1981 Yinter Simulation Conference Proceedings
T.I. Oren, C.M. Delfosse, C.M. Shub (Eds.)

559

INTRODUCTION TO DEMOS

Graham Birtwistle
Computer Science Department
University of Calgary, Alberta, Canada T2N 1N4

ABSTRACT

Demos [1,2] is yet another discrete event simulation language hosted in Simula.
It was released in 1979 and is now running on IBM, DEC, UNIVAC, and CDC hardwares

amongst others.,

The paper contains a short introduction to Simula's object and

context features; an explanation of the process approach to simulation; a brief
comparison of Simula and GPSS; and finally, the main features of Demos are pre-

sented via an example.

MAIN FEATURES OF SIMULA

This section is a short introduction to the high~
lights of Simula. Fuller accounts of Simula are
found in Birtwistle [3], Dahl [4], and Franta [5].
Simula is an extension to ALGOL 60 and includes
nearly all that language as a subset. The central
new ideas in Simula are those of the OBJECT and of
the CONTEXT. An object is used in Simula to mir-
ror the characteristics and behaviour of a major
component in the system under description, e.g. a
boat in a harbour simulation or a furnace in a
steel mill simulation. A context is a pre~com-
piled collection of object, procedure, and data
definitions, and statements common ,to one parti-
cular topic. For example, HARBOUR context may
contain definitions for boats, crames, tugs, the
tide, etc., and a TRAFFIC context may contain de-
finitions for cars, trucks, etc.

Objects

Objects are used in Simula programs to mirror ma-
jor components in the actual system under investi-
gation, one for one. As an example, consider a
steel mill simulation involving furnaces, ingots,
etc. Each actual furnace may be represented in
the Simula program by a corresponding furnace ob-
ject. If so, the furnace object will have to re-
flect all those features of an actual furnace
deemed relevant in the model; not just its physi-
cal characteristics such as capacity, current
load, power requirements, etc., but also the

81CH1709-5/81/0000-0559 $00.75

actions it carries out as it runs through its
schedule of operations.

! FURNACE !

CAPACITY 1500 !
! LOAD 800 !

load;
melt;
refine;
pour;
REPEAT;

Figure 1. A furnace object.

Figure 1 introduces our standard way of depicting
objects - as rectangular boxes divided into three
levels. The top level gives the class of the ob-
jeet (here FURNACE), the middle level gives the
attributes (data characteristics and local proce-
dures) of the object (here CAPACITY and LOAD with
current values of 1500 and 800 respectively, per-
haps in toms), and the bottom level gives the ac-
tion sequence of the furnace object. Here they
are informally shown as the cycle

(© 1981 IEEE

560 Graham BIRTWISTLE

load;
melt;
refine;
pour;

W

Where 1t sheds light on the situation, the current
action of an object will be marked with an arrow,
thus '+', This marker (and there 1s one for each
object) 1s called its LOCAL SEQUENCE CONTROL, or
LSC for short. The furnace object in figure 2 re-
presents an actual furnace which 1s pouring., Fig~
ure 2 shows how the real world siltuation involving
two furnaces (one loading and one pouring) would
be mapped iInto a Simula program. Notilce the posi-
tions of the LSCs of the two furnace objects.

! FURNACE ! ! FURNACE !

! CAPACITY 1500 ! ! CAPACITY 1200 !

! LOAD 800 ! ! LOAD 0!

! load; ! =+ 1 load; !

! melt; ! ! melts !

! refine; ! ! refine; !
=+ | pour; ! ! pour; t

! repeat; ! ! repeat; !
Figure 2. Objects representing the two furnaces.

Now although their individual data values are dif-
ferent, and they are currently performing differ-
ent actions, the two furnace objects have exactly
the same layout of attributes and the same action
sequence. The objects are said to be 'of the

same class' and are defined by a single CLASS
DECLARATION. Here it is in Simula (partly infor-
mally):

CLASS FURNACE(CAPACITY); INTEGER CAPACITY;
BEGIN)

INTEGER LOAD;

load;

melt;

refine;

pour;

REPEAT;
END##**FURNACE*#% ;

N.B. Program segments in this paper use a blend-
ing of Simula and English as it sults. Upper
case letters and punctuation are formal language
elements which are part of Simula itself., They
have precisely defined meanings and are used
strictly in accordance with the rules of Simula.
When we wish to be informal, we will use lower
case letters. Above, we have merely sketched the
action sequence of CLASS FURNACE as its precise
formulation in Simula 1s of no immediate rele-
vance,

We need a class declaration for each type of ob-
ject appearing iIn a Simula program. Each declar-
ation can be thought of as a template from which
objects of the same general layout can be created
as and when requlred. Several objects of the
same class may be in existence and operating at
the same time. To create a new furnace object in

a Simula program, we execute the command NEW
FURNACE. For example, the code below creates two
furnace objects, named Fl and F2, and initialises
their capacities to 1500 units and 1200 units res-
pectively.

* Fl :- NEW FURNACE (1500);
F2 :- NEW FURNACE (1200);

(':-'" is read 'denotes'). Fl and F2 are Simula
variables of a type not found in Algol 60. They
are REFERENCE VARIABLES of type REF(FURNACE) (read
as "REF to FURNACE') and are declared so

REF(FURNACE)FL, F2;

Fl and F2 are variables capable of referencing
furnace objects or NONE (no object at all). NONE
1s the initial value of all reference variables.

When the program action is inside a particular
object, the object will refer to its own attri-
butes directly, as CAPACITY or LOAD. For example,
suppose that a batch of ingots requires 200 units
of refined metal and that part batches are not to
be poured. More formal Simula code for "pour"
would be:

WHILE LOAD >= 200 DO

BEGIN
pour another 200 ton set of ingots;
LOAD := LOAD - 200;

END;

Each furnace object loops while its own LOAD >=
200,

When we access the current data values of the at-
tributes of objects from without (for example,
from the main program), we have to specify the
particular object as well as the attribute we are
after. Simula uses the DOT NOTATION, typically

<object>.<attribute>

e.g. FL.CAPACITY or F2.L0OAD. For example, to
load F2 with 800 tons of scrap we could write

F1.LOAD := 800;

A run time error results if the value of the ob-
ject reference in a remote access is NONE (asking
for an attribute of a non-existant object is il-
legal). This will halt program execution with a
suitable message.

The remote access problem has 1ts analogs in

every day life. For example, my phone number on
campus 1s 6055. Off campus but in Calgary, it is
284 6055, Out of Calgary, but within North Ameri-
ca it 1s 403 284 6055, When outside of North Am-
erica, omitting the 403 prefix gives quite a dif-
ferent result - indeed, the probability is that

INTRODUCTION TO DEMOS 561

the line does not even exist, (Compare asking
for LOAD within the main program.)

