1981 Winter Simulation Conference Proceedings
T.1, Oren, C.M. Delfosse, C.M. Shub (Eds.)

573

TESTS FOR THE VERIFICATION AND VALIDATION OF COMPUTER SIMULATION MODELS

Robert E. Shannon
Professor
Industrial and Systems Engineering Department
The University of Alabama in Huntsville
Huntsville, AL 35899 USA

ABSTRACT

This paper discusses the quantitative as well as qualitative tests which can
be run in trying to convince the user of a simulation model that the results

are valid

1. INTRODUCTION

There is little question that simulation is one of
the most powerful analysis tools available to
those responsible for the design and operation of
complex processes or systems. The concept of
simulation is both simple and intuitively appeal-
ing. It allows the user to experiment with sys-
tems (existing and proposed) where it would be
impossible or impractical otherwise. Unfortunately
its use also presents the potential for disaster.
John McLeod compared simulation to the scalpel
used by a surgeon. In the right hands it can
accomplish tremendous good, but it must be used
with great care and by someone who knows what they
are doing.

This paper considers the general problem of how to
bring to an acceptable Tevel, the users' confidence
that any inference about a system derived from the
simulation is correct. Basically, three questions
are of concern:

1. Does the model adequately represent the
real world system?

2. Is the model generated behavioral data
characteristic of the real system
behavioral data?

3. Does the simulation model user have con-
fidence in the model's results?

Consequently, we are going to be concerned with
tests that fall into three groups: tests of model
structure, tests of model behavior and tests of
the policy implications of a model.

In the following discussions, we will use the
terms verification and validation in the sense
used by Fishman and Kiviat [2]. Verification
entails the comparison of a model to empirical
reality. In the process model structure may be
compared directly to descriptive knowledge of the
real system structure or model behavior may be
compared to observed real system behavior.
Validation on the other hand is the process of
establishing confidence in the soundness and use-
fulness of the model's output. A model is
created for a specific purpose, and its adequacy
or validity can only be evaluated in terms of that
purpose. The goal is to generate a model that
creates the same problem and behavior character-
istics as the process or system being studied.
Validation is a continuous process, beginning with
the start of the study, that continues as the
model builder accumulates confidence that the
model behaves plausibly and generates problem
symptoms or modes of behavior seen in the real
system. Validation then expands to include per-
sons not directly involved in constructing the
model. At this point we can further clarify the
distinction between verification and validation.
While verification is an activity entailing com-
parison of a model to empirical reality, valida-
tion is a communication process that requires the

81CH1709-5/81/0000~0573$00.75 (:) 1981 IEEE

574 Robert E. SHANNON

modeT-builder to communicate the bases for con-
fidence in a model to a target audience. Unless
the modeler's confidence in a model can be trans-
ferred, the mbdels usefulness will never be real-
ized. Thus through verification testing, the model
builder develops personal confidence in the model
and through validation measures, transfers that
confidence to others.

It is important to realize that validation should
be considered one of degree and not an either - or
notion; it is not a binary decision variable where
the model is valid or invalid. There are no one or
two tests which will serve to validate a simula-
tion model, rather, confidence in the usefulness of
a model must gradually accumulate as the model
passes more tests and as new points of correspond-
ence between model and empirical reality are exam-
ined. Testing goes on continuously in the process
of constructing and using the model.

Validation must be considered from three different
perspectives: (1) the model builder, (2) the tech-
nical evaluator, and (3) the ultimate model user.
Only the model builder has the capacity to conduct
all of the confidence building tests. The tech-
nical evaluator (generally a supervisor, referee,
or client) is usually Tlimited to reviewing the
information and technical data provided by the
modeller. The ultimate user rarely has the tech-
nical background or mathematical sophistication to
be able to understand the verification tests con-
ducted. Yet ultimately, all three levels must be
convinced of the models validity if ifs results are
to be used.

2. MODEL BUILDING PROCESS

In discussing the model building process, we will
follow the basic framework suggested by Zeigler
[11]. This framework consists of six elements:

(1) the real system, (2) the experimental environ-
ment, (3) the conceptual model, (4) the formal
mode1, (5) the computer implementation, and {6) the
experimentation.

