1981 Winter Simulation Conference Proceedings _ 599
T.I. Oren, C.M. Delfosse, C.M. Shub (Eds.)

ADAPTATION OF THE TL EVENT LIST ALGORITHM TO THE GASP IV SIMULATION LANGUAGE

S. Hurtubise, T. Gavin, A, Girard
INRS -~ Télécommunications
3, Place du commerce
Ile des Soeurs
Verdun, Montreal

Simulation models for large systems have earned the reputation of eating up
hours of computer time. This problem can be attributed in part to the fact
that a significant amount of bookkeeping time is required to keep future
events in their proper sequence. Many methods have been proposed to improve
the efficiency of this operation but few results have been published to
indicate how they perform in a real simulation environment. This paper shows
how simulation time, using a particular simulation language (GASE IV), can be
substantially reduced by replacing the existing filing system with a slightly
modified version of a recently proposed event scheduling algorithm called the
TL algorithm. Guidelines are given for the selection of the parameters of the
algorithm, and also some experimental comparisons between the curremt GASP IV
filing system and ‘the new TL/GASP implementation.

The management of the list of future events constitiutes a fair portion of the computation required
by many simulation systems and a considerable amount of work has been devoted to the design of
efficient list management algorithms £5-10]. These various algorithms are generally compared on
the basis of the computation time required to perform a standard operation as a function of the
length of the list; and the results, although reproducible are still producing some controversy
f1137. ‘ -

For the practitioner of simulation, however, these studies constitute only the first step, since
the list-management algorithm is only one component of a simulation system where many elements may
affect the global effitiency of the program., The purpose of this paper is to report on the various
steps that had to be taken to go from one of these theoretical algorithms to a program that could
be used in a production environment and the total gains that were achieved.

The purpose of the exercise being to obtain a usable and efficient simulation program, we had

to decide a priori on a specific list-management algorithm; we selected somewhat arbitrarily the
TL algorithm[71, mostly because of its insensitivity to the length of the list. Our second
arbitrary choice was to decide whether to write our own simulation program or to use a ready-made
package; here again, we decided that the GASP-IV [3] language would be used for the following
reasons} it is widely distributed, written in FORTRAN, and thus can easily be modified, is
event~oriented, and finally could give us a point of reference in comparing the results we
obtained with some kind of "standard".

Having made these arbitrary choices, a number of questions had to be resolved: how to integrate

Tl to GASP, what value to assign to the various TL parameters, and how much better was TL/GASP
over the standard version, when used both in isolation and within the context of a real simulationm.
The answer to these three questions will be found in the three following sections.

81CH1709-5/81/0000-0599$00.75 (:) 1981 IEEE

600 S. HURTUBISE, T. GAVIN, A. GIRARD

1., MODIFICATIONS TO THE TL ALGORITHM FOR ADAPTATION TO THE GASP IV SIMULATION LANGUAGE

This section provides technical details of the implementation of the TL algorithm. The parameters
are defined below: .

DU = number of intervals

DT = width of intervals

n = number of events im the list

NLIM = maximum number of events per sublist

KEYCUR= points to the primary key whose associated sublist contains current event

MFE = points to the current event at the head of the list

M = exponential distribution parameter used to genérate events during testing
t = average holding time of an event in the list

TNOW = current simulation time

In GASP, new events are inserted in the future events list by beginning the search for the desired
location at the bottom of the list (corresponding to the most future event, and pointed to by a
variable MLEX) and proceeding event by event toward the top. The purpose of the TL/GASP implemen-
tation proposed here is to ensure that the starting point for the search (we continue to use MLEX for
the corresponding pointer) is in fact close to the desired location. The search is thus restricted
to the sublist pointed to by the appropriate key. We mow describe the modifications made to the

TL algorithm for use with GASP 1IV.

