents of
the request queue have been checked, for possible
"mandatory" balking, On the other hand, if a
decrease is warranted, the length of the
appropriate segmented request queue is first
checked, If it is zero, a message is sent to the
sixth module. Otherwise, first, optional reneging
of an order currently in the process of being
served is considered, followed by optional

-reneging of any orders still waiting to be served

at the Depot. Obviously partial reneging of an
order is possible, i.e., only some of the requests
that comprise a particular order (whether waiting
or in the process of being served at the Depot)
may be cancelled,

The fourth module contains segments which
a) initialize the orders from the C.Q.S.,
b) QUEUE & DEPART from the appropriate order
queues and segmented order queues,
¢) SEIZE & RELEASE facility SERVE,
represents the Depot clerk,
d) represent the process of being served by
SERVE when
1. there 1is currently a number of
servers at the Depot greater than or
equal to the number of requests in
the order, and
2. there are curreatly not enough
servers and consequently some
requests have to wait for servers to
become available, \
e) model optional reneging which is either
"ship the requested servers to the C.Q.S.
in an unlimited number of batches" or "in
only one batch,"” i.e., don't wait for
more servers to become agyvajilable, and
f) generate the appropriate requests using
SPLIT blocks and route them in and out of
the appropriate request queues and
segmented request queues,

which

A facility is used to model the Depot because at
any one time only one order can be in the process
of being served, i,e., occupy the Depot until
either all the requests are traansformed into
servers dispatched to that C.Q.S. or reneging--
mandatory or optional-—-takes place.

The fifth module generates a server -and an
offspring, "parks" the parent at a user chain,
upon a signal from the fourth module moves that
transaction through ENTER, ADVANCE and LEAVE
blocks to simulate shipment time and finally sends
a signal to the second module to notify it that
the server has arrived. Obviously the sixth module
is similar to the fifth except that the initiating
signal is received from the third module and the
notification signal is sent to the Depot module.
Also, along the way a signal is sent to the second
module for records updating.

Table 1 shows that the third and fourth
modules make up more than sixty percent of the
part of the program that 1is devoted to the

representation of a C.Q.S. To explain balking in
the third module, it 1is necessary that the
transaction flow in the fourth module be presented

first. A complete description of the fourth and
third modules is provided in Appendix 1 and 2
respectively, Both of them refer to C.Q.S. #l.

In these and subsequent Appendices the essential
blocks are shown sequentially followed immediately
by a short explanation of points deemed to be
necessary to the understanding of the modeling
approach. It is understood of course that some
blocks not essential to transaction flow, such as
TABULATE for instance, have been omitted.
Finally, to facilitate the reference of blocks by
other blocks in the same or a different Appendix,
a specific block numbering scheme is employed.
Thus a two digit number in bold typeface appears
on the extreme left hand side of each line of
code. The first digit identifies the Appendix
number while the second refers to the sequential
position of that block within that Appendix.

HIGHLIGHTS OF THE PROGRAM
Intermodule Communications
As is demonstrated in Appendices 1 and 2, one

of the challenges to the programming of this
simulation model is the need for "communication

between modules. This is achieved by means of
logic traps, i.e., strategically placed logic
switches which operate in connection with
transactions LINKed on and URLINKed from user
chains. That is, when the time comes for a
transaction to resume 1its normal flow, the
transaction that instigates the UNLINKing first

checks to see if the switch is reset {(see line 2~
10 for instance). If it is, the simulation stops
after the FORTRAN error flagging subroutine ERORI
is called. If it isn't, then the switch is set
(Line 2~11) followed by the UNLINK block (line 2-
12). The latter routes the released transaction
to a block which resets the switch (line 1-4)
before anything else can take place. Setting and
resetting the switches ,is so important to proper
event scheduling that BUFFER blocks are liberally
used (see lines 1-31, 1-37 and 2-38). As a matter
of fact to ensure that the current events chain is

scanned 1in the manner that the investigator
desires, many transaction priorities are
dynamically modified, e.g.,

GENERATE vy 1,45

PRIORITY 30,BUFFER

PRIORITY 45

Thus these logic traps prevent activity in one
module from proceeding without required activity
in other modules having been completed.

Error Flagging

The error flagging subroutine does not output
the exact location of the error. Teo do that would
require the tramsaction to "carry" an additional
parameter. Then, upon detection of an error

19

condition, the transaction would be routed through
an ASSIGN block which would put in that parameter
a predetermined code indicating the error
location, Subsequently the FORTRAN subroutine
would - output the contents of that parameter.
Naturally an alternative to the use of an error
flagging subroutine would be the routing of the
offending transaction through a TRACE, UNTRACE and
TERMINATE sequence. The advantage of this option
is that the address of the previous block is part
of the standard full trace output.

HELP Blocks

The limitation upon the maximum number of
arguments allowed in HELP blocks (i.e., six) was a
serious obstacle to get around. It was done by
using two intermediate variables (V17 and V20) to
provide input data to the FORTRAN subroutine that
calculates the change to the u.f. denominator (see
lines 2-7 and 2-17)., The cost of this option is
of course the additional storage required by the
sixteen--since there are 8 C.Q.S.'s--variables.
An alternative would be the use of two, rather
than one, subroutines which are called by the GPSS
program one after the other. Thus the first would
handle half of the calculations and pass the
intermediate vresult back to the GPSS program.
This value would then be turned over to the second
subroutine to obtain the final result. The
disadvantage of this approach is the extra core
required by the second subroutine as well as the
penalty, in terms of CPU time, associated with an
additional subroutine access.

