1981 Winter Simulation Conference Proceedings 529
T.I. Oren, C.M. Delfosse, C.M. Shub (Eds.)

A PORTABLE RANDOM NUMBER GENERATOR WITH BUILT-IN WELL-SPREAD SEEDS

Graham Birtwistle
Computer Science Department
University of Calgary, Alberta, Canada T2N 1N4

ABSTRACT

This paper discusses the techniques employed in implementing pseudo-random num-
ber generating routines in Demos (a discrete event simulation extension to Simu~
la). We glve a basic routine for generating random numbers uniform in the inter-
val (0, 1) and show how this was built out to produce the other standard distri-
butions such as randint, Polsson, negexp, etc.; then we show how the basic rou-
tine can be adapted to generate many well-separated seeds; and how to effect

automatic reporting. The techniques can be employed with other random number
generators and in languages other than Simula.

BACKGROUND

This paper describes how random number routines
are implemented in Demos [1l]. Demos is a dis-
crete event simulation extension to the general
purpose programming language Simula [2]. Simula
is implemented on IBM, UNIVAC, Cyber, Dec 10/20,
ICL 2900, Seimens, Honeywell GCOS systems a-
mongst others. Demos is process based and in-
cludes its own event list routines; built-in
process~resource, process-process, and interrupt
synchronisations; automatic reporting; tracing;
and its own random number routines. Demos 1s
coded entirely in Simula.

Simula itself contains several random drawing
procedures: draw, randint, uniform, normal,
poisson, negexp, erlang, discrete, linear and
histd. Whilst these library routines are well-
implemented and fast, there are some drawbacks
to using them:

(a) the basic generators differ from Simula im-
plementation. Thus experiments run on one
hardware cannot be duplicated closely on
another,

(b) distribution profiles and usages are not
automatically reported.

(c) although an arbitrary number of distribu-
tions can be employed in Simula programs,
their start seeds are chosen by the user.

There 1s no neat, general way of ensuring
that they are well separated.

(¢) the distributions are all implemented as
subroutines and calls contaln several para-
meters. It 1s easy to make textual slips
when calling the same distribution from dif-
ferent program points (e.g. randint (1, 6,
Ul) from one place, and randint (i, 6, UL)
from one another). Whilst not frequent,
these errors are difficult to spot.

At the cost of some loss of speed and little loss
of flexibility, Demos attempts to overcome these
deficiencies. , The design aims for the Demos ran-
dom number library were that it should run with-
out change on any machine with a word length of

32 bits or more, that it be written entirely in
Simula, permit textually neat and descriptive
calls, allow for the automatic generation of well~
spread seeds, and automatically echo back all dis-
tribution profiles and their use.

THE CHOICE OF GENERATOR

Most Simula compilers have used Lehmer generators
of the form

U, := some constant {1 s U, < p}

0

U. = a * U mod p

el % {k = 1}

81CH1709-5/81/0000-0529500.75 (:) 1981 IEEE

530 Graham BIRTWISTLE

and found them satisfactory., It is easy to show
that the period of the generator is given by the
minimum n satisfying aB = 1 mod p. It follows
from the Fermat~Euler theorem that if a and p have
no factors in common then aP-l = 1 mod p. But
(p-1) is not necessarily the smallest n for which
this holds; however, the smallest n must divide
(p-1). If the smallest value of n is p-1, then a
is a primitive root mod p and the cycle of length
p~l can be attained., Hardy and Wright [3] have
shown that a primitive root exists for every prime
p and that the number of primitive roots is ¢ (p-1)
the number of integers less than and prime to
(p-1). There is no general rule for finding a
primitive root for a given prime. However, suf-
ficient conditions for 2 to be a primitive root
mod p have been established (see for example,
Roberts [4]). They are

(a) (p-1)/2 is prime
(b) p = 3 mod 8.

