1981 Winter Simulation Conference Proceedings 591
T.I. Oren, C.M. Delfosse, C.M. Shub (Eds.)

THE SIMULATION OF A PIPELINED EVENT SET PROCESSOR

John Craig Comfort
Florida International University
Department of Mathematical Sciences
Miami, Florida 33199

Anita Miller
Department of Mathematics
Ransom-Everglades School

‘Coconut Grove, Florida 33133

Abstract. The availability of inexpensive, sophisticated processing elements .
affords. the computer system designer the opportunity to create tailored computer
systems for specialized applications. In this paper, the authors present a
design for a discrete event simulation computer, in which event set manipulation
is performed by a pipelined set of microprocessors. A simulation model for the
system is presented and the selection of optimal parameters for the system are

discussed.
are presented.

1. INTRODUCTION

When a program is designed using a top down meth-
odology, each step of the refinement process
results in the specification of a set of subtasks,
where each subtask has associated with it a set of
input specifications, a set of output specifica-
tions, a process specification, and a designated
environment in which it functions. With the
availability of inexpensive, powerful micropro-
cessing elements (such as the Motorola 68000 and
the Intel 432}, a system designer has flexibility
in assigning selected subtasks to diverse process-
ing elements.

Within the context of a discrete event simulation .

program, certain groups of related tasks may be
identified. One of the most significant of these
is the group associated with maintaining the

event set. In a recent study by one of the
authors {Comfort, 1981), the behavior of a moder-
ately large simulation program was studied. In
various executions of the program, it was observed
that between 32 and 38 percent of all instructions
executed by the processor were used for event set
maintainence. In this paper, we present an
algorithm for event set processing which is dis-

tributed over a set of processors and memory units.

Considerable work has been done in recent years in
the design and analysis of event set algorithms
and data structures (all cited references except
Comfort and Coats, 1980). Al1 of the referenced

The results of the simulation and suggestions for further research

articles assume that a single processor performs
both general simulation computation and event set
processing. In the study mentioned above, a

rough simulation was done of a simulation process-
or/event set processor system, indicating that
further research into this problem is justified.

2. EVENT SET DATA STRUCTURES AND OPERATIONS

Every individual (here referred to as an "entity")
which is represented in the simulation program
will be assigned a unique set of data locations in
the main memory of the simulation computer. This
block contains information about the state of the
entity, times used for the calculation of statis-
tics, and various pointers to other entities in
the system. Further, for those entities which
have a defined time of next processing, an "event
notice” will be created., This event notice will
contain (minimally) the address of the block of
the memory assigned to the entity and the entity's
time of next processing. For the purposes of this
study, event notice memory will be assumed to be
physically disjoint from main memory. Further, in
a multiple processor system, a separate event
notice memory will be assigned to each processor.

Of the operations associated with event set pro-
cessing, three may be considered primitive:

1) ‘“schedule (time,entity)"-Insert an event
notice with the given "time" for the given
"entity" in the event set.

81CH1709-5/81/0000-0591%00.75 (:) 1981 IEEE

592

J.C. COMFORT, A. MILLER

2) ‘"next" - Return the "entity" with the small-
est next processing "time" to the calling
program. Update the simulation clock to
"time".

3) ‘'remove (entity, time)" - Destroy the event
notice associated with "entity”. Do not
change the simulation clock. Note that the
"time" is not necessary for this operation,
as an "entity" may have at most one event
notice associated with it. The specifi-
cation of the time greatly facilitates the
location of the event notice to be removed,

For the course of this discussion, our attention
will be focused principally on the "schedule" and
"next" operations. In simulations done by the
authors, these operations accounted for over 98
percent of all calls on the event set programs
(For a situation in which this is not the case,
see Blackstone et.al. (1981)).