Statistics Gathering

The most appealing feature of a special
purpose language like GPSS to an investigator with
limited time is the availability of standard
statistics gathering entities. Sometimes this can
obviously be a disadvantage in terms of high
computer storage and execution requirements.
However, if resource constraints are not severe,
use of redundant statistics gathering entities can
be a blessing when trying to verify particularly
large and complex programs. Thus a model
attribute, such as current queue length (Qj), may
be recorded by more than one queue., For example,
in this program C.Q.S. as well as C.S.E. queues
are used at the lower echelon and C.Q.S. as well
as R.S.E. queues at the upper echelon. Alternately
the average length of a queue may be maintained in
attribute QAj as well as in TBj, i.e., using a
TABLE entity. Unfortunately, use of these enti-
ties may sometimes lead to certain awkward pro-
gramming problems when the information contained
in their attributes must be directly used in the
program itself rather than be simply outputted,
This -is particularly true of TABLES which are the
only entities capable of gathering dispersion
statistics, Thus weighted means and standard
deviations cannot be directly referenced,
Furthermore, when unweighted means and standard
deviations are referenced, they are truncated.
For this investigation accuracy is so important,
especially when it comes to u.f. computationms,
that all the entities are subjected to eatry and
exit counts with a much larger order of magnitude
than shown elsewhere in this paper. Thus

QUEUE LINA, 10000

A GPSS Model of a Queueing Problem With Complex

Dec1slon-mak1ng Behavior (continued)

is used rather than

. QUEUE LINA,1
However, this means that additional parameters and
variables have to be created to handle the

situations, like LOOP control for iunstance, in
which the proper order of magnitude is needed, A
good example is parametere #3 which is initialized
in 1-6 and used in 1-15.

Data Capturing

The program collects data (experimental
observations) of global as well as local
performance criteria, 1i,e., referring to the
C.S.E. and C.Q.S. respectively, for a number of
simulation subrumns, Subsequently the data is
analyzed by means. of separate linear,
regression models; The tabulation of this data is
handled by a separate FORTRAN subroutine called at
the end of each subrun. This subroutine stores
output values on a disk file in binary mode, 1In
this way the preparation of the master data file,
upon the completion of all the rums, is a
relatively straightforward but nevertheless time
consunming process., This is not only due to the
size of the data base but also to the fact that
the only way to output weighted TABLE means and
standard deviations is through the REPORT editor
" using TEXT cards. The problem is that, for this
GPDS ' implementation, the devicé (datd set
reference) number of the binary mode disk file
cannot be the same with the device number of the
REPORT editor. To make matters worse, the latter
can only write to a tape, Thus each simulation
run has two output files, one on disk dnd theé
other on ‘tape. Not only that, but due to
experimental design considerations imposed by the
investigator, the data items of the tape files
have to be inserted into, rather than added at the
end of, thé respective disk files to come up with
the master data subfile pertainiung to a particular
Tun, For a complete discussion of the data
gathering module please see Appéndix 4.

Simulation Subruns

The subruns of this model are of the "time
duration" rather than the "customer arrival count"
type. According to. Conway (5) the former is
appropriate for measuring attributes of permanént
entities (utilization of storages for instance)
while the latter best suits the measurement of
temporary entity attributes (for example mean
waiting time of customers). ' In this case arrival
count subruns can be used if, immediately after
entering the C.S,E. customer queue,

QUEUE LINAA,1
a transaction trips the testing of the number of
entries

TEST L QCSLINAA,XSNUM,USEL9

where USEl9 is a ‘block that increments the
appropriate arrival counter, adds another 1000 to

additive,

20

X$NUM (if that is the size of the arrival count
subrun) and then proceeds to output the -
appropriate statistics. The difficulty comes in
when one attempts to reconcile the two schemes in
the same GPSS program. This is because of the
inability of maintaining two separate sequences of
START . & RESET cards, where one sequence
selectively resets one class of statistics and the
other sequence all the rest. That is, GPSS does
not provide the capability of "routing” .an
imaginary tramsaction through one or the other
kind of RESET card.

Macros

Due to the size as well as the repetitive

.nature of the program (approximately 2600 blocks),

MACROs are heavily used. Thus,

module, ' irrespective of C.Q.S.,
anywhere from. two to eleven MACROs. With the use
of parallel streams of MACROS, one stream per
C.Q.8., proofreading as well as correcting becomes
very easy. This is achieved by editing on~line
the file that contains the GPSS program and using
the command(s) of the computer system editor that

search the file and type out all the occurrences

each operating
consists of

of the same kind of MACRO, e.g., the first MACRO
in the second ‘module of all the C.Q.S.s.
Obviously the existence of a very carefully
thought out entity naming convention . is
invaluable., This applies to tags of such entities
as queues, storages and the like as well as the
labels of blocks and MACROs. In writing this

program particular cdre was taken with dummy
arguments of a MACRO that refer to a block label
in another MACRO in the same or another module. A
block 1labeling scheme utilizing a three letter
prefix and a two digit suffix was found
particularly helpful in tracing areas of unusually
heavy transaction -flow. The prefix, admittedly
not very descriptive, pertains to the type of the
operating module, e.g., GET for the fourth module
and COR for the third. On the other hand, the
first digit of the suffix identifies the C.Q.S.
while the second pertains to the location of that
specific block relative to all the others in that
particular moduie.