For such a prime p, an appropriate primitive root
a can be found by a = 2% mod p; hef(s, p-1) =

When choosing a and p we have to bear in mind that
Simula is a high level language and will not tol-
erate arithmetic overflow (it results in a run
time error). At first sight it would seem that
in order to prevent overflow, we would have to
restrict our choice of a and p so that ap < 231,
Knuth [5] advises further that Vp <a < p - Vp
i.e. p~ 220 (if a 15 small) and p ~ 215 (if a 1s
large), which conditions are a shade too restric-
tive in large simulations. A way to lengthen the
period is to find an a which factorises (say a =
a 2a3), then Uk , can be computed by

% .
X <« ay Uk mod p

X « a, % X mod p

U + a3 X mod p

k+1

threé times slower but with an extended range for
p, (p ~ 231 /max (al, ay, a))

We chose a published generator ([6]) with good
overall properties which fits the above demands:

Ukﬁl := 8192 * Uk,mOd 67099547

By spldtting 8192 into 32#%32#%8, the generator can
be coded as

FOR K := 32, 32, 8 DO
BEGIN
U :=K* U;
IF U >= 67099547 THEN U := U -
U//67099547 * 67099547 ;
END;

which will not cause overflow on a 32 bit machine
since 67099547 < 67108864 = 2%%26 and 32 = 2%%5,

When it comes to generating well-spread 'seeds
automatically, we take advantage of a neat trick
described by Mats Ohlin [7]. Note that if

| = *
Uk+1 a Uk mod p,

=a*a*% Uk mod p,

h = *
Uyg = 8 % Upyy mod p,

=a % g% g* Uk mod p, etc.

It follows that if we use a’ as multiplier, we
move through the basic cycle in steps of r at a
time. Not all values of r are suitable as the
period may be drastically shortened through an
unfortunate choice. We have chosen r = 120633
which has the multiplier 8192%%120633 mod 67099547
= 36855 = 7%13*%15%27. Again this can be coded in
Simula so as not to give overflow on a 32 bit
machine. The period of this (seed) generator is
also 67099546,

WELL-SPREAD SEEDS
Well-spread seeds are automatically generated in
Demos by calls on NEXTSEED which works in conjunc-

tion with the global variable SEED.

{initially SEED = 907,
= 67099547}

INTEGER SEED, M;

INTEGER PROCEDURE NEXTSEED;
BEGIN
TINTEGER K;
FOR K := 7, 13, 15, 27 DO
SEED := mod(SEED * K, M);
NEXTSEED := SEED;
END***NEXTSEED#**# 3

PROCEDURE SETSEED(N); INTEGER N;
BEGIN
IF N < O THEN N := -N;
N := mod(N, M);
IF N =0 THEN N := M//2
SEED := N;
END*#*SETSEED#%%;

n

PROCEDURE SETSEED(N); INTEGER N; normally sets
SEED to N, but if N lies outside the range [1,
67099546] - which would cause NEXTSEED to over-—
flow (or always return O if SEED became 0) - N is
manipulated into a safe value by
I

N := REMATNDER(ABS(N), M):

IF N = O THEN N := M//2,
Initially SEED is set by Demos to 907; thereafter
every time a DIST object is created (or a sub-
class object), its U and USTART varilables are set
by calling NEXTSEED. Each such call produces the
next ‘'well-spread-seed' separated from the last
by 120633 drawings.

When a Demos program is run, it generates well-
spread-seeds in the predetermined order (these
default values may be overridden):

A PORTABLE RANDOM NUMBER GENERATOR WITH BUILT-IN WELL-SPREAD SEEDS 531

907
33427485
22276755
46847980
43847980
64042082
44366385
41357879
11320893

6528269
47478000

owoOoNOTUVMPLWNEREO

=

each of which has its 'own' portion of the basic
cycle of length 120633 drawings. After 120633
drawings, the underlying rth distribution will
start to overlap with the r+lst. This separation
holds for over 500 distributions.

DISTRIBUTIONS IMPLEMENTED
Nine distributions are defined in Demos:

Returning real values we have: CONSTANT (A) which
always returns the same value A; ERLANG (A, B)
which returns a drawing from an ERLANG distribu-
tion with mean A and standard deviation A/SQRT(B);
EMPTRICAL (N) which reads in a cumulative proba-
bility distribution in the form of a table of
'size' N and returns samples from it; NEGEXP (A)
which returns drawings from an exponential distri-
bution with an arrival rate of A; NORMAL (A, B)
which returns drawings from a normal distribution
with mean A and standard deviation B; UNIFORM

(A, B) which returns drawings from a uniform dis-
tribution with lower bound A and upper bound B;

Returning integer values we have: POISSON (A)
which returns drawings from a POISSON distribu-
tion with a mean of A; RANDINT (A, B) which re-
turns drawings from a distribution randomly dis-
tributed amongst the integers A, A+l, ..., B.
Returning Boolean values we have: DRAW (P) which
returns true with probability P.