3. A PIPELINED EVENT SET ALGORITHM

Let us assume that the computer system being sim-
ulated consists of one simulation process (called
SIMP) and its associated memory, and N event set
processors (called EVSPs), each with its own
memory. Each event set processor has associated
with it two additional control parameters, called
UNDER and OVER. The event set algorithm always
attempts to maintain the event set size between
these two bounds. In addition each processor
maintains:

1) A doubly linked 1ist of event notices
anchored at each end by the cells PAST,
with time of -1, and FUTURE, with time
infinity (or an engineering approximation
thereof).

2) The variable MAXTIME, containing the larg-
est next processing time of an event
notice in this processor.

In the situation where the SIMP wishes to sche-
dule an event notice in EVSP(1), or when EVSP(n)
attempts to schedule an event notice in EVSP(n+1),
let the entity being referenced be "EN", and the .
time of processing "tsim”. Then the SIMP or
EVSP(n) will

1) Wait for processor EVSP{n+1) to become

unbusy.

2) Transfer "EN" and "tsim" to EVSP(n+1).

Viewed from EVSP{n+1), this processor will:

1) Accept MEN" and "tsim" from EVSP(n) or
SIMP, and acknowledge the receipt.

2) If the processor has at least UNDER event
notices, and "tsim" > MAXTIME, then

2.1) Wait for EVSP(n+2) to become unbusy.

2.2) Transfer "EN" and “tsim" to EVSP
{n+2).

3). If the processor has fewer than UNDER
event notices, or "tsim" < MAXTIME, then
schedule the event notice in the local
event set memory of EVSP(n).

4) If the processor now has more than OVER
event notices; then unlink the event
notice with largest next processing time.
Let it's time of next processing be "tmax"

and Tet it refer to the entity "ENmax".
Update MAXTIME to relect the largest sim-
ylation time of the remaining event notices.

Then
4.1) Wait for processor N+2 to became un-
busy.
4.2) Transfer "ENmax" to "tmax" to EVSP
(n+2).
If the SIMP or EVSP(n) (n>1) has requested to per-
form a "next" operation, EVSP(n+1) must:

1) Unlink the event notice with smallest next
processing time "tnext" and its entity
number "ENnext". If there are no such
notices, set "tnext" and "ENnext" to zero.

2) g;agsmit “tnext" and "ENnext" to EVSP(n) or

3) If the number of event notices in EVSP(n)
nﬂw Tess than UMDER (but greater than zero
then

3.1)
3.2)

js
h

Wait until EVSP(n+2) is unbusy.

Initiate a "next" operation on EVSP
(nt2), and wait.

Retrieve the time, "t", and the entity,
"EN", from EVSP{n+2).

Link "t", "EN™ into the event set on
processor n+l.

3.3)

3.4)

4. THE SIMULATION EXPERIMENT

The simulation experiment consists of configuring
a (simulated) computer system consisting of N
EVSPs and the SIMP. This sytem is exercised

using trace data taken from a real simulation
program {described in Comfort and Coats, 1981).
The primary dependent variable of the simulation is
the percent of time that the SIMP must wait on the
first EVSP in the pipeline - presumably all of the
remainder of its time may be used in running
simulations. Also of interest are the idle times
of the EVSP's in the system. Timing data were
obtained by counting the number of simulated mach-
ine instructions executed during and between calls
on the event set routines. This information was
gathered by inserting software probes into an
already existing simulation program. Similar data
were obtained for the event set routines by ex-
amining a compiled assembly Tanguage 1isting of
the program. This metric was chosen instead of
elapsed time because the Univac 1100 real time .
clock, which has a resolution of 200 microseconds,
is far too coarse for the purpose of this study.

In addition, the Univac system has a large cache
memory - measured performance would have a sub-
stantial amount of unexplained variance due to. the
memory access patterns of other jobs being run at .
the same time. :

The simulation program was written in University
of Wisconsin Pascal, and designed using a top down
methodology.