"Good Housekeeping" Practices

Early in the development of the program it
was decided to establish and adhere to Vvery strict
"housekeeping" practices. It was felt that, for a
program of such complexity, a logical physical
arrangement of the various categories of -code
would be invaluable not only to program
verification but to subsequent wmodification as
well, As Table 2 shows therefore, definitions of
MACROs and such important entities as FUNCTIONS
precede SAVEVALUE initializations. Furthermore
the operating modules are placed separately from

such ancillary wmodules 1like the statistics
gathering and timer modules. Also the primary
(parent) transaction flow at each module 1is

segregated from the secondary (offspring) flow as
much as possible, Secondary flow may also refer
to transactions which place transactions on (or
remove them from) the current events chains.
Segments of code which include looping may also be
placed at a separate location of a module.

that a

. Finally it should be pointed out

conscious effort was made to adhere as much as
possible to certain simple common sense rules like

a) the placement of such “attention
distracting" blocks as TABULATE, MARK or
ASSIGN away from such key blocks as GATE LR
or TEST, and

b) the placement of QUEUE/DEPART or ENTER/
LEAVE blocks for local (C.Q.S.) entities in
a consistent maunner relative to those of
global (C.S.E.) entities (see for instance
1i?es 1-9 and 1-10 as well as 1-64 and 1-
65).

RUNNING THE PROGRAM

Thus far the program has been used in several
distinct research phases,
set of experiments (simulation runs) carried out
for the purpose of testing a specific hypothesis
concerning the behavior of the system. To change
the configuration of the model from one research
phase to the next, the following modifications to
the program are required:

-~ the initial server allocation to the Depot,

- the size of the subrunm,

- the duration of the simulation, and

~ the target value of the u,f. which is the
midpoint between the upper and lower
control limit.

Also, in the second operating module, the storage
capacity of a C.Q.S. has to be established using
an appropriate STORAGE block.

On the other hand two kinds of programming
modification are required to change, within the
same research phase, the configuration of the
. model from one experimental run to another. The
first calls for the setting of a number of
savevalues using INITIAL blocks. These savevalues
represent the experimental factors the values of
which specify the experimental levels in effect
for a certain run. For example, the values of 0
or 1 in savevalue XFACE indicate that there are
four or eight active C.Q.S.s respectively.
values of these savevalues along with the
reference numbers of the run aad subrun are the
first data items to be written out on the binary
disk file record which contains all the data for a
particular experimental replication. This 1is
because these experimental factors constitute the
independent variables of the respective regression
equation. There is of course one regression
equation for each performance (dependent) variable
that is to be analyzed.

The second type of programming alterations
consists of the changes to. the values of the
actual GPSS entities with which a particular
experimental factor is associated. All of these
entities are savevalues. A description of the
experimental factors, the GPSS entities used to

model them, along with the maximum number for
each, (i.e., equal to the maximum number of
Cc.Q.S.s) is given in Table 3. For instance,

Factor E, i.e.,, size of the C.S.E., is modeled by
eight X$BABEj which are used in the initialization
interval subfield of the GENERATE blocks in each
of the eight customer service C,Q.S. modules.

A research phase is a’

The -~

21

"TABLE 2
SEQUENCE OF PROGRAM SEGMENTS

a. MACRO Definitions
b. Tag Definitions (EQU cards)
c. FUNCTION, VARIABLE, TABLE Definitions
d. SAVEVALUE Initializations
e. Operating Modules
C.Q.5. #1
FIRST Module
SECOND Module

SIXTH Module
C.Q.S. #2
FIRST Module

-

SIXTH Module
C.Q.S. #3

.

C.Q.S5. #8
Depot Module
Auxiliary Module
. Statistics Gathering Module
. Timer Module
. Control Cards
. Output Editor Cards

He IFQQ rh

The most difficult experimental factor to
model is factor G. This refers to the form of the
relative frequency distribution of the four or

eight (depending upon the valye of factor E)
C.Q.S. arrival rate means. Thus, -there is an
experimental requirement that the total,- i.e.,

C.S.E.- wide, "demand for service" has to be the
same for all runs of an experimental phase. 1In
other words, the '"supply of service", i.e., the
total number of servers initially allocated to the
C.Q.S.s should 'be the same for all runs of a
research phase, Consequently the initial
allocations of servers to the C.Q.S.s will vary
from one run to another, For instance, to model a
small {(four €.Q.S.s) "heterogeneous" C.S,E. with
Poisson arrival rate distributions, the
interarrival time means of three C.Q.S.s are set
at 300 time units while that of the fourth is set
at 150, The initial server assignments (XSINCRj)
of each of the first three are 48 while that of
the fourth is 96. On the other hand, the numbers
for a large heterogeneous C.S.E. are 720, 240, 20
and 60 for the first six and the. remaining two
C.Q.S.s respectively. These figures along with a
common service time distribution mean (XH$HOLDjJ)
of 10799 time units ensure that the mean of the
C.S.E., not C.Q.S., interarrival rate distribution -
(XH$BINTj)—-which of course is also Poisson--will
be 1/60 while the total number of.servers will be
240, All these values were determined prior to
the execution of the simulation vruns using
interactively a FORTRAN program of a heuristic

numerical search procedure.