By the real system we mean that there is a method
of isolating out a part of reality, labeling it a
real system and collecting information and data
about it. The real system is nothing more than a
source of potentially acquirable data. At any
point in time we will have acquired only a finite
subset of this data from what is an infinite set or
universe. In general, the real system is {or will
become) a source of behavioral data consisting of
time based trajectories of input, state and output
variables.

The experimental environment, characterizes a
Timited set of circumstances under which the real
system is to be studied. Here we are concerned
with the specification of the goals and purpose of
the study. The explicit purpose of the model has
significant implications for the whole model build-
ing, validation and experimentation process. For
example, if the model's goal is to evaluate a
proposed or existing system in an absolute sense,
this imposes a heavy burden upon the accuracy of
the model and demands a high degree of isomorphism.
On the other hand, if the goal is the relative
comparison of two or more systems or operational
procedures, the model may be valid in a relative

sense even though the absolute magnitude of re-
sponses varies from that which would be encountered
in the real world. It is not surprising then to
learn that a model may be valid in one experi-
mental environment but invalid in another. Thus
there may be many valid models (at least one for
each experimental environment).

The conceptual model is the model builders per-
ception and understanding of the real world sys-
tem. Here, the modeller is defining the compo-
nents, descriptive variables and interactions which
constitute the real system. The conceptual model
consists of a hypothetical, complete explanation
of how the real system functions. The conceptual
model often takes the form of a block diagram and
systems specifications.

In most cases, the great complexity of the con-
ceptual model precludes its consideration as a
possible simulation model due to resource limita-
tions. Fortunately, because of the selection of
a particular experimental environment, the
modeller can likely construct a relatively simple
model (called the formal model) that is valid in
that environment. In principle the modeller
simplifies by aggregating or lumping together
components and elements that are strongly con-
nected through structure, function or both. By
Tumping together components and simplifying
interactions, hopefully a model results that
neither oversimplifies the system to the point
where the model becomes trivial nor carries so
much detail and complexity that it becomes in-
tractable and prohibitively expensive to run.

The formal model usually takes the form of a
logic flow diagram.

The next step is to write the step-by-step instruc-
tions for implementation of the formal model. The
computer program implementing a formal model should
not be identified with the model itself. Different
programming Tanguages encode the same model in
different ways. Great care must be taken to insure
that the computer program behaves as the modeller
intended.

Finally, the computer program is used to generate
model behavioral data through planned experimenta-
tion and the results analyzed. In this stage
there also are numerous pitfalls awaiting the
unwary. Depending upon how the experiments are
conducted and analyzed, erroneous conclusions can
be drawn.

Summing up, in using simulation to study a system
or process, there are several different types or
classes of error possible, any one of which can
Tead to drawing erroneous conclusions. Table 1
shows the six elements of the modeling process and
the possible errors which can be made. These
errors can lead to incorrect functioning of the
software and/or incorrect performance of the model
relative to user needs. Therefore, we must
evaluate the internal consistency of the design
{verification) and the external performance
characteristics (validation).

TESTS FOR THE VERIFICATION AND VALIDATION OF COMPUTER SIMULATION MODELS 575

Element

1. Real System
2. Conceptual Model

3. Experimental Domain

4, Formal Model

5. Computer Model

6. Experimentation

Table 1
OPPORTUNITIES FOR ERRORS

Possible Errors
a) Defining the system
b) Defining the boundaries
a) Misunderstanding how system works
b) Excluding relevant variables
'a) Specify goals of study
a) Design of model
b) Data used
a) Logic and coding
a) Procedure for use of model
b) Interpretation

3. SOFTWARE ENGINEERING

Before discussing the quantitative and qualitative
tests which can be run for verification and valida-
tion, we should at Teast mention methods designed
to try to avoid errors. Computer scientists have
been devoting a great deal of effort to trying to
develop design and management techniques which will
minimize errors. These efforts fall under the
general area of Software Engineering. One of the
major ideas that has come out of this effort is the
validity of the 40 - 20 - 40 rule of software engi-
neering. This rule says that 40% of the overall
effort should be devoted to the analysis of the
problem and design of the model, 20% to the coding
and 40% to the testing/integration of the model.
Most errors are the result of starting to write
computer code to soon and not leaving enough time
for the testing of the model.

