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COMPLEX SYSTEM MODELING WITH STATISTICAL METHODS
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Modeling of complex systems can be greatly facilitated by the
inclusion of empirical data directly into the solution of the
model. Data can then be used to provide information about the
fidelity of the model (goal) to the real system and/or act as a
temporary model component for a subsystem not yet well-defined
(probe).

This method utilizes existing, highly-developed statistical
packages to reduce development effort as well as obtain valuable
statistical information useful in model validation. An example
of the method applied to a molecular model of hemoglobin is provided.
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1. Introduction

One of the most difficult and central
problems in mathematical and computer
simulation of complex systems is the
incorporation ‘of empirical data by the
computer model. Such data is necessary
as a simulation goal and as a probe for
system identification. As a goal, data
represent the output of a real-world
system which the modeler is attempting to
represent mathematically. As a probe,
the data represent criteria by which
model components can be evaluated. these
two viewpoints are not entirely distinct.
The latter perspective views the model as
simply composed of sub-models, one for
each identifiable subsystem. However,
models are often not simply decomposable
into smaller components especially during
development when the components may not
yet be identified or adequately represent-
ed. The utility of data inclusion in the
modeling process then has a dual function,
as both a goal and probe. Conceptually,
these functions are quite different and
it 1is, therefore, convenient to retain
the distinction between them.

Computer models of biological systems
tend to be large, complex, and highly
parameterized systems of equations which
face the modeler with at least three
major problems. First, an explicit
representation of the system to be
simulated must be derived. This requires

the collation of unrelated results
from different workers in different
laboratories as a basis of system identi-
fication and model definition. Second,
initial values must be provided as a
starting point for the simulation. it
precise values are not available then a
method. for their estimation must be
provided. Third, the results of the
simulation ‘experiment must be analyzed
and evaluated with respect to the behav-
ior of the real system being modeled.
Based on the analysis, either the simula-
tion Tresults are accepted or one or more
of the steps above are repeated until
acceptance occurs or the model is dis-
carded.

This paper describes a powerful
technique for the inclusion of empirical
data in the modeling process in each of
these stages of development. The method
allows the investigator to examine the
behavior of specific subsystems in the
model for which empirical data are
available (goal) and to measure the
accuracy of the model with respect to the
data (probe). The investigator may also
substitute data for a model component
when an explicit description of that
component is not available (identifica-
tion/representation).

This technique yields a method for
combining standard statistical procedures
with usual modeling techniques to improve
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and clarify model design. As an example,
the method is presented in the context of
a steady-state, molecular model of
hemoglobin. The hemoglobin example
illustrates the use of this method in
parameter estimation. In the sense of the
previous discussion this is a goaling
strategy. It is important .to realize that

the emphasis of this discussion focuses

on an approach to modeling and not on any
particular implementation. The hemoglo-
bin example is presented simply to help
elucidate this idea and its potential for
facilitating the interaction between
theory and data.

2. Statistical Methodology

Least-squares regression models
employing standard statistical procedures
contend with the same three problems
described above for model develophent
since a regression function is merely a
model of the behavior of a dependent
variable with respect to an independent
variable. However, regression usually
involves only a few closed form expres—
sions with a relatively small number of
parameters to be estimated. In this
case the function is regressed against a
set of observations. The success or
failure of the model can be judged by the
value of the residual sum of squares
after the regression is performed.

Usually, regression is used to inves-
tigate a hypothesis about the system from
which the data is obtained; linearity of
the system, for example. In this sense,
regression is trivially a goaling proce-
dure in - which the goal is the accurate
simulation of experimental data by the
regression function. However, when we
incorporate the use of regression
into the solution of a large, complex
model, the goal in .the regression
procedure may represent only a small
component of the overall solution sought
by the simulation. Then the regression
procedure acts as -a constraint on the
model by holding, or attempting to hold
model parameters at values consistent
with experimental data. In this sense
the regression is a probe in that it
represents a subsystem of the model
for which there is not yet an explicit,
deterministic representation.

Two difficulties with the use of
regression in this way are the general
non-linearity of large, biological
models and their lack of a closed form
expression. A few statistical software
packages, notably ‘BMDP (Dixon, 1979) and
SAS (Barr, 1979), currently provide
efficient procedures for handling
non-linear problems. The absence of a
closed form solution is not a difficult
problem. If a numerical value can be
computed by the model to be passed
to the statistical program as if it were
the output of the regression function,
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the regression can proceed as usual. The
output of the model appears exactly as
if it were computed by an explicit
régression function. In the hemoglobin
model, the oxygen saturation curve is the
experimental data and the entire model is
the regression function.