These nine distributions are not implemented as
procedures, but as Simula classes. A Simula

class is a template for a data structure. An ar-
bitrary number of instances of a class ('objects'
in Simula parlance) may be created. The code be-
low declares two pointers Ul and U2 and a class
UNIFORM (to which more will be added), then cre-
ates two objects 'representing' distributions uni-
form over (0, 100) and (-10, 10) respectively.

REF(UNIFORM) Ul, U2;

CLASS UNIFORM (LB, UB); INTEGER LB, UB;
BEGIN

INTEGER U;

REAL RESETAT;

RESETAT := TIME;

U := NEXTSEED;

IF LB > UB THEN error;
END#***UNIFORM**%

Ul :- NEW UNIFORM (0.0, 100.0);
U2 :-~ NEW UNIFORM (-10.0, 10.0);

When a UNIFORM object is created (say, by NEW
UNIFORM (0.0, 100.0), its parameter values are
initialised (here 1B := 0.0, UB := 100.0), and
its local data values set to standard Simula de-
faults (U := 03 RESETAT := 0.0). Then the ac-
tions of the class body are carried out. These
set RESETAT to the current simulation clock time,
the start seed for this distribution U is initia-
lised by a call on global NEXTSEED (here to
33427485); and then the sense of the parameters
is checked (we make sure that LB < UB). When the
class body actions are exhausted, control returmns
to the generating call and the assignment to Ul
is completed. Then, and in the same way, U2 is
created.

The parameters and local values may be accessed
from outside an object via the dot notation

"pointer.attribute" - e.g. U1l,LB = 0.0,
UL.U = 33427485,
U2.U = 22276755,

In addition to data and actions, a class declara-
tion may also contain procedures which operate
upon its attributes (parameters and local quanti-
ties) and globals. A more complete definition of
UNIFORM is:

CLASS UNIFORM (LB, UB); REAL LB, UB;
BEGIN

INTEGER U, OBS;

REAL RESETAT;

PROCEDURE RESET;

BEGIN
RESETAT := TIME;
OBS := 0;
*

END***RESET®%%;

REAL PROCEDURE NEXT;
BEGIN

INTEGER K;

FOR K := 32, 32, 8 DO

U :=mod (K * U, 67099547);

NEXT := U/67099547;

0BS := 0BS + 13
END***NEXT#%% 3

REAL PROCEDURE SAMPLE;
SAMPLE := LB + (UB - LB) * NEXT;

PROCEDURE REPORT;.....;

RESET;

U := NEXTSEED;

IF LB > UB THEN error;
END***¥UNIFORM*%% 3

Given CHECKOUT :- NEW UNIFORM (50.0, 100.0) with
this new definition of UNIFORM, CHECKOUT.RESET
sets CHECKOUT.RESETAT to the current clock time
and CHECKOUT.OBS (the number of calls on CHECKOUT.
NEXT in this epoch) to zero; CHECKOUT.NEXT oper-
ates upon CHECKOUT.U and returns a real value
uniform in (0, 1). It also increments CHECKOUT,
OBS; and CHECKOUT.SAMPLE which calls CHECKOUT.
NEXT and then transforms the latter's value into
one uniform over (50.0, 100.0). ©Note that if we
implement UNIFORM as a procedure, each call would
require three parameters (lower bound, upper

532 " Graham BIRTHISTLE

bound, seed) AND we miss the opportunity to asso-
cilate an informative name with the call, as with
CHECKOUT.SAMPLE. CHECKOUT.REPORT will be covered
later.

When we come to write other distribution defini-
tions (negexp, Erlang, Poisson, ...), much of
this work is duplicated. Each of them makes good
use of RESETAT, U and 0BS; and for each of them
RESET and NEXT are identical. When class declar-
ations have properties in common 1like this, the
shared attributes may be defined separately and
built into later definitions by 'prefixing'.