Factor H stands for the presence or absence
of "interaction " among the C.Q.S.s. That is,
whether the C.Q.S.s are to share servers through
the Depot or are to operate independently of one
another. A simple way of representing this factor

A GPSS Model of a Queueing Problem With Complex

Decision-making Behavior (continued)

TABLE 3
THE EXPERIMENTAL FACTORS

GPSS Maximum
Factor Description Entity Number
) . of Entities]
A Degree of sensitivity X$UNOZj 8
of the upper control
limit of the operating
policy
B Degree of sensitivity X$LNOZj 8
of the lower control
limit of thie operating
policy
c Presence or absence XH$LINLj 8
of "optional" balking
D Presence or absence XH$NSHPj 8
of "optional"” reneging
E Number of C.Q.S8.s X$BASEj 8
F Inter~echelon XH$MOVE 1
Transportation time
G ° Composition of the X$INCR] 8
Source Population XH$BINT] 8
XH$HOLD] 8
H Presence or .absence X$STRAJ 8
of operational
interaction among the
C.Q.S.s
1 Variance of interarri-XHS$KAPAL 1
val time distribution
J Variance of service XH$KAPA2 1

time distribution

is to strategically place a TEST block in the
third operating module. This block will compare
the current absolute clock with savevalue STRAj.
Thus, just as with BASEj above, if STRAj contains
a very large value, the decision making code willl
be bypassed and no requests or disposals of
servers will be initiated. On the other hand if
STRAj contains a very small value, but ot zero
due to computational complications with the u.f.
when the simulation is still "cold", then decision
making may take place,
and J stand for the
and service time distribution
both of them are Erlang-k
respectively, To model them, all that has to be
done is set savevalues KAPAl and KAPA2 to the
appropriate values of k, i.e., a large value of k
for small variance and a small value of k for
large variance (see Appendix 5).

Finally, factors I
interarrival

variance when

Simulation run lengths have ranged from 25 to
about 42 minutes of CPU time on a Xerox Sigma 9

22

with 512K bytes of main memory operating under the
Control Program Five (CP-V) operating system. As
an indication of model complexity, one thousand
customers at the C.S.E. take on the average about
a second of CPU time to be processed through the
model (simulation run duration has been 1,300,000
time units). As a measure of size, there have

been peak memory requirements of around 450K
bytes. This, despite the fact that the FORTRAN
shared -library (needed by - the FORTRAN data

gathering subroutine) was overlayed with the GPDS
load modules to obtain the relocatable object
module. Table 4 shows that a significant amount
of reallocation had to take place to accommodate

a) the large number of tables necessitated by
the extraordinary amount of data gathering,

b) the number of blocks (which is a direct
function of the number of C.Q.S.s), and

c) the amount of COMMON which is dependent
upon the large number of active
transactions.

Obviously a lot of "fat" had to be trimmed by
employing such well known practices as minimizing
the number of parameters per transaction as well
as using halfword, instead of fullword, parameters
and savevalues whenever possible (see lines 1-30
and 1-32 for instance).

TABLE 4
COMPUTER PROGRAM ENTITY REALLOCATIONS

Standard Actual
Entitz Number Number
Facilities 300 1
Queues 300 55
Functions 200 19
Storages 300 36
'User Chains 100 79
Transactions 1200 900
Logic Switches 1000 100
Savevalues (fullword) 1000 118
Savevalues (halfword) 500 90
Groups 25 5
Variables 200 96
Random Number Generators 8 1o
Tables 100 150
Blocks 1000 2599
COMMON (in K bytes) 106,53 120

SUMMARY

This paper has provided a detailed description
of the GPSS program of a complex queueing problem.
Particular emphasis was placed upon the decision
making behaviour which generates customers to a
bulk arrival queueing system. The process that
serves these customers dlso received considerable
attention. Validation and verification topics
were not covered inasmuch as they are addressed
elsewhere (3).

REFERENCES
1. Bobillier, P.A., B.C, Kahan and A.R. Probst,
Simulation with GPSS and GPSSV, Englewood

Cliffs, N.J. Prentice-Hall, Inc., 1976.

2. Charalambides, Leonidas C., "Parallel Queueing
Sytems With and Without Decentralized Server
Reallocatiion ~ A Simulation Study", The
European Journal of Operational Research, Vol.
6 (1981), p. 46-55.

3. Charalambides, Leonidas C., "Modelling Complex
Queueing Problems with GPSS: An Empirical
Assessment,"” unpublished working paper,
College of Business Administration, Marquette
University, Milwaukee, WI (1981)..

4, Clema, Joe K., "General Purpose Tools for
System Simulation™, Proceedings of the 1llth
Annual Simulation Symposium (1978), p. 37-60.

5. Conway, R.W., "Some Tactical Problems in
Digital Simulation", Management Science, Vol.
10 (1963), p. 47-61.

6. Degen, Ronald J. aund Thomas J. Schriber, "On
the Use of GPSS to Model Hierarchical Control
Systems in -a Manufacturing Environmeat™,
Proceedings of the 1976 Winter Simulation

Conference, p. 114-123.