The main difference between the TL algorithm described in [71], which we denote by TL/F, and our
version of the TL algorithm, (TL/GASP), lies in the elimination of the INDEX table. If the DU
(=number of intervals) first keys are reserved for use as primary keys, them the calculation of
the index I, which previously led in the INDEX table to the pointer of the desired primary key,
n iel irectl i i . i ‘ 2 i

Sonclining the corvent events 1o kept, bt the vATIAEIe IR 18’ dipppngPointe w0 the primary key
Another difference is the elimination of the dummy primary key at the head of the list., The
reason for this is simple: adding a dummy evert having a value of t = 0, to the head of the list
is incompatible with the GASP subroutine (RMOVE) which removes events from the list. Instead

of a dummy key technique, in TL/GASP the key at the head of the list will be recognized using
the same technique as for the events., The right pointer of the key at the head of the list will
be equal to zero. (See fig. 1b)

The INTERVAL and CURRENT registers have also been eliminated. CURRENT is the equivalent of MFE in
GASP IV, the pointer which indicates the event at the head of the list. INTERVAL is no longer
necessary and is therefore eliminated, Only the subroutines SET, FILEM, RMOVE and PRNTQ were
modified for setting up the TL/GASP algorithm. Figure la shows the TL/GASP list structure, and
figure lb the original TL structure for comparison.

2, THE DESIGN FORMULAS

The equations given in [71 for calculating TL algorithm parameters apply even for very irregular
distributions of events, An example would be a distribution where all events occur over a short
period of time, The efficiency of the algorithm can be increased if we are willing to sacrifice

its robustness. The equations given below are well adapted to fairly regular distributioms,

but could prove to be less efficient in certain other cases. As each parameter is discussed, its ap-
plications are indicated,

a) DU - number of intervals in the list

Based on experiment, the authors of [53 and [7] recommend that the number of intervals be between
20 and 50 and suggest a value of 30. For our pilot runs using the TL/GASP algorithm and a DU value
of 30, we found that, as was the case with the TL/F algorithm, the execution time was virtitally
unaffected by variations in DU,

ADAPTATION OF THE TL EVENT LIST ALGORITHM TO THE GASP IV SIMULATION LANGUAGE 601

b) NLIM ~ maximum number of events between two secondary keys

Tests showed this parameter to be the crucial one. We would like to choose a value for the NLIM
parameter such that the same effort would be required for a search at the key level as for a search
at the event level, The equation given by Franta for calculating NLIM is:

NLIM=max (S,VES (1’

To arrive at this equation, we consider the extreme case where all events fall into the same block.

In order that the search on both levels be well balanced, there must be as many events associated with
one key as there are keys; thus NLIM =i, The lower limit is taken from experimental results and

is explained by the fact that the time taken by key rearrangement must have a lower bound.

Equation (1) ensures that even for worst-case distributions,’ inserting an event into the list requires
at most a search of the order ofyn, On the other hand, tests have shown that if NLIM were varied to
find its optimum value, then as long as the value of DT (width of intervals) was well chosen and all
events did not occur in the same block, the execution time could be reduced to half that resulting
from the use of (1),

Let us now take an optimistic view., Suppose the events are evenly distributed in all the blocks.
There would then be n/DU elements per block. If we incorporate this into (1), we arrive at the
following expression for NLIM:

NLIM = MAX (8,Yn/DU) . (2)

Experimentally, the optimum value for NLIM was 10% to 20% above this optimistic value, but often two
or three times lower than the pessimistic value,

We could go even further and assume a different value of NLIM for each block, What we are really
trying to do is spread the search evenly over the two levels of a block. We would then have to count
the number of elements in each block and define NLIM for each block. This case was not taken into
consideration in our implementation of TL/GASP,

If NLIM is to be calculated according to equation (2), then the random distribution of events should
be such that the events are fairly evenly divided among the various intervals of the list. In simu-
lations, and particularly for communication network simulators, this restriction is usually met.

¢) DT ~ width of the list intervals

At first thought, it would seem that the value chosen for DT should be of major importance. If DT
is too large, the events will have a tendancy to end up in the same interval of the list, and the
results will resemble those obtained using the double pointer method., On the other hand, if DT

is too small, there will be very few events in each interval and most will fall into the last block
to the right (the semi-infinite block). 1In dddition, so much time will be spend rearranging the
primary keys that the algorithm will be as inefficient as when DT is too large. It was found
experimentally that as long as DT is within certain limits, the value chosen is mot so important,
This result will be discussed subsequently.