This property which is unique to Simula enables
class declarations to be built up in a hierarchi-
cal fashion.

In our case we are going to define nine distinct
distributions: 6 of which will return real va-
lues, 2 will return integer values, and one a
boolean. We first extract their common portion
and define it in a separate class:

CLASS DIST;

BEGIN
INTEGER U, OBS;
REAL RESETAT;
PROCEDURE RESET; as above}
REAL PROCEDURE NEXT; as above;
RESET;
U := NEXTSEED;

END***DISTH*%

We could now define a class equivalent to the
pgevibus UNIFORM bys

DIST CLASS UNIFORM (1B, UB); INTEGER LB, UB;
BEGIN ‘
REAL PROCEDURE SAMPLE;
SAMPLE := LB + (UB ~ LB) * NEXT;

PROCEDURE REPORT;.es.03

IF LB > UB THEN error;
END***UNTFORM*®# 3

Prefixing CLASS UNIFORM by DIST, builds all the
attributes and actions of DIST into this new de-
claration. WNotice how by writing everything that
is common to all distributions as a separate
class enables us to concentrate at the new level
on what is specific to a UNIFORM distribution.
The writing of all other eight distributions is
similarly simplified. For example, class con-
stant is merely

DIST CLASS CONSTANT (X); REAL X;

BEGIN
REAL PROCEDURE SAMPLE;
SAMPLE := X;

PROCEDURE REPORT;.vv .4
END##*%CONSTANT# %%
and class draw
DIST CLASS DRAW (P); REAL P;
BEGIN

BOOLEAN PROCEDURE SAMPLE;
SAMPLE := P > NEXT;

PROCEDURE REPORT;.....;
END***DRAW## ;

The hierarchy actually implemented in Demos de-
viates slightly from the above. Demos has sever-
al built-in devices which can be created in ar-
bitrary numbers in Demos programs: resources,
queues, data collection devices; besides distri-
butions. These devices need to be reset and re-
ported from time to time. Accordingly, Demos
defines CLASS REPORTQ and the Demos system auto-
matically generates special REPORTQs for each
possible type of device. Thus we have built-in
REPORTQ's called DISTQ, QUEUEQ, HISTOQ, etc.

Each time a device is created in a program, it

is automatically entered into an appropriate
REPORTQ. This makes automatic reporting trivial-
ly easy; the global report routine is

REPORT:;
print heading and time of this report;
FOR each reportq R DO
IF R is not empty THEN
BEGIN
print an appropriate heading;
FOR each object X in R DO
call X.REPORT;
END;

To permit membership of REPORTQs, Demos contains
CLASS TAB (outlined below: the parameter TITLE
is used in reports):

CLASS TAB (TITLE); VALUE TITLE; TEXT TITLE;
VIRTUAL: PROCEDURE RESET, REPORT;

BEGIN
REF(TAB) NEXT; {chain to next in its
REPORTQ}
PROCEDURE JOIN (R); REF(REPORTQ) Rj...}
END#***TAB* %%

The VIRTUAL specification is a device unique to
Simula which makes declarations completed at
inner levels accessible at the TAB level., This
makes the coding of global REPORT (and RESET)
very neat and simple, yet still secure., To build
these capabilities into each distribution, we al-
ter our previous heading of CLASS DIST to

TAB CLASS DIST;
and add in as a final class body action
JOIN (DISTQ);

On creation, each and every distribution object

is automatically entered into DISTQ where it can
be found whenever there is a call on one of the

global routines REPORT and RESET.

A final trick used was to define three classes
RDIST, IDIST and BDIST as below:

DIST CLASS RDIST; VIRTUAL: REAL PROGCEDURE
SAMPLE; ;

DIST CLASS IDIST; VIRTUAL: INTEGER PROCEDURE
SAMPLE; ;

DIST CLASS BDIST; VIRTUAL: BOOLEAN PROCEDURE
SAMPLE; ;

A PORTABLE RANDOM NUMBER GENERATOR WITH BUILT-IN WELL~SPREAD SEEDS 533

and to use RDIST to prefix NORMAL, NEGEXP,...,
UNIFORM: IDIST to prefix POISSON and RANDOM;
BDIST to prefix DRAW, In this way, the sample
routines defined at the bottom level are made
accessible at the ?DIST levels (? = R, I or B).
Again use of VIRTUAL makes the report on all dis-
tributions much neater to code. Also, now a REF
(DIST) pointer can be used to reference ANY NOR~-
MAL, NEGEXP,..., UNIFORM object AND has access to
its real valued function SAMPLE,

