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ABSTRACT

This paper describes a two-phase approach to systems optimization via computer
simulation experimentation. In the first phase, Box's Complex Search is employed
to search from some initial set of simulation trials X;, ..., XK to an estimated
optimum solution X*, Then a second-order response surface " 1s fitted to
these K points, or to some subset thereof, and analyzed through classical optimi-
zation procedures to gain yet another estimate X**, If y(X*) and y(X**) are
sufficiently close, and X* and X** are close together, then the superior solution
can be chosen. If either y(X*) is not close to y(X**), or X* is not close to X**,
additional simulation trials in the neighborhood of X* and X** should be conducted
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to seek improved solutions.

1. INTRODUCTION

This paper describes a two-phase approach to sys-
tem optimization via simulation experimentation.
The proposed procedure adapts Complex Search, a
computational search technique developed by M. J.
Box (1965) for constrained optimization, to the
simulation realm by coupling it with second-order
response surface methodology. The resultant tech-
nique enables the simulationist to begin exploring
from a current "solution" X0 and move to a more
promising region through a sequence of one-at-a-
time simulation trials. Once the search begins to
“envelop" a prospective optimum multiple regression
technigues are employed to fit an estimating equa~
tion which can be analyzed mathematically to pre-
dict an optimum. The predicted optimum can then
be evaluated through more simulation trials for
confirmation.

2. THE COMPLEX METHOD
Consider the problem of maximizing (or minimizing)

some system response y, subject to controls on a
set of independent variables Xis 12 Tyeusy N

That is,

max (min) yq = 90(X1! i=1, ouy n) )
subject to

a8y < X3 264 s i=l,.005 N (2)

Suppose there are m other system responses which
also depend on these same controls, so that

dj s J=lyeee,m (3)

The functional relationships
yy= g0, §=0, 1, (4)

are unknown and information about them must be
evaluated experimentally, in this case via compu~-
ter simulation.

yd = gj(x-],-i:.l""!n)

Jv # A

The Complex Method of M., J. Box (1965) is initiated
by randomly placing 2n > N > n+l experimental
trials within the a priori experimental region
established by the bounds in (2). These bounds
arise from prior knowledge of the system, from
equipment 1imitations, and from specifications on
the product or process. Once procedure for gener-
ating a simulation trial is to use a uniformly-
distributed random number generator U(0,1) in the
following manner:

Xgq = a{+u21(ci-ai); 121,000,035 221,.0..,N {(5)

Having generated the n coordinates of the &-th
simulation trial, the simulation is conducted and
the m responses ¥,.s J = 0, 1,...,m, are recorded.
If a givenrespongg is found to violate one or
more of the implicit constraints given by (3). the
trial 1s "discarded" and a replacement simulation
trial generated. When N feasible simulation

trials have been generated, the sequential search
phase of the Complex Search procedure is initiated.
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The objective of the sequential search phase is to
employ several simulation trials to envelop the
model optimum. This phase evolves as follows:

1. The simulation trial yijelding the worst
value of the objective response y, is iden-
tified. This trial is denoted XW and is
selected for elimination from the "compliex®.

2. The centroid X€ of the remaining N-1 search
points is found by the relation
N-1
1
X6 = = LW - (6)
N-T 0y

3. The direction to the new search point is
thus established by

S = XC . ¥ 7

4, The new search point is found by
'
M= x® +as (8)

where 0 < a < 1. Values of o near 1 are
preferred early in the search, but should
be reduced to perhaps 0.4 < o < 0.6 as the
search begins to envelop the optimum. OF
course, if o > 1 the "complex" expands in
n-space, while for o < 1 the "complex" is
contracting as it moves nearer the optimum.
This procedure is illustrated in Figure 1.
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Figure 1, Complex Search

3. RESPONSE SURFACE FITTING
When the search has produced at least

K > (n+1){(n+2)/2 simulation trials within an appro-
priately small region of interest, multiple regres-

sion proeedures are employed to fit m+1 second-
order response surface models of the form

2
Yo, k* 2 Z By iX;s +1§1 bi4,k%4

n-1 n
+
121 1§] b1J K*i%5 k=0, .ol (9)

An analysis of regression variance is performed
for each response y, to test whether the second-
order surface adequate1y fits the set of K"design
points". If all m+] surfaces are found to ade-
quetely fit the search points, mathematical pro-
gramming techniques are employed to seek a pre-
dicted optimum solution (X*,Y*). Box's Complex
Search can be used in a purely computational mode
to effect this optimization.