7. 1IBM, General Purpose Simulation System V
User's Manual, IBM form -SH20-0851-1, Second
Edition (August 1971),

8, Schriber, Thomas J. Simulation Using GPSS, New
York, John Wiley and Sons, 1974,

9, Xerox Corporation, Xerox General Purpose
Discrete Simuldtor (GPDS) Reference Manual,
Xerox Co, form 90 17 58B (available through
Honeywell Inc.), November 1972,

APPENDIX l: THE FOURTH OPERATING MODULE

The fourth module is divided into two parts:
one which handles order processing at the Depot
and another that carries out request processing.
These two parts ‘can beé visualized as two
physically 'distinet sections of code--i.e.,
representing separate transaction flow--connected
by appropriate TRANSFER blocks.

Part A: Order Brocessing

1-1 GENERATE ,,X$BASE1,1,65,5,F
BASEl is a fullword savevalue, previously initial-
ized, which is used to activate or deactivate a

C.Q.S. #1 depending upon the value of experimental

factor E in effect during a particular simulation .

run, i.e., either all eight C.Q.S5.s are "open" or
€.Q.S.s #5 through #8 are “closed.”. :
1-2 ASSIGN 2,1

Transaction #2 will be used to identify to which
€.Q.5. does this order belong (in this case it is
the first).

23

1-3 GET1O LINK SEVEL,FIFO

1-4 GETI11 LOGIC R 17

Logic 'switch 17 is set in the third module (line

2-11). This of course is the way by which modules
communicate, i.e., the 'signals" that are
mentioned in the text.

1-5 SPLIT 1,GET10

(GET10 is in line 1-3)

Create an offspring transaction which will act as
an order next time one is dispatched from the
third module (i.e., from the C.Q.S. to the Depot,
see line 2-12).

1-6 ASSIGN 3,X$INTOL

INTOl is the size of the current order which is
calculated in the third module (line 2-7).

1-7 ASSIGN 4 ,X$INTOL !

Parameter #3 is wused in group . operations
associated with waiting time only (group LINEG in
lines 1-8, 1-18, 2-34, 2-36, 2-43, 2-44) while
parameter #4 is used in group operations

associated with time spent being served by the

Depot (group WORK in lines 1-19, I-41, 2-20, 2~
23).

1-8 JOIN LiNEG‘

1-9 QUEUE LINA, 1

1-10 QUEUE LINAl;l

LINA & LINAl are the order Qqueue and segmented
order queue for C.Q.S. #l respectively.
1-11

QUEUE LINO, 1

1-12 QUEUE LINO1,!

LINO & LINOlL are the order queue and segmented
order queue which record waiting time plus time to
be served at the Depot respectively.

GETK! SPLIT

1-13 1,GETLL;, 1

(GETL1 is in line 1-~53)

Generate and route, in the request processing
segment described below, a request which will be
part of this order. Copy patameter #l of the
parent transaction only.

1-14 PRIORITY 65, BUFFER
Move that requesﬁ now!
1-15 LOOP © 3,GETKL

(GETK] is in line 1~13)

Repeat the process as many times as required by .
the size of the order. :
GATE NU

1-16 SERVE, IDLEL

(IDLEl is in line 3-1)

If the facility is currently tied up, 'park" this
order transactiori at a user chain in the auxiliary

A_GPSS Model of a Queueing Problem With Complex

Decision~making Behavior (continued)

module (described in Appendix 3).

1-17 SEIZE SERVE
If the Depot is free, i.e., if there is no other

C.Q.S. in the process of being served, get in!

1~18 GETPl REMOVE LINEG

1-19 JOIN WORK

1-20 DEPART LINA, 1

1-21 DEPART -LINAL,l

1-22 'UNLINK WAITL,GETNI,P3

(GETN1 is in line 1-61)

WAIT] is a user chain for requests residing at the
request queue or segmented request queue (see line
1-57).

1-23. GET12 TEST GE X$STOKD,P4,GET15
- (GET15 is in line 1-44)

STOKD is a savevalue, préviously initialized,
which contains the current number of servers at
the Depot. An alterunative to the use of this
savevalue would have been using a storage entity
whose capacity would be redefined, everytime a
change would take place, using a STORAGE card with
a VARIABLE second operand.

1-24 SAVEVALUE STOKD-,P4
1-25 SAVEVALUE SHIPI,P4
1-26 GETI3 ASSIGN 4~ X$SHIPL

If there are enough servers at the Depot make the
appropriate records changes. SHIPl is the number
of servers to be dispatched to the respective
C.Q.5. while STOKD is incfemented at the Depot
module (not shown).

1-27

‘GATE LR 16,EROR]

Before a signal can be sent, a check has to be

made. If logic switch 16 is reset, that means
that 'a scheduling conflict exists. which 1is
evidence of a program flaw. Therefore the

originating transaction is routed to block ERORI
where an error flagging FORTRAN subroutine 1is
called and simulation is terminated (not shown).

1-28 LOGIC 8 16

1~29 UNLINK SIX1,MOV1Z,1 ‘

MOV1Z is a block address in the fifth module which
activates the - dormant . -server -.as -previously
discussed. The LINK SIX1,FIFO block precedes
the MOV12 block in that module.