Contexts

A Simula program must contain class declarations
for all the objects it uses. For example, a steel
mill simulation involving furnaces, ingots, ete,
could have the format

BEGIN

CLASS FURNACE..,s.}

CLASS INGOT...v...}

REF(FURNACE)FL,¥2;

Fl :~ NEW FURNACE;

F2 :- NEW FURNACE;

actions involving these declarations;
END;

When working on a particular problem, it is clear
that some basic declarations will be useful
through several experiments. It is tiresome and
error prone to prepare much the same program each
time. In Simula, the basic inter~related defini-
tions and initislising actions can be collected
together in a CONTEXT. In this case, we call the
context STEEL and define it by:

CLASS STEEL;

BEGIN
CLASS FURNACE.....;
CLASS INGOT.......}
REF (FURNACE) F1,F2;
Fl :- NEW FURNACE;
F2 :- NEW FURNACE;

END*#*GTEEL#%%;

Normally STEEL would be compiled separately and
the relocatable object code retained in a library.
Users with an interest in the area and access to
the library call up the compiled context code by
an EXTERNAL DECLARATION. For example, the pro-
gram below

BEGIN
EXTERNAL CLASS STEEL;
STEEL
BEGIN
user code;
END;
END;

All the concepts inside STEEL (namely FURNACE,
INGOT, Fl, F2, etc.) are directly available in
the user~defined block prefixed by STEEL. If you
wish to protect or hide certaln quantities from a
user (e.g. SEED), there are mechanisms defined in
Simula to do just that (Palme [6]). Importantly
using contexts dramatically reduces compile times,
The cost of compiling a 100 line program backed
up by a 3000 line context 1s practically the same
as that for complling a 100 line program.

Prefixing

Whilst a steel mill simulation is running, the
major components (furnaces, ingots) will compete
with each other for resources, and we need a means
of queueing components that are temporarily
blocked. We could start from scratch and define
our own queueing mechanism, but Simula contains a

queueing context called SIMSET which is sufficient
for the sequel. Fach SIMSET list is represented
by a HEAD object which has pointers to its FIRST
and LAST members, The class declaration of ob-
jects that may be queued are defined, not as (say)

CLASS FURNACE..voussese}
with an empty prefix, but as
LINK CLASS FURNACE.....;

The LINK prefix augments the furnace part with
queue membership attributes defined in CLASS
LINK., These are pointers to its SUCcessor or
PREDecessor in the list, and routines INTO, FOL-
LOW, PRECEDE for placing a member in a list, and
OUT for removing a list member. Functional (but
not strictly accurate) skeleton code for the pre-
defined class SIMSET is:

CLASS SIMSET;
BEGIN
CLASS HEAD;
BEGIN
REF (LINK) FIRST, LAST;

R R R A A N I S I

END#***XHEAD%# ;

CLASS LINK;
BEGIN
REF(LINK)SUC, PRED;
PROCEDURE INTO(H); REF(HEAD)H;...
PROCEDURE OUT3 e vrrevnveenraseencs
PROCEDURE FOLLOW(X) 3 everereenenss
PROCEDURE PRECEDE(X) §vvvvvarnense
ENDA*#T,INK#% 3
END#*#STMSET* %% ;

we we we we

To make these list processing concepts available
to steel mill programs, we use prefixing (yes,
contexts may be prefixed by other contexts) and
simply alter the heading of CLASS STEEL to read:

SIMSET CLASS STEEL;

Note that SIMSET is system defined and does not
need an external declaration.

THE PROCESS APPROACH TO MODELLING

In this section, we use a cut down version of a
steel mill model which is fully developed in the
last section of this paper. Suppose the steel
mill has two furnaces which work fairly indepen-
dently. The furnaces are electric powered and
have the operation cycle:

load; melt; refine; pour;

Each furnace 1s first filled with scrap metal

(we assume an inexhaustible supply of scrap is
available). The scrap is then heated until mol-
ten, which required 3 units of electric power. A
maximum of four units of electric power is avail-
able to be shared between the furnaces; this ef-
fectively prevents two furnaces from 'melting' at
the same time. Once the scrap is molten, two of
these three units of power are freed, but one is
kept for the remainder of a furnace's work cycle

562 Graham BIRTWISTLE

to prevent its contents from setting solid before
they have been poured out.

The molten metal is then refined, and finally the
contents of the furnace are poured into a batch
of moulds. Each batch of moulds is kept together
ag a unit, and is shunted around the mill floor
on its own raillway bogle. In this version, we
assume that a batch 1s always avallable., How-
ever, pouring the molten metal into the moulds is
a restricted process. Pouring requires use of a
crane, and since there is only one crane availla-
ble for this purpose, only one furnace may be
pouring at a time,

We first go through the operation of the mill us-
ing a few 'easy' numbers. Let the furnaces be
called 'F1' and 'F2'. We assume that loading and
melting take 2 time units each, refining and pour-
ing take 1 time unit each, and suppose that Fl
starts its first cycle at time 0, and that F2
starts its first cycle at time 1.

Time ! Furnace ! Event taking place | Next event

0 I F1 ! start loading 12
1 ! F2 ! start loading 13
2 ! Fl ! request 3 of power !

! Fl ! seize 3 of power !

! Fl ! start melting 1 4
3 I F2 ! request 3 of power !
4 ! F1 ! release 2 to power !

! F1 | start refining t'5

! F2 ! selze 3 of power !

! F2 ! start melting t 6
5 ! F1 ! request 1 of crane !

! F1 ! selze 1 of crane !

! Fl ! start pouring !
6 ! F2 ! release 2 to power !

! F2 ! start refining 17

I Fl ! release 1 to crane !

I F1 ! release 1 to power !

! F1 ! start loading 18
7 ! F2 ! request 1 of crane !

! F2 ! seize 1 of crane !

! F2 ! start pouring 18
8 ! F1 ! request 3 of power !

! FL ! seize 3 of power !

! F1 ! start melting t 10

! F2 ! release 1 to crane !

! F2 ! release 1 to power !

! F2 ! start loading 110

RN RN RN se0ersseeseracenus

The state of the model changes only at certain
critical times and only these times have been re-
corded. The trace records what is congsidered to
be the essential behaviour of the system as a
time ordered sequence of events, and we accept
any program that can reproduce thils trace as a
'correct' model. The first three columns of the
trace give the 'when', the 'who', and the ‘'what'
of each event. The 'who' of each event is at all
times a furnace, and so the behaviour of the com-
plete system can be rephrased in terms of the ac-
tions and interactions of Fl and F2. The process
style of modelling follows this lead and splits
the trace narrative into separate columns, one
for each furnace, as below. Notice that each
and every event appears once under the appropri-
ate furnace name, and that no events have been
omitted (we follow through only the first com-

plete cycle of each furnace - later cycles fol-
low the established pattern).

Time
Event sequence

’ Fl F2
start loading 0 1
réquest 3 of power 2 3
seize 3 of power 2 4
start melting 2 4
release 2 to power 4 6
start refining 4 6
request 1 of crane 5 7
seize 1 of crane 5 7
start pouring 5 7
release 1 to crane 6 8
release 1 to power 6 7

The table above is just a rehash of the trace in
which we have followed through the actions of
each furnace as an individual. Importantly, the
action sequence for each furnace fay be framed
in exactly the same way. In Simula, this clear-
ly invites the declaration of a CLASS FURNACE
(informally):

CLASS FURNACE;
BEGIN
load;
request 3 of power;
seize 3 of power;
melt;
release 2 to power;
refine;
request 1 of crane;
seize 1 of crane;
pour;
release 1 to crane;
release 1 to power;
repeat;
END#*%XFURNACE®%% ;

from which two furnace objects will be created
by executing NEW FURNACE at appropriate times in
the main program,

The life cycle of a furnace 1s seen to be a se~
quence of phases (ACTIVITIES in discrete event
parlance) each of which fits into the general
pattern:

acquire extra resources;
carry out the task;
release unwanted resources;

Before we give Simula code for this example, we
need to take a closer look at the tools provided
for coding this pattern in the standard Simula
context SIMSET CLASS SIMULATION.