Regression analysis provides parameter
estimates, the principle reason for its
use, but can also provide confidence
intervals for the parameters, a correla-
tion matrix between parameters, and a
residual sum of squares. The residual
sum is an estimate of the accuracy of the
model with respect to the data and con-
dence intervals provide a measure of the
precision of the model on the basis of
the parameter estimates. These statis-
tics permit the comparison of model
results on the basis of hypothesis tests
between parameter estimates obtained from
different sets of data or from other
models. Residual and variable plots are
also available and these are useful in
providing insight into the general
behavior of the model.

4. Modeling Methodology and the Hemoglo-
bin Model

The hemoglobin molecule is one of the
most completely
molecules known to science (Perutz,
1970; Monod et al, 1963). Although
models exist which do quite well in
predicting saturation curves they do not
attempt to relate the structure of
hemoglobin to dits behavior except in a
very general way (Fell, 1978; Seaton,
1974) . )

Using the steady-state modeling system
CHEMIST (DeLand, 1967), Hemoglobin is
described as a list of chemical eguations
(Fig. 1). Bach reaction is described by
its stoichiometry and an estimated
equilibrium constant. These reactions
are logically grouped according to their
role in hemoglobin function. Consequently
some reactions are grouped as plasma, red
cells, oxidized heme reactions, DPG
binding, etc. Only part of the complete
model is shown. There are four oxygen
binding constants which require estima-
tion in this model, one for each subunit
of the hemoglobin molecule.

Empirical data used in the estimation
of the binding constants is taken from
Severinghaus (1966). The data are or-
dered pairs of values for the percentage
oxygen saturation of hemoglobin at
selected values of partial pressure of
oxygen. A model. run uses fifteen data
points selected from the complete satura-
tion curve. These are selected to
facilitate the regression procedure
and may be weighted. Only a small number
of points are selected in order to
reduce the time per iteration of the
regression. There is no theoretical
limit to the amount of data that may be
used but there is a tradeoff between
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COMPLEX SYSTEM MODELING WITH STATISTICAL METHODS