The parameters to the simulation program are:

1) N, the number of event set processors, with
0<N<3. '

2) The overflow and underflow 1imits (OVER and
UNDER) for each processor in the pipeline.

3) An external trace file, consisting of one

THE SIMULATION OF A PIPELINED EVENT SET PROCESSOR

Underflow Value for EVSPI[1l]

TABLE 2
PERFORMANCE OF A TWO EVSP SYSTEM
RUN H RUN M RUN L
Mean Event Mean Event Mean Event
Set Size Set Size Set Size
203.1
% % % % % % ‘% % %
UNDER SIMP EVSP1 EVSP2 SIMP EVSPI EVSP2 SIMP EVSPT EVSP2
[Wait Busy Busy Wait Busy Busy Wait Busy Busy
25 4.2 16.3 19.3
20 . 12.1 15.4 8.0 14.9 17.9 2.7
15. 1.9 11.2 24,6 10.6 13.1 9.1 12.7 14.9 4.5
10 11.6 9.8 26.5 9.0 10.7 “1N.6 10.0 12.1 6.9
9 11.5 9.5 26.4 ’
8 1.7 8.9 28.7
7. 12.2 8.4 30.6
6 13.3 7.8 33.3
5 15.9 7.0 38.6 8.1 7.7 20.4 8.6 9.4 9.7
4 20.9 6.9 47 .1 ’
3 8.7 5.8 34.2 7.7 7.9 14.5
2 9.2 4.8 42.5 6.9 6.6 21.4
1 9.7 4.8 47.8 6.2 5.2 29.6
FIGURE 1. PERFORMANCE OF A TWO EVENT SET PROCESSOR SYSTEM
20 T
$ 15 1
CPU
10 1
Wait
5 b
0 ' ' * * -~
0 5 10 15 20 25

593

594

record for each event set call made in the
original program. Each record consists of:

a) the kind of call ("schedule" or "next")
b) the incremental simulation clock time

- ¢) the instruction execution count between
this call and the previous call on the
event routines

d) the instruction execution count to per-
form the event set operation in the
driving program.

4) The time required to communicate between
two processors.

The program used to generate the trace files is an
event driven simulation of a large specialized
computer network (described in Comfort 1980). The
‘program was implemented in FORTRAN on a Univac
1100 computer system, It was designed using a top
down methodology, and no especial effort was made
to minimize running time. The event set algorithm
used was a variant of the adaptive indexed 1inked
list algorithm (described in Comfort 1979 and
Wyman 1975).

The results presented are chosen to represent
conditions of light; moderate; and moderately
heavy loading of the simulated computer system.
They will be referred to as RUN L, M, AND H respec
tively.

5. RESULTS

The behavior of a system using the pipelined 1ist
event set in a system with one SIMP and one EVSP
is shown in Table 1. By most standards, this
performance is clearly unacceptable, a$ the CPU is
idle (waiting on the EVSP) more than 20 percent of
the timé and more than 50 percent in a heavily
Toaded svstem. An analysis of the sequence of
calls to the event set processors {performed in
Comfort 1981) reveals that it is quite common to
have a "next" operation immediately following a
"schedule", requiring the CPU to wait for the
completion of the "schedule". Further, in a one
EVSP system, the pipelined algorithm reduces to
the simple doubly linked Tist algorithm (Comfort
1979), which is quite inefficient in time. Thus,
it is necessary either to employ a more sophisti-
cated event set algorithm, or to add additional
event set processors to the system.

TABLE 1
RUN H RUN M RUN L
% SIMP Wait 53.78 31.08 24.05
% EVSP Busy 60.41 62.26 27.99

Following the second approach, a simulated three
processor system (one SIMP plus two EVSP's was
configured, and a set of simulation experiments
was run. One of the first observations made was
that the value of the QOVER parameter is largely
irrelevant. There are two mechanisms for trans-
ferring an event notice from EVSP(n) to EVSP(n+1).