'

1-30 UNLINK WATE],GETO1,X$SHIPL
Remove the -appropriate number of' requests from

"parking status" (where they are placed in line 1-

24

60) and direct them to the designated exit from
the model (line 1-64).

1-31 BUFFER

1-32 TEST E XHSNSHIPL, 1,GET1Y

NSHIPl is the indicator for the type of optional
reneging (see table 3)., If the value is 1, then
optional reneging is "off", i.e., shipment of
servers from the Depot to the C.Q.S. can be in an
unlimited number of batches.

1-33 TEST E P4,0,GET17
(GET17 is in line 1-48)
. 1-34 TRANSFER ,GETQL
(GETQl is in line 1-38)
1-35 GET19 TEST NE P4,0,GETQlL
1-36 UNLINK WATEL,GETOL,P4
(GETO! is in line 1-64)
1f optional reneging is ' "on", destroy the
remaining requests, It should be noted that

optional reneging may only take place immediately
after service begins at the Depot, i.,e., for all
practical purposes the order which will optionally
renege will spend no time at the Depot (it will be
serviced "instantaneousiy"). On the other hand,
mandatory reneging=—as described in lines 2-26 to
2-33--may very well involve an order which has
been already partially filled. and is awaiting for
more servers to become available,

1-37 BUFFER
1-38 GETQl RELEASE SERVE
1~39 DEPART LINO, 1
1-40 DEPART LINOL,1
1-41 REMOVE WORK
142 UNLINK WALTD, IDLEZ, 1
(IDLE2 is in line 3-3)
User chain WAITD, which is located in the
auxiliary wodule, contains all the order -

transactions-—irrespective of origimating C,.Q.S.——

currently waiting to be served at the Depot.
Therefore this UNLINK block "releases" the next
order and through block IDLE2 sends it to the
fourth module of the respective C.Q.S.

1-43 TERMINATE

1-44 GET15 TEST G X$STOKD,O,GETL7

This is where an order transaction is routed if
there are fewer servers at the Depot than
(remaining) requests in the-order.

145 SAVEVALUE SHIP1,X$STOKD
146 SAVEVALUE STOKD, 0
1-47 TRANSFER ,GET13

(GET13 is in line 1-26)

1-48 GET17 GATE LS 100,81IT1

(SITl is in line 3-5)

If logic switch #100 is not set, that mearns that
no servers have arrived at the Depot yet.
Therefore the order transaction should be routed
to block SITLl in the auxiliary module to be placed
in a special user chain called BORED.

1-49 GET18 LOGIC R 100

When servers do become available, the Depot module
sets logic switch #100, UNLINKs the transaction
from BORED and sends it to block GETIS.

1~-50 GATE LS 13,GET12
(GET12 is in line 1~-23)
Inasmuch as logic switch #100 can also be

"tripped" from the third module (line 2-27), i.e.,
to simulate mandatory reneging of an order im the
process of being served, logic switch #13 is
inserted here to find out the origin of the
transaction that set switch #100. Therefore logic
switch #100 is a global entity (associated with
the order queue) while logic switch #13 is a local
entity (asociated with the segmented order queue
belonging to '€.Q.S. #1).

1-51 LOGIC R 13

1-52 TRANSFER ,GETQl

(GETQl is in line 1-38)

If switch #100 were set in the third module, then
there is only need to remove the order transaction
from the model through the appropriate order
queues, '

Part B: Request Processing

1-53 GETL! PRIORITY 70
1-54 QUEUE LINED, 1
1-55 QUEUE LINB1,1

Request queues LINED & LINBl correspond to order
queues LINA & LINAl respectively (see lines 1-9
and 1-10).

1-56 SPLIT 1,GETML, , 1

Generate an "offspring of the offspring
transaction".

1-57 LINK WAIT1,EIFO

1-58 GETM1 QUEUE SERV, 1

1-59 QUEUE SERV1, 1

& SERV1 correspond to order

Request queues SERV
respectively (see lines 1-11

queues LINO & LINOI

and 1-12).

1-60 LINK WATE1,FIFO
1-61 GETN1 DEPART LINED, 1
1-62 DEPART LINBL,1

25

1-63 TERMINATE
1-64 GETOl DEPART SERV, 1
1-65 DEPART SERV1, 1
1-66 TERMINATE
APPENDIX 2: THE THIRD OPERATING MODULE

The third operating module starts off the same way
as the fourth:

2-1 GENERATE ,,XS$BASEL,1,45,2,F

2-2 COR10 LINK ONE1l,FIFO

2-3 COR11 LOGIC R 11

Logic switch #11 is tripped by the three
independent events that were identified in the
section that describes the simulation model. Two
of these, i.e., customer arrival and departure,
take place in the first module while server
arrival at the C.Q.S. is recorded in the second
module,

2-4 SPLIT 1,COR10

2-5 TEST G V16,XSUNOZ1 ,COR14

(CORl4 is in line 2-16)

Variable #16 has been previously defined as the
u.f. of C.Q.S. #1 while UNOZl is a savevalue which
has been initialized to the appropriate level of
the upper coatrol limit (see Table 3).