NATRIX T8D0OGA FREE, VENOUS OELAND DEC oy
GAS PHASE
i ne ~10.939999 1,000 C2
2 [ =T7.74073% 1,000 CO2
3 N2 =11.51999% 1000 N2
» H20 2789999 1000 H20
PLASMA
o2 040 1,000 02
4 co2 0.0 1000 CD2
T N2 0.0 1.000 N2
1 3 H20 0.0 L.000 M20
A ] He Qs 1.000 He 1,000 *PLASH
10 Oh~- 39.389999 1.000 H2C =1.,000 He¢
11 NA+ 0.0 1000 NAs 16000 ®PLASH
12 Ke -] 1,000 Xe 1,000 sPLASM
13 CAve 0.0 1+000 ChAee 2,000 ®PLASH
14 [ 134 00 14000 MGee 24000 *PLASK
13 CcL- 0.0 1,000 CL~ =1+300 ®PLASH
16 ORGAN~- 0.0 1000 ORGANI =1.,000 SFLASH
17 HCO3- 18.055588 1.000 CO2 1.000 H20
i H2003 8565999 14000 CO2 1,000 H20
19 C03e 45,4041591 1.000 CO2 1.000 W20
20 H2ZPO4~ «=20.,569992 1000 HPO4s 1.000 He¢
21 HPDAn Q0 14000 HPO4w =24000 SPLASM
22 SO4n 0.0 1.000 SULFAY «2.000 SPLASM
2) NH4 ¢ 0.0 1,000 NHé4e 1,000 PLASH
24 KH3 24450999 1000 MH4e «14000 He
23 UREA 0.0 . 1,000 UREA
2 GLucas 0.0 1.000 GLULOS
27 PROTN 0.0 1,000 SERUM =105,000 BCARE
27 PROTN 0.0 ~20.900 PHENOL =23,700 GUANID
20 X~MISC C.0 1.000 RISCPL
RED CELLS
02 =0 490000 1,000 02
30 €02 =0,0064251 14000 CO2
3 N2 =04500000 1,000 N2
32 H20 0.0 1,000 H2D
3 He C.0 1000 He+
34 OM= 39.389999 1.000 H20 =14000 He
3s NAe 0s 374034 14000 NA+
36 e =0.484595 12000 K¢
37 CA+e 04349824 1,000 Caee
b13 [ 1124 «0s 506400 14000 MGee
38 Ci= 0.0 1.000 €L~
40 QRGAN= [ 134 1.000 ORGANI
41 HCO3- 172991348 1,000 CO2 1.000 H20
42 #2003 be45174% 1,000 CO2 1.000 H20
43 [de3 1 45,59733¢0 1.000 CO2 1.000 H2D
44 H2POA- =206 569992 14000 MPO4= 1,000 #e
45 HPO4w 0.0 1+000 HPO&x
46 $D4s 0e0 1.000 SULFAY
47 NH4e 0s0 14000 hHae
48 NH3 24460999 14000 tH4e =1,000 He
Lid UREA 0.0 1.000 UREA
50 GLUCDS 0.0 14000 GLUCOS
1 X-M15C 0e0 1,000 MISCRC
52 HA4 0.0 1.000 Hi4 ~8.004 HRLOOH
52 HB4 0.0 -50,000 ASPGLU =20,000 HISTID
82 HB4 Q.0 -4 4000 NEONH2
33 HB402 ~15,396835 1.000 HB4& 1,000 02
53 H8402 -15.39683% ~312,000 ARGINI ~=50.000 ASPGLU
53 LLTF) ~15.,396835 «3,000 REDASP ~3,000 REONHZ
54 HB404 =31.504974 1.000 HBs 2.000 02
4 HALOA ~31.504974 <312.000 ARGINI «50.000 ASPGLU
54 Ha404 * w31e5049T4 ~=2,000 REDASP =24000 REDMM2
55 HBA06 4=45,220703 1000 HBA 3,000 02
48 HBAOL ~%5,220703 «12,000 ARGINI =50.000 ASPGLU
55 | HA4D6 «&5,220703 ~14000 REDASP 14000 REDNHZ
56 Ha4Ne ~84,026872 1,000 HE4 4,000 D2
5 HA40B -b4e026872 ~12,000 ARGINT =50.000 ASPGLU
S0 H8 4D bk 024872 =4 o000 OXYVASP ~4e D00 DKYNHZ
Figure 1. Partial Listing of CHEMIST

computing time and increased precision of
the parameter estimates obtained from a
larger sample size. Initial wvalues for
the binding parameters are obtained from
DeLand (1970).

The incorporation of the hemoglobin
model into the regression procedure
BMDPSR (Dixon, 1979) is illustrated in
Figure 2. The interface between BMDP3R
and CHEMIST passes model parameters
as well as control information to BMDP3R.
Partial derivatives of oxygen saturation
with respect to each of the oxygen
binding constants are obtained from the
Jacobian matrix computed by CHEMIST.
These values are determined for each data
point during each iteration of the
regression procedure, hence the desire to
minimize the number of data points if
computing time is costly.

When the regression procedure has
altered the model parameters, during its
parameter search, the model is executed
qgain to obtain new steady-state values
in accord with the new parameter esti-
mates. The procedure continues until the
convergence criteria of the regression
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procedure is satisfied or an arbitrary
maximum number of iterations is obtained.
Figure 3 lists the regression output from
a typical model run.

Conclusions

The advantages of this approach to
modeling are the ability to probé select-
ed sections of a large model without
disrupting the model's integrity and
to quantify the behavior of the model
with respect to data obtained from the
real system. Probing and goaling permit
data inclusion to estimate parameters or

5.

comparison of performance against differ-
ent data sets of models. .This procedure
essentially includes an optimization
procedure into or as an integral part of
the model itself. The model need not be
permanently altered, however, nor is a
great deal of time and programming effort
required to incorporate powerful'statis-
tical methods into model development and
maintenance. This approach is not
limited to the use of regression. Any of
the statistical software may be used in
the same sense although not for the same
purposes. ‘
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Modelers have, for years, selected
subroutines from mathematical libraries
to save program development time.
Now we have at our disposal extensive,
well-documented and well-tested statisti-
cal libraries. Their use in model
development and validation will be a
great advantage as models proliferate and
increase in complexity.
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