CLASS SIMULATION

Simulation programs written in raw Simula are
prefixed by the standard context SIMSET CLASS
SIMULATION which extends Simula with a few pri-
mitives for discrete event simulation modelling.
These are sufficient to write models in any of

INTRODUCTION TO DEMOS 563

the usual styles. It 1s interesting to write
models in raw Simula using these primitives ONCE
for it shows up in all its gory detail the mass
of testing and reactivating that has to be done
in order to get model components correctly syn-~
chronised. 1In practice, using the primitives
supplied by SIMULATION turns out to be both tedi~
ous and error prone. More powerful tools need to
be developed.

The skeleton of CLASS SIMULATION is:

SIMSET CLASS SIMULATION;

BEGIN
LINK CLASS PROCESS..vceeesvessonsnnel |
PROCEDURE HOLD(T); REAL Tjveevonvoer}
PROCEDURE ACTIVATE. . +10veeorcocsones}
PROCEDURE WAIT(Q); REF(HEAD) Qj.svne}
PROCEDURE PASSIVATE] ¢eevvocoroocenss}
REF(PROCESS) CURRENT; ¢ e vvvvrevonnnss}
REAL PROCEDURE TIMES «eevroooroeossss}

ACTIONS:
get up event list at time zeroj;
END##**STMULATLON# ¥

SIMULATION is prefixed by SIMSET and thus inher-
its the concepts of two-way lists. The class
body actions set up the future events list and
set the simulation clock to zero.

The event list is usually implemented as a tree,
but its behaviour is easler to explain if it is
depicted as a time-ranked queue. Every object
which undertakes time consuming tasks has to be
scheduled in event list and its class declaration
must be prefixed by PROCESS (hence it will be
PROCESS CLASS FURNACE). At any time in a simula-
tion run, several processes are carrying out
tasks. They are posted in the event list for the
simulated time at which their current phase is
due to end, and are ranked according to this
time. The process with the smallest event time
lies at the front. It is called CURRENT. The
scheduling mechanisms are so framed that it is
always the actions of CURRENT that are being car-
ried out, and the simulation time is taken to be
the event time of CURRENT. The actions of all
other processes in the event list are suspended.
The LSC of each is poised on the statement it is
due to execute when it next reaches the front of
the event list and becomes the current process.
When it becomes CURRENT, the simulation clock
time is stepped up to its event time.

Resources are usually represented by integers in
Simula programs, e.g.

INTEGER CRANE, POWER;

Initialised by
CRANE := 1; POWER := 4;

The most common scheduling routines are:
ACTIVATE - used to awaken a blocked process,
HOLD(t) - used to represent the duration of

an activity,

PASSIVATE -~ used to remove CURRENT from the
event ldist, and

WAIT(q) - used to remove CURRENT from the event
list and block it in a specified queue.
There it will remain until awakened and
able to pick up the resources it re-
quires.

The typical activit§ uses three of these routines.
We illustrate the idea using 'pour’.

ACQUIRE:
(1) IF CRANE < 1 THEN
(2) BEGIN
(3) WALIT(POURQ) ;
4) oUT;
(5) END;
(6) CRANE := CRANE -~ 1;
HOLD:
(7) HOLD(L.0);
RELEASE:
(8) CRANE := CRANE + 1;
(9) POWER := POWER + 1;
(10) IF CRANE >

1 THEN ACTIVATE POURQ.FIRSTy
3 THEN ACTIVATE MELTQ.FIRST;

(11) IF POWER >

ACQUIRE (lines 1-6): In raw Simula, it is con-
venient to maintain a queue (here REF(HEAD)
POURQ;) in front of each activity where processes
can awailt the availlability of the required re-
sources., A process wishing to pour, first tests
the availabllity of the resources It wants. If
they are all free, it selzes them at once, If
they are not all free, it removes itself from
the event list and waits passively in a specified
queue by executing WAIT(some queue), as in line
3., It is the responsibility of a process releas-
ing the crane to awaken this dormant process.
Once awakened, it takes itself out of its queue
(by OUT;). Thus, whether delayed or not, once
the request(s) have been granted, the process
continues on its way by seizing the resources it
needs, here CRANE := CRANE ~ 1,

HOLD (line 7): The furnace then advances its
event time by the time required to carry out its
CURRENT task, here by HOLD(1.0). The call on
HOLD reschedules CURRENT FURTHER down the event
list, When it becomes CURRENT again, one simu~
lated time unit will have elapsed.

RELEASE (lines 8-11): The process now returns
the resources it no longer needs back to the
system pool

CRANE := CRANE + 1;
POWER := POWER + 1;

and awakens sleeping processes who can now go by

IF CRANE >= 1 THEN ACTIVATE POURQ.FIRST;
IF POWER >= 3 THEN ACTIVATE MELTQ.FIRST;

N.B. ACTIVATE has no effect if the queue is emp~
ty (FIRST == NONE). Notice that when the user
decides the order in which queues are tested, he
is in effect assigning priorities to these
queues. If the blocked processes waiting in
these queues are competing for common resources,
one must be very careful and consistent with

this ordering,

The coding for the remaining activites follows in

564 Graham BIRTWISTLE

the same vein. We now give a complete program
for the mill in raw Simula.

SIMULATION
BEGIN
INTEGER CRANE, POWER;
REF (HEAD) POURQ, MELIQ;
REF(FURNACE)Fl, F2;

PROCESS CLASS FURNACE;
BEGIN
LOAD:
HOLD(2.0);
MELT:
IF POWER < 3 THEN
BEGIN
WAIT(MELTQ) ;
ouT;
END;
POWER := POWER - 3;
HOLD(2.0);
POWER := POWER + 2;
IF POWER >= 3 THEN ACTIVATE MELTQ.FIRST;
REFINE:
HOLD(1.0);
POUR: .
IF CRANE < 1 THEN
BEGIN
WAIT(POURQ) 3
OUT;
END;
CRANE := CRANE - 1;
HOLD(1.0);
CRANE := CRANE + 1;
POWER := POWER + 1;
IF CRANE >= 1 THEN ACTIVATE POURQ.FIRST;
IF POWER >= 3 THEN AGTIVATE MELTQ.FIRST;
GOTO LOAD;
END#®**FURNACE%%% 3

F2 :~ NEW FURNACE;
ACTIVATE FL AT 0.0;
ACTIVATE F2 AT 1.0;
HOLD(200.0)

END;

This style of coding is very efficient, mainly
because each process decides what to do next it-
self and knows where to look for blocked proces-
ses rather than relying upon a central intelli-
gence which looks around the whole model polling
everyone when deciding who should do what next.
It is also very convenient in that one can calcu-
late such data as process-through-times (or aver-
age cycle times) very easily.

However, even without data collection or report-
ing statements, the program is long winded and
the style prone to error because the overall
model logic gets swamped in a welter of detail.
Notice too the danger in the separation of a re-
quest for a resource and its acquisition. It is
all too easy to request a resource and forget to
acquire 1t, or acquire a different size chunk.
There is a similar danger in the separation of
the release and awaken operations.

But take heart, you were never intended to write
simulations in raw Simula! Simula invites you to
explore an area, decide which features are gener-
ally useful, write them up as a context, and then
use this context. Before deciding on what to in-
clude in Demos, I wrote 50~60 non-trivial pro~
grams in various styles and also examined the
literature for complete models in ECSL, SIMSCRIPT,
GPSS and SIMULA. GPSS gave most pointers on what
should be included in Demos. In the next sec~
tion, we have a look at a mini-GPSS context in
Simula - its strengths and shortcomings.

GPSS AND THE TRANSACTION STYLE

GPSS (see Schriber [7]) is one of the oldest dis~
crete event modelling languages, dating back to
the early 1960's. GPSS uses EXACTLY the same ap-
proach to modelling as Simula ~ a Simula process
is called a TRANSACTION in GPSS.