2-6 TRANSFER FN,17

Through the use of function #17 control is
transferred either to block COR12 or block
COR13. 1In the former no optional balking may take
place while in the latter optional balking is
allowed. The X-coordinate values of this function
are the current contents of XH$LINLj (see Table
3.
2-7

COR12 HELPF GPDF1,X$TARG],S$USEL, V17,

X$INTOL,0,V20

Five of the arguments of FORTRAN subroutine GPDFl
are used for input purposes. The only output
argument is X$INTOl which contains the intended
order size,
2-8

TEST NE XSINTOl,0,CORY1

(CORY1 is in line 2-47)
1f the intended order size is zero, remove the
transaction from the module.

2-9 TEST L QS$LINED, X$INCR, BALKT

INCR is a savevalue which contains the number of
total servers in the C.S.E. Therefore if the size
of the request queue is equal to that number, the
transaction is removed from the program through
block BALKT (mandatory balking). The latter is in
a SAVEVALUE block which accumulates the total
number of mandatory balking occasions (for the
C.S.E.).

A_GPSS Model of a -Queueing Problem With Complex

Decision-making Behavior (continued)

2-10 GATE LR 17,EROR]
2-11 LOGIC S 17
2-12 UNLINK SEVE1,GETL1, 1

(GET11 is in line 1-4)
Activate the dormant order transaction in the
fourth module.
2-13 TRANSFER ,CORY1

(CORY1 is in line 2-47)
2-14 COR13 TEST E Q$SERV, 0, CORA1

Accordlng to the form of "optlonal" balklng used
in this program, the order will not join the order
queue if there happens to be any other order
either waiting to be served or actually being
served at the Depot CORAL is a TERMINATE block
(not shown) which is used to record the number of
optional balking occurrences, i.e., NSCORAL.

2-15 TRANSFER ,COR12

(COR12 is in line 2-7)
2-16 CORl4 TEST L V16, X$LNOZ1, CORY1
LNOZ1 1is a savevalue which contains the lower

control limit for the particular simulation run.

2-17 - GPDF1,X$TARGL,S$USEL, V17,

COR15 HELPF
X$OUT1,RSRENT1, V20
2-18 TEST NE X$OUT1,0,CORYl

OUT1 is the size of the intended reductlon to the
u.f. denominator at the C.Q.S.
2-19

TEST G Q$SERV1,0, CORX1

(CORX1 is in line 2~55)

If there are no requests from this C.Q.S. at the
Depot, waiting or being served, there is no
possibility for optlonal" reneging. Therefore
the transaction is routed to a segment (see below)
which sends a signal to the sixth module,

2-20 SCAN WORK,2,1,4,1,COR17

If there are requests at the Depot, the first
thing to do is to check and see if there are some
currently being served, i.e,, if there is an
outstanding order from that ¢C.Q.S. Thus group
WORK is scanned for the first transaction from
C.Q.S. #1, i.e., a transaction that has the value
of 1 in parameter #2. If such a transaction is
found, the contents of its parameter #4& (the
current size of the order) are placed in parameter
#1 of the scanning transaction. Block CORL7 (in
line 2-34) is the alternate exit in case such a
transaction is not located.

2-21 TEST L X$0UT1,P1,COR16

If there are fewer requests being served than
X$0UT1, go to block COR16 (in line 2-26).

“

26

2-22 ASSIGN 1~-,X$0UT1

2-23 ALTER WORK, 1,4,P1,2,1
!

Modify the current size of the order at the Depot
by pa551ng the contents of parameter #l of the
scauning transaction to parameter #4 of the first
transaction encountered in group WORK which
happens to have the value l in parameter #2,

2-24

UNLINK WATE1l,GETOl1,Pl

(GETO1 is in line 1-64)

Remove the requests that are being cancelled from
the program.

2-25 TRANSFER ,CORY1
2-26 COR16 GATE LR 100,EROR1
2-27 LOGIC $ 100

2-28 GATE LR 13,EROR1
2-29 LOGIC S 13

If the size of the order currently being served is
smaller than X$0UTl, the entire order must be
cancelled. Therefore the proper set of signals
must be prepared to be sent to the fourth module
(see lines 1-49 to 1-51).

2-30 UNLINK WATE1,GETO1,P1
(GETOLl is in line 1-64)
2-31 SAVEVALUE OUTl-,Pl
2-32 UNLINK BORED, SIT2,
(SIT2 is in line 3-6)
The signal will be conveyed by the order

transaction which will be removed from user chain
BORED and, through block SIT2 in the auxiliary
module, sent to block GET18 in the fourth modile
(line 1-49).

2-33 TEST G X$0UT1,0,CURBI
If there is no need for any further request
cancellations, remove the transaction through

CORBl which is a TERMINATE block (not shown).

2-34 COR17 SCAN LINEG,2,1,3,1,C0RX1

If there is a need for further request
cancelldtions, see if there is an order in group
LINEG from C.Q.S. #l, i.e., an order that -has yet
to receive service. It should be noted that
parameter #3, rather than #4 as in scanning WORK
above, is used because the value of parameter #3
does not change every time a batch of servers
arrives at the Depot to satisfy the remainder of
an order, as of course parameter #4 does.

2-35 TEST LE P1,X$0UT1,CORL8

(COR18 is in line 2~42)
2-36 REMOVE LINEG,1,,2,1
If the size of this order is smaller than the

current {remaining) size of the reduction to the
u.f. denominator, terminate that order transaction

from membership in group LINEG.