REPORTING

Except for Empirical distribution reports, all
occupy one line and echo back the distribution's
title, creation time (or last reset time), number
of recorded observations, type, parameters (xbar
and sigma 1f a NORMAL, etc.), and start seed
value. A typical set of reports is tabulated be-
low:

TR TN

TITLE 0BS/TYPE / A/ B/ SEED
LOAD 1000 CONSTANT 50,000

WAITS 1000 NORMAL 10.000 1.000 22276255
SERVICE 1000 UNIFORM 1.000 3.000 46847980
BULB LIFE 1000 ERLANG .750 3 43859043
NEXT BUS 1000 NEGEXP 1.000 64042082
KICKS 1000 POISSON 0.600 41357879
THROWS 1000 RANDINT 1 6 11320893
CHANCE 1000 DRAW 0.400 6528269

The odd man out in these distributions is CLASS
EMPIRICAL whose report is spread over several
lines. Because of this, Empirical objects are
not entered into DISTQ on creation; they are
chained into a separate REPORTQ, named EMPQ. A
typical empirical report is:

EMPIRICALS
KkRkrrrrhhihhkiiird
TITLE / (RE)SET/ 0BS/ SEED
WEIGHTS 0.000 1000 33427485
K/ DIST. X(K)/ PROB. P(K)
1 58.00000 0.00000
2 63.00000 0.10000
3 68.00000 0.45000
4 70.00000 0.55000
5 75.00000 0.90000
6 80.00000 1.00000

RDIST, IDIST, BDIST AND THEIR SUB-CLASSES
The declaration of RDIST is simply

DIST CLASS RDIST; VIRTUAL: REAL PROCEDURE
SAMPLE; ;

It has an empty body, but makes the matching sam-
ple routine defined in its sub-classes available
to a REF(RDIST) variable. Each sub-class of
RDIST contains parameters which specify the par-
ticular distribution, a real procedure sample
which uses these parameters and the objects own
report procedure. The iInitialising actions check
(where possible) for unlawful parameter values.
For example,

RDIST CLASS NEGEXP (LAMBDA); REAL LAMBDA;
BEGIN
REAL PROCEDURE SAMPLE;
SAMPLE := -LN(NEXT)/LAMBDA;

PROCEDURE REPORT;.....}
IF LAMBDA <= 0.0 THEN error;
END#***NEGEXP#%% 3

Classes returning integer values (only POISSON
and RANDINT are implemented) are prefixed by
IDIST (e.g. IDIST CLASS RANDINT (LB, UB); INTEGER
LB, UB; etc.) and again all that needs to be add-
ed are an integer procedure sample, a report pro-
cedure and actions checking the parameter values.

Classes returning boolean values are prefixed by
BDIST,

READDIST

Distribution definitions need not be fixed by the
program, they can be read in from the keyboard or
a file. Calls on READDIST require two parameters
-~ a text string which must be matched by the in-
put, and a reference variable. Typilcal external
definitions are:

LOAD CONSTANT 50.0
WAITS NORMAL 10.0 1.0
SERVICE UNIFORM 1.0 3.0
BULB. LIFE ERLANG 0.75 3
NEXT BUS NEGEXP 1.0
KICKS POISSON 0.6
THROWS RANDINT 1 6
CHANCE DRAW 0.4
WEIGHTS EMPIRICAL 6

0.00 58.0

0.10 63.0

0.45 68.0

0.55 90.0

0.90 75.0

1.00 80.0

READDIST operates by skipping leading blanks and
matching the text parameter with the input file.
If that succeeds, it then reads in the type of
the distribution and appropriate parameter val-
ues. Then an object of the specified type is
created (its TITLE is taken as the first para-
meter to READDIST) and assigned to the second
parameter to READDIST,.

SOURCE CODE

The source for Demos is obtainable from the
author. (Also it forms an appendix to [8]).