GPSS does not pretend to be a general purpose
programming language. It is a dedicated simu-
lation language supporting onme specific approach
to model building and is implemented as a closed

. package embracing this viewpoint. Since all GPSS

models are written in the same style, the same
needs keep cropping up. GPSS provides many build-
ing blocks, each one catering for a specific need,
These are an enormous bonus because the GPSS sim-
ulator itself accomplishes many of the tasks
which fall on the programmer if he is using raw
Simula. For example, blocked transactions are
automatically woken up when the resource they
need is released to the system pool. Also, GPSS
collects data describing model behaviour most un-
obtrusively, and automatically prints out summar-
iles of this data at the end of each run. The
model builder need not supply computational
statements either for collecting or for summaris-—
ing this data, nor provide statements indicating
bow it should be displayed. From a beginner's
point of view, this is very desirable as it takes
away the need to learn about output formatting
and enables the new user to straightaway focus
his attention, where it belongs, squarely on the
model.

GPSS provides two built-in resource types which
are adequate for many queueing network problems
- the FACILITY and the STORAGE. A FACILITY is a
resource of size 1 which can be seized and re-
leased. E.G. GPSS code to use the crane in our
mill model for omne time unit is:

SEIZE CRANE
ADVANCE 1
RELEASE CRANE

POWER in our mill model would be modelled by a
STORAGE: a resource of arbitrary positive size
which can be entered and left in chunks., GPSS
code to declare POWER as a storage of limit 4,
then use 3 chunks for 2 time units would be

STORAGE POWER 4 {declaration of POWER
with limit 4}

ENTER POWER, 3

ADVANCE 2

LEAVE POWER, 2

INTRODUCTION TO DEMOS

Note that while facilities are implicitly defined
in GPSS (the translator can work out that CRANE
is a facility by its very usage), storages must
be defined explicitly as their capacities are ar-
bitrary.

The GPSS code for the activity 'pour'! is simply:

SEIZE CRANE
ADVANCE 1
RELEASE CRANE
LEAVE POWER, 1

A GPSS version of our simply furnace model is:

STORAGE POWER, 4

GENERATE 1,0, 2
L: ADVANCE 2

ENTER POWER, 3

ADVANGCE 2

LEAVE POWER, 2

ADVANCE 1

SEIZE CRANE

ADVANCE 1

RELEASE CRANE

LEAVE POWER, 1

TRANSFER L

Notice that instead of waiting for all the re-
sources it needs to be availlable before starting
up the next activity, a GPSS transaction seizes
them one at a time., A very strong plus for the
GPSS code is that selze and enter are indivisible
request and take operations; and release and
leave are indivisible return and awaken opera-
tions, There is thus no chance of making a slip
and testing for a resource and then taking eith-
er none of it or a different amount; nor can one
forget to increment a resource and omit the awa-
ken test.

Another bonus is that code for SEIZE, RELEASE,
ENTER and LEAVE is extended to take care of main~
taining statistics on device usage, average queue
length, etc. and thus data collection can be done
unobtrusively. One of the shocking things about
Simula programs is that 50-75% of the code is
concerned with data collection and reporting
statements, and the program structure is buried
under a welter of i/o and update statements.

Implementation in Simula

A skeleton Simula implementation of GPSS i1s given
below. The idea is taken from a paper by Vaucher
[8], which is well worth locating.

SIMULATION CLASS GPSS;
BEGIN
REF(HEAD) FACILITY_Q, STORAGE Q;

PROCESS CLASS TRANSACTION;
BEGIN
INTEGER PRIORITY;
PROCEDURE P_INTO(Q); REF(QUEUE)Q;
BEGIN
REF (TRANSACTION) E;

IF Q == NONE THEN warning ELSE
BEGIN
E :~ Q.LAST;
IF E == NONE THEN INTO(Q) ELSE
IF PRIORITY > E,PRIORITY THEN
FOLLOW(E) ELSE
BEGIN
E := Q.FIRST;
WHILE PRIOCRITY >= E,PRIORITY DO
E :~ E,SUC;
PRECEDE(E)
END;
END;
END#*%PRIORITY INTO#*%;
END***TRANSACTION#¥# ¢

LINK CLASS FACILITY;
BEGIN
REF (HEAD)Q;
INTEGER FREE;

PROCEDURE SEIZE;
BEGIN
REF(TRANSACTION)T;
T 3~ CURRENT}
T.P_INTO(Q);
IF FREE = O THEN PASSIVATE;
T.0UT;
FREE := 03
END*%&*SETZEd%% 3

PROCEDURE RELEASE;
BEGIN
FREE := 1j
ACTIVATE Q.FIRST;
END***RELEASE##%% 3

INITIALISE:

FREE := 1;

INTO(FACILITY_Q);

Q :~ NEW HEAD;
END#***FACILITY*%%;

LINK CLASS STORAGE(FREE); INTEGER FREE;
BEGIN
REF(HEAD)Q;

PROCEDURE ENTER (M); INTEGER M;
BEGIN :
REF (TRANSACTION)T;
T :- CURRENT;
T.P_INTO(Q);
WHILE (M > FREE) DO
BEGIN
PASSIVATE;
ACTIVATE SUC AFTER T;
END;
T.0UT;
FREE := FREE -~ M;
END***ENTER* %%

PROCEDURE LEAVE(M); INTEGER M;
BEGIN

FREE := FREE + M;

ACTIVATE Q.FIRST;
END***LEAVE# %

INITIALISE:

IF FREE < 1 THEN error;

INTO(STORAGE_Q);

Q :- NEW HEAD;
END#***STORAGE#%# 3

565

566

PROCEDURE REPORT*
BEGIN
cycle down FACILITY Q and report om
each FACILITY;
cycle down STORACE Q and report on
each STORAGE;
END#**%REPORT*%% 3

PROCEDURE ADVANCE(T); REAL T;
HOLD(T);

PROCEDURE GENERATE(P, T); REF(PROCESS)P:
REAL T
ACTIVATE P AT T;

FACILITY Q :~ NEW HEAD;
STORAGE Q :- NEW HEAD;
INNER;

REPORT;

END**&GPSS#%s s

IN GPSS all transactions are queued in priority
order. This has been implemented in our mini~
context., The procedure P INTO is based upon the
SIMSET procedures introduced earlier.

We start our GPSS context by expanding PROCESS
into TRANS_ACTION adding in an INTEGER PRIORITY
(initially zero, it can be altered dynamically by
ordinary assignment statements such as PRIORITY
+= 23), and a PROCEDURE P_INTO which when called,
inserts its owner into a named queue in priority
order (larger values at the tail end).

We also include simplified definitions of FACILI-
TY and STORAGE, queues FACILITY Q and STORAGE Q
into which each and every user.created FACILITY
object and STORAGE object respectively will place
itself on generation and a (rough idea of the
global) REPORT procedure which is included to
show how it can be called automatically. The
REPORT routine merely has to cycle through the
two queues in turn and report on each object it
finds there. Because FACILITY and STORAGE ob-.
jects are automatically placed thelr respective
queues, there is no chance of 'losing' a report
due to oversight. The declarations of ADVANCE
and GENERATE are merely renaming mechanisms and
are included to make the GPSS user feel more at
home.

The class body actions of GPSS create the
FACILITY_Q and STORAGE Q and the INNER passes
control over to the user program. Once the
latter's executlon is complete, control returns
back up to the GPSS context level and issues a
call on REPORT.