The following equation for the calculation of DT is proposed in L71
DT =[(8/(n-1) + .07% £ (3)

Generally, t and n are not easily determined. On the other hand, we may attempt to simplify the
equation for use in a network simulator when the distribution of the majority of the exogenous events
in the list is known. For example, in a telephone network simulator the arrival of calls follows

a Poisson distribution and the duration of the calls follows a mnegative exponential distribution

and the duration of the calls follows a negative exponential distribution with parameterA, Only

the next arrival of an exogenous call (for each origin-destination pair) is inserted into the event
list. Due to the behavior of the network, a very small percentage of the events could be exogenous
call arrivals and the remainder calls in progress, In this case, since the majority of future events
consists of events already in the system, we can assume t=A Under this hypothesis we determined
experimentally that

DT = 2,1 %*4/DU (4)

602 S. HURTUBISE, T. GAVIN. A. GIRARD

3. EXPERIMENTAL RESULTS

The HOLD operation was used as a control operation. It removes the first event from the list, randomly
generates a new event time, and replaces the event in the list. This operation was chosen primarily
because it closely represents the operation most often executed in simulation. Since an event is im-
mediately reinserted into the list after having been removed, the number of events in the list is comns~
tant. HOLD also has the advantage of combining the insertion and removal operations. It is an accep-
ted operation frequently used in the evaluation of event list simulation algorithms.

For the results given below, the events were generated using the GASP IV random number generator (DRAND)
with the Poisson parameterX equal to 1.

a) Comparison of execution times
In Figure (2), we compare the event list simulation algorithm presertly used in GASP IV with the pro-

posed TL/GASP algorithm. This figure was obtained by executing the HOLD operation 1000 times (on an
IBM 3033 computer with a FORTRAN H OPTIMIZATION 3 compiler) using the following parameters:

DU = 30
DT = .1
NLIM =.15
M =1,0

It appears that the TL/GASP algorithm is more efficient once there are 25 or more events in the list,

b) Sensitivity study of the parameter NLIM (# of elements in a block) Figure (3) shows a curve repre-
senting the execution time in microseconds of one HOLD operation as a function of the value chosen for
NLIM. It should be noted that, according to equation (1) proposed by Franta, the value for NLIM
should have been 70 since the list has 5000 elements.

According to equation (2) NLIM should be equal to 13. The optimum value for NLIM is around 20. If
the optimum value for NLIM is used rather than the value suggested by Franta, execution time will be
reduced by nearly 35%. A sensitivity study has shown that if NLIM varies from the optimum by plus or
minus 25%, the execution time will vary by spproximately 15%. The oscillations in this curve would
merit further study.

¢) Sensitivity study of the parameter DT (width of intervals)

For the distribution studied, equatiom (4) yields DT = ,07, which is very close to the optimum shown
on figure (4). If DT is varied from the optimum by plus or minus 33%, the execution time will vary
in the order of 1.2%. This shows that as long as the value of DT falls within certain limits, it
will have almost no influence on the efficiency of the event list algorithm.

Notice that according to the equation given by Franta, DT would also be ,07. It does, however, require
knowledge of the average holding time and the number of events in the list,

d) Performance in network simulation.

The TL/Gasp algorithm was developed in the course of a study of routing algorithms for telephone net-
works. These models gave us an opportunity to compare our program with the standard GASP in the
context of a realistic simulation, and to evaluate the overall benefits that could be gained by TL/
GASP.

In the first three cases reported in Table I, the total number of calls was kept constant, and ohnly

the rate of production of external events (call arrivals) was increased; thus, the same number of events
was processed by the simulator, but with an increasingly large number of elements in the future events
list. The results clearly show that TL/GASP has effectively removed the list length as a factor in
running time. *

A fourth case is also given of a larger network showing the substantial reduction in running time
(here by a factor of 25) possible for practical simulations; these values are by mo means an upper
limit, since the more future events are present in the model, the larger will be the reduction. All
times given here are in seconds of CPU on an IBM 3033,

4,

ADAPTATION OF THE TL EVENT LIST ALGORITHM TO THE GASP IV SIMULATION LANGUAGE 603

Run times (CPU Seconds)

TL/GASP Standard GASP
1 5.58 10,79
2 5,46 15.19
3 5.69 20.58
4 6,19 154.4
Table 1

Comparison of TL/GASP and Standard GASP

on network simulations.

CONCLUSION

The main results are these:

(1

(2)

(3)
(4)

(5)

Given a few simple modifications, the TL list management algorithm can easily be incorporated to
the GASP-1V simulation system.

The overhead associated with the management of the future events list in the TL/GASP implemen-
tation is essentially independent of the size of the list, The simulation time is simply a func-
tion of the number of events selected to obtain statistics, and of the efficiency with which

the latter are processed,

The calculation of the parameter DT has been simplified. 1In most cases we do not need an esti-
mate of the number of events in the list, 'but just some khowledge of the distribution of the events.