During the design and coding phases, it appears
that coding ervors can be minimized by using:

1. Structured Programming

a) restrict flow of control to a few
basic patterns (usually three),

b) each module has a single entry and
exit point,

¢) properly indented to show nesting of
modules within other modules,

d) no module exceeds 50 Tlines liberally
commented.

2. Top Down Design

a) design, code, test and integrate
higher level modules before doing
lTower level modules,

b) testing is done by substituting stubs
{dummy programs) for each lower level
module,

¢) modules at same level are coded in
order in which they will be executed.

3. Chief Programmer Concept

a) separation of clerical and intel-
lectual tasks,

b) one programmer responsible for both
design and coding,

¢) Programming production library con-
sists of two parts (1) internal
library-machine legible on disc or
tape, (2) external library - human
legible in binders,

d) programmer works only with external
Tibrary,

e) Tlibrarian prepares all machine input
as directed by programmers, makes all
runs and maintains external library.

These concepts are discussed in several articles
and books, but all three are presented by
McGowan and Kelly [51].

4, VERIFICATION AND VALIDATION TESTS

The remainder of this paper is presented in more
or less outline form. Some general types of tests
we can conduct are [4]:

1. Using fixed values - substitute fixed
values for all parameters and variables
during construction of each module. This
allows checking the resuits against hand
calculated values. Thus one can detect
and correct logical errors by producing
a step-by-step trace of the model.

576

2. Testing the model against analytical
models - Obviously it the problem could
be solved analytically, we would not be
simulating it. However, often times we
can test some of the modules (such as
queue build-up) against an analytical
analysis.

3. Trace driven method - If the system being
modeTed already exists and the data is
available {or obtainable), one can use
actual data to drive the model. Thus
instead of sampling statistical distri-
butions to generate job characteristics
(characteristics or attribute values of
entities flowing through the system) a
job profile of actual values is read and
its actual characteristics used. In this
way exactly the same load as that of the
real system would go through the simula-
tor. This method allows direct com-
parisons of the simulator's and the sys-
tem's performance on individual jobs.

4, Statistical analysis - Tests of means,
variances etc. between real data and
model data. Tests of such things as
interarrival times, process times, down
times etc. can be conducted for input,
status and output variables.

4.1 Reasonableness Tests

If a model is to appear credible, it must exhibit
behavior that is similar to the real world. Some
aspects of this reasonable behavior are con-
tinuity, consistency and response to degeneracy
and absurd conditions [8].

1. Continuity - requires that small changes
in input parameters cause consequent
small changes in output and state vari-
ables unless they can be understood and
justified by the underlying process.

2. Consistency - essentially similar runs
of the model should yield essentially
similar results, i.e., there should not
be widely differing responses due to
changing the initial seeds for the
generators.

3. Degeneracy - when certain features of
The model are removed, the output should
reflect their removal. Example if I
remove a new piece of machinery then the
model should respond as if it is not
there.

4. Absurd conditions - (a) if I introduce
absurd inputs I should not get equally
absurd outputs, i.e., if I increase
advertising budget to o then sales
should not also go t0 «, (b) absurd con-
ditions should not arise during the
simulation, i.e., people with negative
height, cars going two ways at once.

4.2 Tests of Model Structure
1. Structural - Verification Test

Robert E. SHANNON

Verifying that the structure of the model
does not obviously contradict reality.
There must be a mapping or homomorphism
between the conceptual model and the com-
puter model.

Parameter and Relationships - Verification
Tests

Tests of the underlying assumptions about
parameter values and variable relation-
ships. These are usually statistical
tests of means, variances, regression
analysis, goodness-of-fit tests, etc.

Extreme - Condition Tests

Structure and output should be plausible
for any extreme and unlikely combination
of levels of factors in the system, e.g.
if in process inventories are zero - out-
put should be zero. Also the model should
bound and restrict the behavior outside

of normal operating ranges.