Each resource, be it FACILITY or STORAGE, is not
just an integer giving how much is free, but also
a queue for holding delayed transactions, and
routines for acquiring portions of the resource
and releasing portions back to it. The integer
and the queue are protected from the user - he is
only allowed to manipulate the resource via these
two routines. The design is also very secure be-
cause checks can be made (not shown here) to en-
sure that a transaction does not return more than
it acquired, ask for more than the resource li-
nit, etec.

Graham BIRTWISTLE

In these resource implementations, a transaction
first joins the resource queue (in priority or-
der) and then tests the availability of the re-
source. If sufficient is free, it decrements
the integer, leaves the resource queue, and then
proceeds without delay. If not, it remains in
the resource queue and is allowed to proceed
only when enough of the resource is available.
Importantly, when a portion of a resource is re-
turned, one knows precisely where all the other
transactions awaiting upon that resource are -
they are blocked in the resource queue. Thus the
return routines (RELEASE and LEAVE), not only in-
crement the integer, but also awaken all dormant
transactions who can now go. This 1s very effi-
clent, and also relieves the programmer of a ma-
jor headache - explicitly reactivating blocked
processes.

The Simula version of the mill using this GPSS
context reads:

BEGIN EXTERNAL CLASS GPSS;
GPSS
BEGIN
REF (FACILITY) CRANE;
REF(STORAGE) POWER;

TRANSACTION CLASS FURNACE;

BEGIN

LOAD:
ADVANCE(2.0);
POWER. ENTER(3) ;
ADVANCE(2.0) ;
POWER.LEAVE(2) 3
ADVANCE(1.0);
CRANE.SEIZE(1);
ADVANCE(1.0);
CRANE.RELEASE(L) ;
POWER,LEAVE(L) ;
GOTO LOAD;

END##*FURNACE#%%

CRANE :- NEW FACILITY;
POWER :~ NEW STORAGE(4);
GENERATE (NEW FURNACE, 0.0);
GENERATE(NEW FURNACE, 1.0);
ADVANCE(200.0) ;
END*%%#GPSS version of the mill#kw;
END*#*PROGRAM##% 3

Aside: mnotice that this program is pretty much
one for one in length with the original GPSS pro-
gram,

Pros and cons of GPSS

The good things about GPSS are its resource
types, tracing and reporting which make the job
of the beginner very easy. Further, GPSS imple-
mentations have good error messages at compille
time and run time; and TRACE and block counts

are valuable when debugging. Although GPSS has

a fixed-package framework, there are strailghtfor-
ward ways of extending its capabilities. For ex-
ample, the random number generators provided by
GPSS are poor., Fishman [9] shows how to use HELP
routines to write your own in FORTRAN, Again,
should more than one transaction type be desir-
able, several logically different types can be
given in one combined description. Schriber

INTRODUCTION TO DEMOS

shows you how.

On the negative side, simulation is now being ap-
plied to systems with ever more components, with
more complicated interactions amongst them, and
requiring detailled modelling of their algorithmic
aspects, All three of these points work against
GPSS. One misses GPSS subroutines and extension
mechanisms; the ability to read in data from
files and output raw data to files for later ana-
lysls rather than an immedilate report.

It seems to me that there is not much point in
implementing both the FACILITY and the STORAGE.
After all, a FACILITY is nothing but a STORAGE
of size 1, Several other obvious synchronising
mechanisms have been left out completely; for
example, synchronisations for message passing,
transaction~-transaction co-operation, and trang-
action interruption.

Note that although GPSS implementations are usu-
ally very slow (see Virjo [10]), this is not in-
herent in GPSS, It is just that most implementa-
tions have taken the easy way out and interpret
rather than produce machine code. Since GPSS is
a dedicated language with a simple run time stru-
cture, GPSS implementations should be faster than
Simula implementations, In practice they are
usually 2 or 3 times slower, often much worse
than that,

DEMOS

Obviously, much that I learned from GPSS has been
carried over into Demos. Hosting Demos in Simula
takes care of many of the objections to GPSS: it
allows many transactlon types, has good algorith-
mic capability (down to the character, but not to
the bit level), good control structures, allows
subroutines, etc, What Simula hasn't got at pre-
sent are bullt-in resource types, tracing, report
facilities, and much in the way of automation.

It is a purpose of Demos to provide them.

If we begin our account of the design of Demos by
asking the question "how can processes inter-
act?", we wind up with a long list indeed. First
there is mutual exclusion (storage in GPSS), but
also there are producer/consumer, master/slave,
wailts until complicated conditions to arise, and
the possibility of cancelling and interrupting
other processes. In the rest of this chapter, we
develop our mill model step by step, each step
introduces a new complication and to solve it we
need yet another synchronisation. Although this
does not display the simplest possible use of
these devices, they are Introduced in the context
of a fairly realistic model, and should imbue the
reader with the confidence that they are indeed
generally useful.

Flrst of all, a CLASS ENTITY 1s defined with the
structure:

CLASS ENTITY;

BEGIN
INTEGER PRIORITY;
PROCEDURE SCHEDULE(T); REAL T;
PROCEDURE CANCEL;

567

PROCEDURE INTO(Q); REF(QUEUE)Q;
PROCEDURE REPEAT;
ENDHSXENTITY e 5

PROCEDURE HOLD(T);

Entities are the only objects which can be sche~
duled in the event list. Once there, they carry
out activities by HOLDing themselves; onr ‘“heir
life histories are completed, they CANCEL them~
selves from the event list. A process may
SCHEDULE or CANCEL other entities - making HOLD
global forces other entities to use SCHEDULE and
CANCEL properly. A call on INTO puts an entity
into the named queue in priority order. A call
on REPEAT causes the class body actions to be re-
peated,

Mutual exclusion

The first resource type to be implemented is the
RESource, which parallels a GPSS storage. Re-
sources have an initial LIMIT, and thereafter

can be ACQUIRED and RELEASED in integer chunks.,
Built into the resource is a queue in which
blocked entities waiting upon the availability of
that resource are kept.

CLASS RES(TITLE, LIMIT); VALUE TITLE; TEXT
TITLE; INTEGER LIMIT;
BEGIN
REF(QUEUE) q;
PROCEDURE ACQUIRE(N); INTEGER N;
PROCEDURE RELEASE(N); INTEGER N:
INTEGER PROCEDURE AVAIL;
IF LIMIT < 1 THEN error; q :- NEW QUEUE;
ENDH*RES**% 3

Another visible attribute is AVAIL which returns
how much of the resource is currently available.
On generation of each RES object, the class body
actions automatically check that its parametric
LIMIT is at least 1, And a local queue q is cre-
ated - this is where entities blocked on this re-~
source will wait (in priority order). Using
these tools, we could code our steel mill model
in Demos by:

BEGIN EXTERNAL CLASS DEMOS;
DEMOS
BEGIN
REF(RES)POWER, CRANE;

ENTITY CLASS FURNACE;
BEGIN
HOLD(2.0) ;
POWER.ACQUIRE(3) 3
HOLD(2.0);
POWER . RELEASE(2) ;
HOLD(1.0);
CRANE.. ACQUIRE (1) ;
HOLD(1.0);
CRANE.RELEASE (L) ;
POWER.RELEASE(L)
REPFEAT;
END##¥FURNACE### 3

POWER :- NEW RES("POWER", 4);
CRANE :- NEW RES("CRANE", 1);
NEW FURNACE("F") .SCHEDULE(0.0) ;
NEW FURNACE("F") ,SCHEDULE(L.0);

568
|

HOLD(200.0);
END;
END;

which is one for one in length with the mini-GPSS
context.