J.C. COMFORT, A. MILLER

In the first, the new event notice has time larger
than that of the most distant event notice in
EVSP(n) and is passed on directly. In the second,
the event notice is scheduled in EVSP(n), a local
memory overflow occurs, and the most distant

event is 'bumped' to EVSP{n+1). Apparently the
first mechanism is used aimost exclusively unless
the OVER value is very close to that of UNDER. As
a result, the OVER value was set to the maximum
size for each processor's event set memory, and
subsequently ignored.

In a two EVSP system, more nearly satisfactory
results have been obtained (as shown in Figure 1
and Table 2). Under conditions of heavy system
Toading (labeled RUN H), an optomal CPU wait of
about 11 percent is obtained with an underflow
value of 9. Under moderate load, the optomal
point is less well defined, and occurs when UNDER
is 5. With Tight loading, best behavior is seen
when UNDER assumes its minimum value of 1. Fixing
the parameter value at that which optimizes per-
formance in the heaviest system loading, CPU wait
percentages of 9.81, 10.53, and 12.08 are obtained
for the three runs.

It is interesting to observe that optimal behavior
seems to occur when EVSP(2) is doing roughly three
times as much work as EVSP(7). When the loadratio
is greater than 3, the time that SIMP waits on
EVSP(1) while that processor waits on EVSP(2)
becomes significant. At a lesser load, EVSP(1) is
doing too much scheduling, and the time that SIMP
waits on EVSP(1) dominates.

If a two EVSP system were desirable for some a
priori reason, it would be quite possible to de-
sign an algorithm in which the SIMP is able to
dynamically alter the value of UNDER (1). The
pragmatics of such an algorithm are beyond the
scope of this paper, however.

By proceeding to a three EVSP system and varying
the UNDER parmaters to EVSP (1) and (2), even
better performance was obtained. Starting with the
optomal value of UNDER (1) obtained in the two
processor system and varying UNDER (2), the CPU
idle percent is reduced to 8.38 (with an UNDER (2)
value of 10). For this set of parameter values,
the middle event set processor is fairly lightly
loaded with respect to the front end processor. By
analody with the observed behavior of the two EVSP
system, this suggested that a smaller value of
UNDER (1) could be employed. Values of 5,3,2 and
1 were used for this parameter (see Table 3 and
Figure 2). As expected,the value of one produces
the best behavior, yielding a SIMP idle percentage
of 5.30 and a relative loading ratio of 3.5:1.

Using the same parameter values for the moderately
and Tightly loaded system, similar values for SIMP
idle percentage were obtained.

6. CONCLUSION AND DIRECTIONS FOR FURTHER RESEARCH

The simulation study here performed certainly in-
dicates that a pipelined event set processor may
result in a significant increase in the utiliza-
tion of the central simulation processor and that
the performance increase is nearly independent of
processor loading. (see summary in Figure 4)

THE SIMULATION OF A PIPELINED EVENT SET PROCESSOR

595

TABLE 3
PERFORMANCE OF A THREE EVSP SYSTEM (RUN H)

UNDER(2): 100 UNDER(2}: 50
% % % % % % % %
UNDER SIMP EVSP1 EVSP2 EVSP3 SIMP EVSP1 EVSP2 EVSP3
[Wait Busy Busy Busy Wait Busy Busy ‘ Busy
9 8.51 9.92 10.79 3.29 8.36 10.08 4.46 15.21
5 8.35 7.80 16.83 3.61 7.16 7.88 7.82 15.36
3 11.09 5.03 32.60 3.78 6.48 6.27 16.74 15.69
2 13.34 4,55 42,90 3.75 €.10 5.20 23.10 16.50
1 . . 6.40 4,36 27.90 16.89
UNDER(2): 25 UNDER(2): 10
% % % % % % % %
UNDER SIMP EVSP1 EVSP2 EVSP3 SIMP EVSP1 EVSP2 EVSP3
i Wait Busy Busy Busy Wait Busy Busy Busy
9 8.40 10.61 2.77 12.75 8.38 9,89 2.19 22.79
5 7.20 8.00 4.40 19.14 7.27 7.87 3.07 25.34
3 6.25 6.20 9.70 19.96 6.40 6.12 6.45 26.34
2 5.73 5.14 13.68 20,23 5.89 5.06 8.57 26.78
1 5.30 4.35 16.78 21.03 5.50 4.29 10.27 27.73
FIGURE 2-EFFECT OF UNDERFLOW PARAMETER VALUES ON THE
PERFORMANCE OF A THREE EVSP SYSTEM
10 +
] UNDER(2)=25
=3 UNDER(2)=10
UNDER(2)=100
CPU UNDER(2)=50
WAIT
5 -
1) 1 X L] —
0 2 4 6 8 10