The Simula code (counted in lines) devoted to
distribution declarations and definitions is as
tabulated below:

534 Graham BIRTWISTLE

Source Error checking

TAB 32 2
SEED GENERATORS 16 3
DIST 85 28
RDIST, IDIST, BDIST 3 0
CONSTANT 8 0
NORMAL 24 5
NEGEXP .13 5
UNIFORM 15 6
ERLANG 24 10
EMPIRICAL 91 45
RANDINT 16 6
POISSON 22 5
DRAW 8 0
READDIST 54 21
sundries _13 _0

Totals: 424 136

Thus code for Demos distributions accounts for
roughly 20% of the total Demos source code, and
Error checking and correcting accounts for over
30% of thils code for the distributiomns.

CONCLUSIONS

The implementation aims for the distribution 1i-'

brary of DEMOS have all been achieved: the code
is written entirely in Simula and runs on IBM,
UNIVAC, DEC 10, DEC 20, ICL Systems 4 without
modification (on Cyber hardware, keywords are
quoted); well-spread seeds are automatically
generated; and the calls are neat (calls on SAM-
PLE require no parameters.

Another important advantage is the ease of add-
ing in new distribution types (as evidenced by
the quoted declarations of CONSTANT and DRAW).
Since queue membership and RESET are built in,
it remains to ask first what type of result is
to be returned (real, integer or boolean?) and
prefix with RDIST, IDIST or BDIST accordingly.
Secondly, the appropriate SAMPLE function must
be written (the compiler will give a fault if its
type is inconsistent with that implied by the
prefix). Finally, a report has to 'be written.
Keep its pattern consistent ~ other reports al-
ready defined spell this out.

Because RESET, REPORT and SAMPLE are all speci-
fied as VIRTUAL it is very easy to change any

existing definitions. Suppose for example, very
high accuracy is regquired in the extreme ends of
a NORMAL distribution. The user can write sim-

ply:

NORMAL CLASS VHA NORMAL;
BEGIN
REAL PROCEDURE SAMPLE;
BEGIN
ney definition;
END*%*REPORT#%%
END##*NORMAL*%%;

We can now use NORMAL or VHA NORMAL distribu-
tions., NORMAL is untouched. But if the user now
uses a VHA NORMAL object, his new REPORT replaces
the one at the NORMAL level (indeed the one at
the NORMAL level logically no longer exists in
VHA_NORMAL objects). In all other respects a
VHA NORMAL object behaves as a NORMAL one. It

will be entered into DISTQ on generation and its
old RESET and REPORT are still wvalid (but stan-
dard definitions for the latter may also be over-
written since they too are specified as virtual).

If this piecemeal approach is not good enough, one
can of course add in complete new definitions to
co~exist along with standard ones. Or more dras-
tically, since Demos is. delivered in source, one
can throw out old definitions, add new ones, and
recompile.

Finally distributing Demos in source has turned
maintenance into a non-problem. In three years,
5 errors have been reported. In all cases, cor-
rections have been sent along with the notifica-
tion of the error. Each repair has meant insert-
ing or amending one line.

REFERENCES

1. G. M. Birtwistle, "Discrete event modelling
on Simula", Macmillan, 1979. Distributed in
North America by Gage Publishing Ltd., Agin~
court, Ontario. :

2. G. M. Birtwistle, 0. J. Dahl, B, Myhrhaud and
K. Nygaard, "Simula begin'", Studentlitteratur,
Lund,; Sweden, 1973.

3. G. H. Hardy and E. M. Wright, "The theory of
numbers", Clarendon Press, Oxford, 1960.

4, F. D. K. Roberts, "Pseudo random number gener—
ators", M.Sc. Thesis, Liverpool, 1966,

5, D. E. Knuth, "The art of computer program-—
ming", vol. 2, Addison-Wesley, 197 .

6. D. ¥, Downham and F. D. X. Roberts, "Multipli-
cative congruential pseudo~random number gen-—
erators", Computer Journal, vol. 10, no. 1,
1967,

7. M. Ohlin, "Next random - a method of fast ac-
cess to any number in the random generator
cycle", Simula Newsletter, vol. 6, no., 2,
1977.

8. G. M. Birtwistle, "Demos Reference Manual",
1979, Avyailable from the author. Supplied
in machine readable form with the Demos sys-~
tem.