Boundary - Adequacy Test

Considers whether the model incorporates
the relevant relationships necessary to
satisfy the models purpose. Closely tied
to structural verification testing.

Dimensional - Consistency Test

Entails dimensional analysis of the models
equations.

4.3 Tests of Model Behavior

1.

Behavior - Reproduction Tests

Comparison of model behavior and output to
historical behavior and output [10].

a) Analysis of variance
b) X2 test
c¢) Kolmogorov-Smirnov test

d) Regression analysis - X vs. Y does it
give slope = 1 intersect = 07

e) Spectral analysis
f) Theil's Inequality test [3]
g) Turing test [9].

Symptom Generation Tests

a) Does the model recreate the diffi-
culties which show up in the real
world system?

b) Does the model produce known results
under certain inputs e.g. if un-
employment increases do sales de-
crease?

TESTS FOR THE VERIFICATION AND VALIDATION OF COMPUTER SIMULATION MODELS

3. Behavior-Prediction Tests

Testing whether the model can predict
system behavior through field tests [10].

4. Behavior-Anomaly Test

If behavior of model is contrary to our
knowledge of the real system but we can
find instances where in fact the real
system did behave this way it 1s strong
proof of validity. If we cannot find
instances of such behavior, we trace the
model structure that created such
behavior,

4.4 Tests of Policy Implications

1. Changed-Behavior Test

If previous changes have been tried in
the real world system, we can make the
same changes in the model and see if it
reacts the same way the real world system
did.

2. Sensitivity Analysis Tests

By conducting sensitivity analysis by
varying the values of the parameters and
seeing how it changes the behavior, we can
get a feel for the impact of uncertainty
in parameter values. If slight changes
in parameter values lead to different
policy implications, we should tread
carefully.

5. CONCLUSIONS

The problems of verification and validation are
perhaps the most critical issues faced by the
simulationist., It would be nice if one could just
run two or three nice clean statistical tests and
everyone concerned accept the validity of the
model. Unfortunately, however, that is not the
case. Each study, and more importantly, each
user presents a unique challenge., It is fairly
easy for the modeller to be convinced of the
validity of the model. It is far more difficult
and more critical to convince the user.

The literature on the validation of simulation
models is extensive. The last two proceedings of
this conference have contained excellent papers
[6,7] and an extensive bibliography containing
125 references has been published by Balci and
Sargent [11.

6. REFERENCES

Balci, 0. and R. G. Sargent (Spring 1980), Bibli-
ography on Yalidation of Simulation Models,
Newsletter of The Institute of Management
Sciences College on Simulation and Gaming,
Vol. 4, No. Z.

Fishman, G. S. and P. J. Kiviat (1968), The
Statistics of Discrete Event Simulation,
Simulation, Vol. 10, pp.185.

577

Kheir, N. A. and W. M. Holmes (April 1978), On
Validating Simulation Models of Missile Sys-
tems, Simulation, Vol. 30, No. 4, pp. 117-128.

Lazos, C. (December 1979), Evaluating Computer Sys-
tems Simulation Models, Proceedings of 1979
Winter Simulation Conference, pp. 309-316.

McGowan, C. L. and J. R. Kelly (1975), Top-Down
Structured Programming Techniques,
Petrocel1i/Charter, New York.

Oren, T. I. (1980), Assessing Acceptability of
Simulation Studies, Proceedings of 1980
Winter Simulation Conference, Vol. 2,
pp. 19-22,

Sargent, R. G. (1979), Validation of Simulation
Models, Proceedings of 1979 Winter Simula-
tion Conference, Vol. 2,.pp. 497-504.

Schlesinger, J. R. et al (1974), Developing Stand-
ard Procedure for Simulation, Validation, and
Verification, Proceedings of 1974 Summer
Computer Simulation Conference, pp. 927-933.

Schruben, L. W. (1980), Establishing the Credi-
bility of Simulations, Simulation, Vol. 34,
No. 4, pp. 101-105.

Shannon, R. E. (1975), Systems Simulation: The
Art and Science, Prentice-Hall Inc., Engle-

wood Cliffs, N. d.

Zeigler, B. P. (1976), Theory of Modelling and
Simulation, John Wiley and Sons, N. Y.