Scheduling other entities

An entity may be scheduled from within the main
block, or anywhere else In a Simula program. We
now extend our basic model by adding in an INGOT
component which traces the path of a batch of
‘Ingots from its creation (completion of a 'pour-
ing"'), to its exit from the mill as a rolled
plate. Once poured, INGOTS are allowed time to
set, that is form a hard crust so that they are
self supporting when removed from thelr moulds.
Ingots are then placed in soaking pits so that
they come up to a uniform temperature throughout.
Then they are lifted out of thelr soaking pit by
a crane and rolled into sheets by a rolling mill.
The ingot temperature has to be just right; if
too cold, they crack the rollers; if too hot,
they splash all around the shop floor. An infor-
mal description of an Ingot is:

ENTITY CLASS INGOT:
BEGIN

set

soak;

roll;
END*®% INGOT#%%;

To formalilse our description, we add Into our
model the declaration:

REF(RES)PITS, CRANE, MILL;
and thelr initialisations

PITS :- NEW RES("SOAKING PITS", 20);
CRANE2 :- NEW RES("PIT AREA CRANE", 1);
MILL :- NEW RES("ROLLING MILL", 1);

We can now give the full declaration of CLASS
INGOT:

ENTITY CLASS INGOT;
BEGIN
SET FIRM:
HOLD(SET.SAMPLE) 3
LOAD INTO PIT:
PITS.ACQUIRE(L);
CRANE2 ., ACQUIRE(L);
HOLD(LOAD.SAMPLE) ;
CRANE2 ,RELEASE(1);
SOAK:
HOLD(SOAK.SAMPLE) §
UNLOAD:
MILL.ACQUIRE(L);
CRANE2 .ACQUIRE(L);
HOLD(UNLOAD, SAMPLE) ;
CRANE2 ., RELEASE(1);
ROLL AND QUIT:
HOLD (ROLL.SAMPLE) ;
MILL.RELEASE(1);
PITS.RELEASE(1);
END#®%% ITNGOT#*%% 3

which shows again how quite involved logic can be

Graham BIRTWISTLE

modelled resorting only RES type synchronisations.
Hence the success of GPSS. The ingots are gener-
ated by including a call

NEW INGOT('INGOT").SCHEDULE(0.0);

within the body of CLASS FURNACE after the second
HOLD(1.0) line. The parameters to HOLD are all
calls on built in Demos distributions, see
Birtwistle [11], these proceedings.

Producer/consumer

The producer/consumer synchronisation is well
known to writers of operating systems and tele-
communications software. It crops up quite of-
ten in discrete event problems, so it is rather
surprising that no previous simulation language
designer has felt impelled to include it in his
language.

The simplest use involves two entitiles, one of
which produces (widgets, say) which the other
process consumes. The producer continues on mak~
ing widget after widget; the consumer is blocked
if there is no widget for it to consume.

ENTITY CLASS Pj ENTITY CLASS C;

BEGIN BEGIN
make; W.TAKE(1);
W.GIVE(1l); use}
REPEAT; REPEAT;
REF(BIN)W;

W :~ NEW BIN("WIDGETS", 0);

The appropriate Demos device is called a BIN and
has the outline:

CLASS BIN(TITLE, INITIAL SIZE); VALUE. TITLE;
TEXT TITLE; INTEGER INITIAL SIZE;
BEGIN
REF (QUEUE) ;3
PROCEDURE TAKE(N); INTEGER N;
PROCEDURE GIVE(N); INTEGER N;
INTEGER PROCEDURE AVATL;

IF INITIAL SIZE < 0 THEN error;
q :- NEW HEAD;
END**&BTN%*%%

The producer gives (increments a local counter
and awakens any one blocked who can now go). The
consumer tries to take (and is held in a queue
local to the BIN until his request can be grant-
ed). A BIN is thus very much like a RES: both
have an integer count, a local queue, and a func-
tion AVAIL which returns the current count value.
The pairs ACQUIRE/TAKE, RELEASE/GIVE are very
similar too. But whereas a RES has an upper li-
mit, a BIN has none. Importantly as the same
entity will acquire and release a RES, checks can
be built into ACQUIRE and RELEASE to ensure that
a process does not try to acquire more of a RES
than its limit, and release more than it acquired,
and also when it terminates, that it has returned
to the pool of resources all that 1t has acquired.
None of these checks is appropriate in the pro-
duecer/consumer synchronisation, and if the BIN
and the RES are implemented as one device, the

INTRODUCTION TO DEMOS 569

possibility for these tight checks is lost. This
synchronisation has proved very valuable in model-~
ling computer and telecommunications systems.

In our model we introduce BOGIES as a BIN., A
bogle carries a batch of moulds sufficient for
one pouring. A furnace requires a bogle laden
with moulds before it can pour. We can now com-
plete our furnace description and include the re-
quest for a bogile and the generation of a new
batch of ingots at the end of each pouring. We
have also extended our previous description in
two other ways., First a furnace load will £i1ll
four batches of ingots (neatly coded by a FOR~
loop), and at the end of a pouring there is'a
small chance (modelled by CRACKED.SAMPLE) that
the furnace needs relining. In which case it is
allowed to cool off, and then a team of brickies
repalr the cracked lining before it starts load-
ing again. Finally electricity in large blasts
1s expensive, so the mill restricts the furnaces
gso that only one can be 'melting' at a time.

This is ensured by the extra RES MUTEX. (Al-
though the parameters we have chosen: 1 furnace,
3 units of power for melting, and 4 overall would
only allow one furnace in at a time anyway, this
would not necessarily be the case if we increased
the capacity of the mill,)

REF(RES)MUTEX, POWER, BRICKIES;
REF(BIN)BOGIES;

ENTITY CLASS FURNACE;
BEGIN
INTEGER K;
HOLD(LOAD SCRAP.SAMPLE) ;
MUTEX,ACQUIRE(L);
POWER.ACQUIRE(3);
HOLD(MELT , SAMPLE)
MUTEX.RELEASE(1);
POWER.RELEASE(2);
HOLD(REFINE,SAMPLE) ;
FOR K := 1 STEP 1 UNTIL 4 DO
BEGIN
BOGIES.TAKE(L);
HOLD(POUR, SAMPLE) ;
NEW INGOTS("INGOTS").SCHEDULE(0.0);
END;
IF CRACKED,SAMPLE THEN
BEGIN
BRICKIES.ACQUIRE(L);
HOLD(RELINE,SAMPLE) ;
BRICKIES.RELEASE(1);
END;
REPEAT
END#%*FURNACE %+

e

This description also shows the power of embedd-
ing a simulation package in a general purpose
host which contains looping and branching con-
structs.

Master/slave

Once a batch of ingots has been poured, the bogie
is shunted away into sidings and the ingots are
allowed to set. After sufficient time has elaps-—
ed, the ingots are unloaded and dumped by the
pitside. Here they are stripped of their moulds
and loaded into a soaking pit. The stripping is
carried out by a special crew, who not only clean

the moulds, but also reassemble them, load them
back onto the bogie and push the bogie back to
the furnace area,

The actilons of ingots and the crew coincide for
a while (strip), but then diverge.

crew ingots
set
strip S > strip
reline soak
reassemble roll
shunt
REPEAT;

Both ingots and crews HAVE to be modelled as
entities. The question now is how do we neatly
allow them to rendezvous (co-operate for a while)
and then go thelr separate ways. This same mech-
anism was included in the author's earlier imple=-
mentation of SIMON 75 and i1s a part of the ADA
language. We choose one entity (according to
taste) to be the master and let the other(s) be
its slave(s). The slave waits for the rendez~
vous by executing

Q.WAIT;

where Q 1s a WAITQ object. When the master
wishes to rendezvous, it executes the assignment

8 :- Q.COQPT;

which removes the first waiting slave in the
waitq and names it 8. TIf the waitq 1s empty,
then the master i1s blocked until the next slave
executes a Q.WAIT. Only then will the assignment
to § be completed. A sketch of WAITQ is:

CLASS WAITQ(TITLE); VALUE TITLE; TEXT TITLE;
BEGIN
REF(QUEUE) masterq, slaveq;
REF(ENTITY)PROCEDURE COOPT;
PROCEDURE WAIT;
INTEGER PROCEDURE LENGTH;
MASTERQ :~ NEW QUEUE;
SLAVEQ :- NEW QUEUE
END#*#*WATTQ¥ %%

The class body actions generate separate (hidden)
queues for slaves and masters when a WAITQ ob-
ject dis created.