If one or more of the response surfaces is found
inadequate in the analysis of variance, the simu-
Tation search can continue or the s1mu1at1on1st
can simply place one or more additional simula-
tion trials at "vacant" Tocations in the experi-
mental region. It should be noted that search -
points that had been discarded during the sequen-
tial search phase of simulation experimentation,
either because they violated an implicit con-
straint (3) or because they simply failed to pro-
duce an improved set of responses as compared to
the current X¥, can be used in the response sur-
face fitting stage of optimization.

4, APPLICATION OF THE METHODOLOGY TO AN
INVENTORY SYSTEM

Ignall (1972) described the application of experi-
mental design to the optimization of computer sim-
ulation responses. He employed as a simulation
test model a discrete-event simulation of a sto-
chastic inventory system in which mean daily
demand and order lead time are random variables
with known probability density (mass) functions.
The two controllable variables were

Xq = reorder point (ROP)
X, = economic order quantity (EOQ)
the Tone simulation response was
y = mean daily cost, $
which was the sum of carrying, setup and shortage

costs. The optimization problem was
minimize y = g(x],xz) (10)
subject to -5 < x; 290 (11)
50 < x, < 250 (12)

Ignall found as a solution y = $76 at x; = 45 and
= 175 units, for a given set of values for the
several constants in the model.

The manner in which this simulation test model is
utilized for this paper does not involve an actual
simulation program. Rather, the 20 x 9 response
table is used as a graphical simulator. This re-
sponse table is shown in Figure 2. For a given
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Response Surface for a Stochastic
Inventory Model

Figure 2.

(x1,%2), an interpolation is performed in this re-
sponse table to find y.

This minimizing problem is first transformed to a
maximizing problem by changing the sign of the
mean daily cost, y, so that (10} becomes

maximize -y ='—-g(x1,x2) (13)
while (11) and (12) remain unchanged.
The optimal solution obtained after fourteen

experimental complex search points in the first
phase is

X1 = 41 units, xy = 163 units, y = $76.78 (14)
The estimated response surface function after
regression analysis is

y = 291.61 - 2.703 x; = 1.656 x, + 0.01463 x%

+0.003611 x5 + 0.006590 x;x,  (15)

The optimal solution for the regression model (15)
is found to be

Xq = 51 units, x, = 182 units, y = $71.24  (16)

A final simulation trial at (x1
yields

X7 = B1 units, x, = 182 units, y = $77.52  (17)

which is not better than (14). Solution (14) is
therefore selected as an optimal solution. Table 1
compares the performance of the two-phase Complex
Search with that of several other response surface
procedures.

= 51, x, = 182)

Optimization Starting Estimated Solution  Number of
Method Saed Xy Xy y Trials
Complex 12411 50 177 $76.20 13
Sesrch 21437 43 245 81.00 14
First-Order 17332 70 125 78.00 40
Factorial Design
First-Order 17332 42 189 76.78 41
Simplex Design
Second-Order 35188 53 183  70.32* 9
Central Composite 78.00¢
Second-Order 1421 41 163 76.78% 14
Complex Design 77.52%
*(Pradicted) **(Search) t(Actual)
Notes: (1) Known Solution xy =45 x,» 176 y = $76.00

(2) CPU times less than 5 sec. par optimization run
on an IBM 370/168 computer,

(3) Complex search terminated bacause 2n = 4 search
points werae conducted without an improved solution.

Table T. Summary of Simulation/Optimization
Results for the Stechastic

Inventory Model

5. APPLICATION OF THE METHODOLOGY TO A
TANK DUEL" SIMULATION MODEL

In describing the application of multiple response
surface methods in computer simulation, Montgomery
and Bettencourt (1977) employed a stochastic simu=-
Tation model of a tank duel. The model simulates
brief fire engagements between two armored
vehicles. A stationary defending vehicle (Blue
Tank) fires first at a fully-exposed attacking
vehicle (Red Tank). The engagement ends when a
ki11 occurs or a pre~determined time Timit of 120
seconds expires.

The input variables to the tank duel model are
presented in detail in Montgomery and Bettencourt.
But for purposes of evaluating the technique de-
scribed in this paper, the following independent
variables x; and response variables y; are chosen:

Xq = mean time to fire first round for the
Blue crew (sec.),

xo = mean time between rounds (sec.),
¥ = probability of Blue victory,
Yp = expected number of rounds fired by

the Blue tank.

The objective of the search is to find the optimal
solution that Blue Tank has a maximal probability
to win during the engagement. Two cases are
forimed by assigning different sets of restrictions
to the model. In the first case the mean time to
fire the first round for Blue crew is restricted
from 8 to 30 seconds and the mean time between
firing rounds 1s between 5 and 30 seconds. In the
second case, the mean number of rounds carried by
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Blue Tank is Timited to 2 in addition to those
restrictions in the first case. The results from

the two~-phase Complex Search method areas follows.