UNDER(1)

596 J.C. COMFORT, A. MILLER

TABLE 4
SIMP WAIT PERCENT AS A FUNCTION OF THE NUMBER OF EVSPS
% CPU WAIT
RUN. H RUN M RUN L
Original program 38.1 34.2 32.3
One EVSP 53.8 31.1 241
Two EVSPs 11.5 9.2 10.6
Three EVSPs 5.3 6.0 5.4
FIGURE 4 - COMPARATIVE PERFORMANCE OF THE ORIGINAL AND PIPELINED COMPUTER SYSTEMS
60 _
50 L
40 |
RUN H
RUN M
3 RON L
30 -
CPU
WAIT
20 |
10
0 A 1 1 ry
Original 1 2 3
Program EVSP EVSPs EVSPs
S .

THE SIMULATION OF A PIPELINED EVENT SET PROCESSOR 597

The results as. presented are not "real" in the
sense that they are based on instruction counts
taken from high level compiled code on a computer
whose use as an event set processor would be
moderately infeasible. In the next phase of this
research a verifiable system will be simulated
using a PDP-11/44 as the SIMP, and Motorola 68000
computers as the EVSPs. We plan to use data from
this composite computer sytem to validate the
simulation program.

It seems reasonable that an extremely cost effect-
ive simulation computer system may be designed

as a network of dedicated microprocessing
elements. Extensions of the simulation program
discussed here will be a major tool in the design
and refinement of such a system.

ACKNOWLEDGEMENTS

The authors wish to thank Martin Miller for his
assistance in the preparation of this manuscript.
REFERENCES

Blackstone, J.M., Hogg, G.L., and Phillips, D.T., "A Two-List Method for Synchronization of Event
Driven Simulation" Proceedings of the Fourteenth Annual Simulation Symposium, March 1981, pp.95-101.

Comfort, J.C.."The Simulation of a Microprocessor Based Event Set Processor”, Proceedings of the
Fourteenth Annual Simulation Symposium, Mach 1981, pp. 17-33.

Comfort, J.C. and Coats, P.K., "Electronic Funds Transfer Networks: The Impace of Performance and
Security Considerations", Proceedings of the Thirteenth Annual Simulation Symposium, March
1980, pp. 1-26.

Comfort, J.C., "A Taxonomy and Analysis of Event Set Management Algorithms for Discrete Event
Simulation", Proceedings of the Twelfth Annual Simulation Symposium, March 1979, pp. 115-146.

Franta, D., and Maly, W., "An Efficient Data Structure for the Simulation Event Set", CACM 20, 8
(August 1977) pp. 596-602.

Gonnet, G.H., "Heaps Applied to Event Driven Mechanisms", CACM 19, 2 (July 1970}, pp. 417-418.

Vaucher, J.G. and Duval, P., "A Comparison of Simulation Event Set Algorithms", CACM I8, 4 (April
1975), pp. 223-230.

Wyman, P.F., "Improved Event Scanning Mechanisms for Discrete Event Simulation", CACM 18,4
(Apri1 1975), pp. 350-353.