In our mill example, we declare

REF(WAITQ)STRIPQ;

and let the crew be the masters.
declaration for class crew is:

The appropriate

ENTITY CLASS CREW;

BEGIN
REF(INGOTS)I;
I :—- STRIPQ.COOPT;
HOLD(STRIP.SAMPLE);
I.SCHEDULE(0.0);
HOLD(CLEAN.SAMPLE + SHUNT.SAMPLE);
BOGIES.GIVE(1);
HOLD(TO_SETTING AREA,SAMPLE);
REPEAT;

Graham BIRTWISTLE

570

END*%*&CREWA%# 3

Notice that a furnace acquired the moulds, and a
crew returns them - they are modelled as BINs be-
cause different entitiles pick them up and drop
them.

Waits until
We can now return to the ingots:

ENTITY CLASS INGOT;

BEGIN
HOLD(SET.SAMPLE) ;
STRIPQ.WAIT;

PITS.ACQUIRE(L);
CRANEZ2 , ACQUIRE(L) ;

e scccsrrostac s

END##* TNGOT#*%%

Note that there is now a 'hole' in the descrip-
tion of an Ingot; having placed itself in STRIPQ,
an INGOT is taken through the strip activity by
its master crew. .Only when this activity has
been completed is the ingot scheduled again by
its master. The ingot then tries for a place in
the soaking pit. Of course, the ingots cool down
as they wait for a place in the soaking pits. If
the pits are fully utilised, a queue of waiting
ingots will form. If this queue persists, it
makes sense to dump the oldest (and coldest) in-
gots outside until a later slack period arises,
and use a more recent arrival instead.

We introduce the strategy that if the pits are
full (PITS.AVAIL = 0) and the length of the queye
in front of the pits is 4 or more (PITQ.LENGTH "
>= 4), then a batch of ingots is dumped outside
by a hoist crane (HOIST)., Only when the pit ut-
ilisation is low (say, PITS.AVAIL >= 10) is such
an ingot brought back and loaded into a soaking
pit.

When decisions have to be made involving separate
routes using disparate resources, one has to wait
and see, wait until one is certain, before pick-

ing up resources and moving ahead. Here a CONDQ

should be used:

CLASS CONDQ{TITLE); VALUE TITLE: TEXT TITLE;
BEGIN

REF (QUEUE) q;

PROCEDURE WAITUNTIL(C);

PROCEDURE SIGNAL;

INTEGER PROCEDURE LENGTH;

q :—~ NEW QUEUE;
END#*#%CONDQ*#% 3

Each CONDQ contains a local queue for entities
waiting upon its condition to arise LENGTH re-
turns the number of currently walting entities.
4n entity calling Q.WAITUNTIL(C) is blocked in Q .
if G 1is not true, Whenever C changes it 1s the
responsibility of the entity that caused the
change to signal any CONDQs that might be affec~
ted.

Complicated conditions are easy to code, e.g.
corresponding to choosing route A or B

if A then else
if B then else

we code
Q.WAITUNTIL(A OR B OR)

and the caller is blocked until one or other or
both of these conditions is true.

In activity mode languages, waituntil prefixes
every activity. In process mode, given RES, BIN
and MASTER/SLAVE synchronisatjons, they are hard-
ly ever needed. Inserting an automatic CONDQ
sniffer slows down & simulation run by a factor
of 2 or 3, byt this can be unboundedly worse. 1In
Demos, the decision was made to force the user to
explicitly wake up entities blocked in CONDQs. -
Every time a process effects an action which
causes a waituntil condition to change, it must
send a signal to that CONDQ.

In our mil], model, we use a CONDQ called PITQ for
the pit side area, and a second CONDQ called OUTQ
for the outside area. The body of INGOT now
reads:

REF(CONDQ)PITQ, OUTQ;

PITQ :~ NEW CONDQ("PIT ENTRY'");
OUTQ :~ NEW CONDQ("DUMPED INGOTS™);

ENTITY CLASS INGOT;
BEGIN
BOOLEAN COLD;
REAL T;
HOLD(SET.SAMPLE) ;
STRIPQ,WALT;
IF PITQ.LENGTH > 4 THEN PITQ.FIRST.
SCHEDULE (NOW) ;
PITQ.WAITUNTIL{PITS.AVAIL > 0 AND CRANE2.
AVAIL > 0 OR PITQ.LENGTH >= 4);
IF PITQ.LENGTH > 4 THEN
BEGIN
COLD := TRUE;
HOIST.ACQUIRE(L);
HOLD(OUTTIME ,SAMPLE) 3
HOIST.RELFASE(1);
OUTQ WAITUNTIL(PITS.AVAIL >= 10 AND
HOIST.AVAIL >= 1)
HOIST,ACQUIRE(L);
HOLD (INTIME.SAMPLE) 3
HOIST.RELEASE(L);
O0UTQ,SIGNAL;
END;
PITS.ACQUIRE(1);
CRANE2, ACQUIRE(1);
HOLD (LOAD . SAMPLE) ;
CRANE,RELEASE(1) ;
PITQ.SIGNAL;
HOLD(IF COLD THEN LONGER.SAMPLE ELSE
SHORTER.SAMPLE) 3
MILL.ACQUIRE(L) ; :
CRANE2 ,RELEASE(1)
PITQ.SIGNAL;
HOLD (ROLL.SAMPLE) ;
MILL.RELEASE(1);
PITS.RELEASE(Ll);
PITQ.SIGNAL; OUTQ.SIGNAL;
END#**%INGOTS*%%

INTRODUCTION TO DEMOS

Breakdowns and interrupts

We distinguish between two types of stoppage.
(1) a breakdown by which we mean a process is
using equipment which faults thus causing him a
delay to fix the fault plus a reset time, but
then the process carries on with its expected
program, (2) interrupt where its behaviour
pattern 1s altered (perhaps radically) by the
unexpected.

Catering for a breakdown is intrinsically the
easler. A process is carrying out a task and
is in the event list at time denoted by its
EVTIME. It thus has (P.EVTIME - TIME) left to
go. If a breakdown now occurs, this time left
1ls recorded, P removed from the event list, the
breakdown cause repalred, and then P is sche~
duled again with delay.