Case 1 -

The optimization problems were framed as those of
constrained optimization. The first case is for-
mulated as follows

maximize yy = g1(x],x2) (18)
8 < x; 230 (19)
5 < x,230 (20)

The optimal solution after fifteen simulation
trials in the experimental complex search phase is

Xy = 8.599, x, = 5.6592,
¥y = 0.7060, Yo = 2.5484 (21)
and the estimated response surface functions are
yp = 0.9135 - 0.07241 x; + 0. 02120 Xo
+ 0.000032 x,% + 0.000249 x,
+ 0.000161 xqX, (22)

2

Yy = 3.5437 - 0. 05301 Xy = 0.1179 x,
+ 0.000210 x;2 + 0.001632 xz2
+ 0.000973 xqx, (23)
and the F-values are 15635 and 3530 for (22) and

(23) respectively, which are by far greater than
the required minimal value.

The optimal solution for (23) is found to be

Xy = 8.0360, X2 = 5.0558,

¥y = 0.7219, Yo = 2.616 (24)
A simulation trial on this point (x, = 8.0360,
Xy = 5.0558) gives the responses

Xy = 8.0360, Xy = 5.0558,

yp = 0.7236, Yo = 2.6436 (25)

which is better than (21), and is taken as the
estimated optimal solution. Table 2 summarizes
the results obtained by this technique and those
by three other approaches to optimizing the
problem for this case.

Case 2

In the second case the problem is formulated as
that of the first case except that the constraint

Yo £ 2 (26)
is added as the third constraint function.

The obtained optimal solution after fifteen simu-
lation trials of the first phase is

11.2764
1.8650 (27)

1}
n

X
I

13.5151, Xy
0.5673, Yo

]
H
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and the regression response surface functions are
y1 = 0.8980 - 0.0122 Xy = 0.1970 X5

+ 0.000040 xf + 0.000222 X
+ 0.000139 x;X, (28)

¥p = 3. 365866 - 0. 048945 Xy = 0.1031 X5
- 0.000222 x2 + 0.000139 Xq Xy
The F-values are 14877 and 3048, respectively,
which are Targe enough.
The computational compTex search finds the point
Xy = 8.1750, X, = 12.2108,
¥y = 0.6074, Yy = 1.9999 (30)

as the optimal solution for the regression func-
tions (28) and (29). This point is then applied
to the simulation model and yields the responses

Xy = 8.1750, Xy 12.2108,
¥y = 0.6054, Yo = 1.9908 (31)

which surpasses (27) and is taken as the estimated
optimal solution. The results of this methodology
and three other approaches. to this case are shown
in Table 3.

Optimization Estimated Selution Number of
Method X X y y. Trials

1 2 1 2
Complex Search 8.5860 5.006 0.7187 2.6243 21

Second-Order
Central
Composite 8.0000 5.0000 0.7194 2.5783* 9

Second~-Order
Simplex Design 8.0000 5.0000 0.7194 2.5798* 7

Second-Order 8.5990 5.660 0.706 2,548%* 15
Complex Search 8.0360 5.0558 0.7219 2.616*

*(Predicted) **(Search)

Notes: (1) Known optimum at Xy = 8.0 sec., X = 5.0 sec., ¥y = 0.724,
¥, = 2.644 rds.

(2) CPU times less than 5 sec. per optimization run
on an IBM 370/168 computer.

(3) Complex Search was terminated because 2n = 4
search points were evaluated without obtaining
an improved solution.

Table 2. Summary of Simulation/Optimization
Results for the Tank Duel Model
Case 1.

Estimated Solution
X 2 N
Complex Search 12.9 10.1 0.59 1,97 20

Number of

Optimization ¥ Trials

First-Order 8.2 12.4 0.60 1.97 85
Simplex Design

Second-Order 8.0 2.5 0.61 2.00 9
Central

Composite

Second-Order 13.5 1.3 0,57 1.86%* 15
Complex Seavrch 8.2 12.2 0.61 1.99*%
*(Predicted) **(Search}
Notes: (1) Known optimum at ¥y = 8.2 sec., x, = 12.5 sec.,
= 0.61, ¥y = 2 rds.

{2) CPU times less than 5 sec. per optimization
run on an IBM 370/168 computer.

(3) Complex search was terminated because 2n = 4
search points were evaluated without obtaining
an improved solution.

Table 3. Summary of Simulation/Optimization
Results for the Tank Duel Model
Case 2
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