2-37 UNLINK WAITD,COR19,1,2,1

Also remove that order transaction from user chain
WAITD (which it entered through line 1-16) and
route it to block COR19 (line 2-48).

2-38 BUFFER

2-39 SAVEVALUE OUT1-,Pl1

2-40 TEST G X$0UT1,0, CORC1
2-41 TRANSFER ,COR17

(COR17 is in line 2-34)

If there is no need for more request
cancellations, TERMINATE the transaction through
block CORCl (not shown); otherwise go back to see
if there are more orders from C.Q.S. #1 waiting in
line.

2~42 COR18 ASSIGN 1-,X$0UT1

2-43 ALTER LINEG,1,3,P1,2,1,EROR]

2-44 ALTER LINEG,1,4,P1,2,1,ERORL

If the remaining size of the u.f. denominator
reduction is smaller than the current size of the
order, modify the order accordingly, i.e., change
parameters #3 and #4.
2-45 UNLINK WAIT1,GETN1,X$0UT1
2-46 UNLINK WATE1,GETO1,X$0UT1

Destroy the appropriate number of requests (GETN1
is in line 1-61 while GETOl is in line 1-64).

2-47 CORYl TERMINATE

2-48 CORLY DEPART LINA,L

2-49 DEPART LINAL, 1

2-50 DEPART LINO, 1

2-51 DEPART LINO1,1

2-52 UNLINK WAIT1,GETN1,P4
2-53 UNLINK WATE1,GETO1,P4
2-54 TERMINATE

Block COR19 is entered by an order tramsaction
from the fourth module, not a decision making
transaction from the third. Consequently this is
a segment that in a way "belongs" to the fourth
module,

2-55 CORXl GATE LR 12,ERORI1
2-56 "LOGIC 8 12

2-57 . ONLINK TWO01,GIV12,1
2-58 TERMINATE

Logic switch #12 is reset by a server tramsaction

going through block GIV12 in the sixth module.

APPENDIX 3: THE AUXILIARY MODULE

The auxiliary module is a segment of the program
where code which is common to all the members of
the C.S.E is segregated. The blocks which are
relevant to the third and fourth operating modules
are the following:

3-1 IDLEl1I PRIORITY 69

3-2 LINK WALTD, FIFO
3-3 IDLE2 -SEIZE SERVE
34 TRANSFER FN,25
3-5 SITI LINK BORED, FIFO

3-6 SIT2 TRANSFER FN, 26

The function selection mode (FN) of the TRANSFER
block is used to direct the order transaction that
is being UNLINKed back to the €.Q.S. to which it
belongs. Discrete numerical value functions have
to be used. For instance function #25 is defined
as follows:

25 FUNCTION P2,D8
1,GETP1/2,GETP2/3,GETP3/4,GETP4/
8,GETP8/

where GETPl returns the order tramsaction to
€.Q.S. #1 (line 1-18), GETP2 to C.Q.S. #2, GETP3
to C.Q.S. #3 etc.

PPEND :_THE DAT. RING MODULE

The outputting of data onto the binary disk
file takes place in a separate module, the first
block of which is naturally a GENERATE block,
i,e.,

GENERATE X$STAT,,,1,19,0

STAT contains either the value of zero, for the
option of recording statistics, or a very large
value for the option of not recording, as in test
runs for instance.

ADVANCE 100000

This block simulates the duration of the transient
period,

SPLIT 1,STAT1
TERMINATE 1

The termination count is of course linked to a
sequence of START and RESET blocks.

STAT1 SAVEVALUE COUNT+,1
COUNT is the subrun counter,
ADVANGE X$BLOCT

BLOCT is the duration of the subrun, Next to

GPSS Model of a Queueing Problem With Complex
Decision~making Behavior (f;htinued)

follow are the HELP blocks which call FORTRAN
subroutine GPDF2 so that they can pass to the
output file:

a) the settings of the
experimental factors
represented by SAVEVALUES,
"high" or "low" values,

b) the identity of the simulation run and
subrun, and

c¢) the statistics, six per HELP block,
starting with customer waiting status
statistics at the C.Q.S.s and the C.S.E.

" and ending with statistics that describe
the process of the matching of requests
with servers at the Depot.

seven binary
‘that are
i.e., either

During the first research phase, approximately 800
statistics were collected.
SPLIT 1,STAT1

This .block generates an offspring transaction to
take care of the next subrun.

TERMINATE 1

28

APPENDIX 5:
MODELING THE LOOPING OF TRANSACTION FLOW

To model the generation of C.Q.S. customer trans-
actions according to the Erlang-k distribution in
the first operating module, the following blocks

may be placed after the GENERATE
5 sX$BASE1, 1, 35,4,F block:
USE10- SPLIT 1,USEL6
PRIORITY 34, BUFFER

USEL6 is a block tag in the following segment of
code placed at the end of the first module:

USE16 ASSIGN 3,0
ASSIGN 4,XHSKAPAL
where KAPAl 1is the type of the Erlang-k
distribution and
USE17 ASSIGN 3+,v97,1

where V97 contains the ratio of the mean customer
interarrival time over KAPAl.

LOOP 4,USEL7
ADVANCE *3

TRANSFER ,USELQ