We have shown that an optimization of the NLIM parameter can diminish execution time by as much
as 35% in comparison with the value suggested by Franta's equation.

The increased efficiencies observed for isolated tests using the "HOLD" operation are also
present in the simulation of a 'real" system; reductions by a factor of 25 have been measured
in the simulations of telephone networks.

The compatibility of the GASP IV subroutines with this new TL/GASP algorithm was checked for discrete
simulations. For those used in continous simulations, no compatibility problems are expected, but
this was not verified.

604

13
[23
£31
E4]
£53

L6l

[71

£8d

£91

£102

[113

S. HURTUBISE, T. GAVIN, A. GIRARD

REFERENCES

Schriber, T.J., A GPSS Primer. John Wiley, New York 1972.

Wyman F.P., Simulation Modeling: A guide to using SIMSCRIPT, John Wiley, New York, 1970.
Pritsker, A.A.B., The GASP IV simulation language, John Wiley & Sons 1974, 451 p.-

Knuth, D.E., The art of computer programming, Vol. 3, Addison-Wesley, Reading, Mass., 1973, ch.5,

Vaucher, J.G. aud Duval, P., A comparison of simulation event list algorithms, Communications of
the ACM 18, 4 (April 1975), 223-230.

Wyman, F.P., Improved event-scanning mechanisms for discrete event simulation, Communications of
the ACM 18, 6 (June 1975), 350-353.

Franta, W.R. and Maly, K., An efficient data structure for the simulation event set, Communications
of the ACM 20, 8 (August 1977), 596-5602.

Franta, W.R. and Maly, K., An event scanning algorithm of nearly constant complexity, Tech. Rep.
75~18. Univ. of Mimnesota, Minneapolis, Minn., Nov. 1975.

Ulrich, E.G., "Event Manipulation for Discrete Simulations Requiring Large Number of Events'.
CACM, 21, 9, (Sept. 78) pp. 777-785.

Phillips, D.N. and Tellier, J.G., Efficient Event Manipulation - the Key to Large-Scale Simulatiom.
Proc. Semiconductor Test Conference, Nov. 1978, pp. 266-273.

Technical Correspondence, CACM, March 1980, pp. 180-181.

PRIMARY KEY

SECONDARY KEY

KEYCUR

Y

TL/GASP ALGORITHM STRUCTURE
(DT: 1.0, TNOW: 0.5, NLIM: 3)

DR

P e 3t

-—

FIGURE #1A

OYNONYT NOILYINWIS AI dSY9 IHL OL WHLIYO9TY LISIT INIAZ 1L 3HL 40 NOILVLdvay

S09

1 eI CURRENT
. INDEX TABLE
primary key . ~— 2
]
4 4
secondary key py-1
i}
dummy key at the KEYCUR
head of the Tist
L4 A
- « T] - [— — —— -]
0.0 0.7 1.0 2.0 2.7 }
» - 7 >] I i o o -

MFE TL/F ALGORITHM STRUCTURE

(DT:71.0, TNOW:0.5, NLIM:3)

FIGURE #1b

Q¥Y4ID Y CNIAVD "L “3SIENLunH 'S

909

4
1x10 " ~
EXECUTION TIME FOR 1000 HOLD OPERATIONS (IN u SEC)
VS # OF ELEMENTS IN THE LIST
]
GASP 1V
SIMULATION ALGORITHM
5x10° -
1x103 -
TL/GASP SIMULATION
ALGORITHM
I i I §
10 10! 10 10 1d

FIGURE #2

JOVNONYT NOILYINWIS AI dSYD 3HL OL WHLIYH09TY LSIT IN3IAZ L 3HL 40 NOILYidvay

£09

608

SENSITIVITY ANALYSIS OF PARAMETER NLIM

S. HURTUBISE, T. GAVIN, A. GIRARD

230~

220~

210+

2/
200
190+
oo
170:

(*23SW NI) IWIL NOILND3AXA

160

150+

1404,

30 40 S0 60 70
(NL.TM)

20

10

FIGURE #3

240 |

230 —

220

210

200 -

190

180 —

170

Sensitivity analysis of parameter DT

Execution time {for one HOLD in usec)

VS DT

160

0.1

0.2

I
0.5

FIGURE #4

(DT)

0.6

JOVNONYT NOTLYIAWIS AT dSY9 3HL OL WHLI¥09IY LSIT INIAZ 1L 3JHL 40 NOILvldvay

609