For example, suppose we have a reserve generator,
Should the main power supply go down, the re~
serve generator will supply 1 unit of power to
each active furnace keeping them at the same
temperature. A furnace engaged in a melt will
be delayed by precisely the time involved in
getting the main supply back up again. This we
can code by

REF (FURNACE)M;

ENTITY CLASS FURNACE;

BEGIN
MUTEX,ACQUIRE(1);
M := THIS FURNACE;
POWER.ACQUIRE(L) ;
HOLD(2,0);
POWER, RELEASE(2) ;
M :- NONE;
MUTEX.RELEASE(L);

Teve e

END***FURNACE##%#;

ENTITY CLASS GREMLIN;
BEGIN
HOLD(time to next fallure);
zap the power supply;
effect a repair;
restart power to the furnace (if any)
that was melting;
REPEAT;
END#**GREMI,IN#%%* 3

In more detail, we fill out GREMLIN to

ENTITY CLASS GREMLIN;
BEGIN
HOLD(MTBF . SAMPLE) ;
IF MUTEX.AVATL = 1 THEN
BEGIN
MUTEX . ACQUIRE(L);
HOLD(REPATIR.SAMPLE) ;
MUTEX . RELEASE(1) ;
END ELSE
BEGIN
T := M.EVTIME — TIME;
M.CANCEL;
HOLD(REPAIR.SAMPLE) ;
M.SCHEDULE (0. 0) ;
END;

571

REPEAT;
END#***GREMLIN###

Interrupts

Interrupts give rise to distortions in process
behaviour. For example, suppose the rolling mill
breaks down, what then? The mill may not be in
use, may have an ingot en route from the pit but
not be rolling (response: return the ingot to
its pit at once), or be rolling (in which case
the shape of the ingot will be distorted and it
will not fit back into its vacated pit slot. It
is then 'plated', i.e, recycled for loading) An
entity E may be interrupted by a call E,INTERRUPT
(n), which sets a variable E.INTERRUPTED to N,
end then reschedules E behind its interrupter
(CURRENT), When E becomes current, it decides
for itself what to do next.

REF(INGOT)MILL USER;

ENTITY CLASS MILL BREAKDOWN;
BEGIN
PRIORITY := 23
HOLD (MTTNB , SAMPLE) ;
IF MILL USER =/= NONE THEN
MILL USER.INTERRUPT(1);
MILL.ACQUIRE(L);
HOLD (REPAIR,SAMPLE) ;
MILL.RELEASE(1);
REPEAT;
END#**#MILL, BREAKDOWN##;

ENTITY CLASS INGOT;
BEGIN
L:

MILL.ACQUIRE(1);

CRANE2.ACQUIRE(L);

HOLD(LOAD,SAMPLE) ;

IF INTERRUPTED > O THEN

BEGIN
INTERRUPTED := 03
MILL.RELEASE(1);
HOLD(LOAD.SAMPLE) ;

CRANE2 .RELEASE(L);
GOTO L;

END;

CRANE2 ,RELEASE(1);

HOLD(ROLL.SAMPLE) ;

IF INTERRUPTED > O .
THEN PLATED := PLATED + 1
ELSE GOOD = GOOD + 13

MILL.RELEASE(1);

PITS.RELEASE(1);

END#***INGOTS*%%

The program is completed by declaring and creat~
ing the distribution objects, and scheduling 4
furnaces.

CONCLUSTIONS

Demos is implemented as a Simula context (pre-
fixed by SIMSET, but not by SIMULATION) and ex-
tends over roughly 2000 cards. Along with suit-
able documentation and testing, DEMOS was approx-
imately a 9 man-month project. The resulting
system is portable and has proved easy to extend,

572 Graham BIRTWISTLE

alter and maintain.

Implementing a Demos compiler from scratch was out
of the question because Demos 1s Simule plus, and
Simula is itself a 15 man-year project. However
a Demos compiler would have definite advantages.
It could, for example, give error messages writ-
ten in Demos (rather than Simula) terminology,
detect the possibility of deadlock at compile
time, accept a Demos program written with waits
until and itself insert the correct calls on
SIGNAL, give resource usage cross-reference lists,
do away with the need for explicitly titling ev-
ery Demos object (as in NEW INGOT("INGOT™), etc.).
Without a compiler, the same effect can be
achieved by using a pre-processor, which is much
easier to write but more expensive to run.

There are many advantages to coding Demos in Sim—
ula. Firstly, Simula is widely implemented and
to a good standard., The implementors of Simula
systems meet regularly in the SIMULA STANDARDS
GROUP. The hope being that this would ensure
that Simula systems are compatible now and will
remain so in the future. Experience with porting
Demos has been fairly trouble free, only the CDC
implementation giving rise to non-trivial pro-
blems., Demos was Ilmplemented on DEC System 10
hardware and has been ported to DEC System 20,
IBM 360/370, and ICL System 4, and ICL 2900 hard-
ware with no modifications at all. The UNIVAC
1100 implementation does not yet support virtual
labels, so that verslon of Demos has to make do
without REPEAT, Both the NDRE and CDC Simula
implementations quote key words. Once that hur-
dle has been accounted for, the NDRE version sup~
ports neither virtual labels nor functions return-
ing references, so that REPEAT is out, and the
function REF(ENTITY)PROCEDURE NEXTEV has had to
be rewritten as a procedure. The CDC Simula
compiler still does not treat virtual quantities
correctly, and the Demos code for the reset and
report routines had to be 'bent' to fit. Alto-
gether, the experience has not been too bad (have
you tried porting FORTRAN programs from one ma-
chine to another?). The situation should improve
in the very near future when the Norweglan Com-—
puting Center's portable Simula implementations
are released, making identical Simula compilers
available on an even wider range of hardware.

Secondly, Simula's object and context features
are considerably ahead of anything offered by
other languages. It 1s easy to 'see' how to im-
plement Demos facilitles as Simula objects. The
context feature enables an implementation to pro-
gress in an orderly fashion layer by layer, each
new step adding in a few new interrelated ideas.
Simula has very strict security and comsistency
checks so that many mistakes are picked up as
soon as possible at complle time.

Finally, Demos is not the end of the road. The
user should proceed in standard Simula fashion to
develop his own more specilalised contexts for his
own areas of Interest, e.g.

DEMOS CLASS STEEL(N MILLS, N PITS);
INTEGER N _MILLS, N PITS;
BEGIN
ENTITY CLASS FURNACE;.....;
REF(RES)MILLS, PITS;
MILLS :~ NEW RES("MILLS", N MILLS);
PITS :- NEW RES("PITS", N PITS;
END***STEEL %%

The distribution of Demos

Demos is an ordinary Simula program and will run
on any computer that supports Simula. The Demos
Reference Manual gives full documentation of the
complete Demos system, and includes a Simula
source listing of Demos as an appendix.

The Demos system (both source code and reference
manual) are distributed in machine readable form
as unlabelled files on IBM standard, 9 track
tapes.,

REFERENCES

1) G. M. Birtwistle, Discrete Event Modelling on
Simula, Macmillan Press, 1979.

2) G. M. Birtwistle, DEMOS Reference Manual,
278 pp., 2nd Edition, July, 1981,

3) G. M. Birtwistle, 0-J. Dahl, B. Myhrhaug,
and K. Nygaard, Simula begin, Studentlitter-
atur, Lund, Sweden, 1973,

4) 0-J. Dahl, B. Myrhaug, and K. Nygaard, Simula
67 Common Base Language, NCC Publication $-52,
Norwegian Computing Center, Oslo, 1970.

5) W. R. Franta, The process view of simulation,
North Holland, 1978.

6) J. Palme, Simula adopts data security, Simula
Newsletter.

7) T. Schriber, Simulation using GPSS, Wiley,
1974,

8) J. Vaucher, Simulation data structures using
Simula 67, Proc. Winter Simulation Confer-
ence, 1971, pp. 255-260.

9) G. 8. Fishman, Concepts and Methods in Dis-—
crete Event Digital Simulation, Wiley, 1973.

10} A. Virjo, Comparison of Discrete Event Simu-
lation Languages, NORDData 72 Conference,
Helsinki, 1972.

11) G. M. Birtwistle, A portable random number
generator with built-in well spread seeds,
These proceedings.

