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ABSTRACT

A selective survey is given of new methods in non~uniform random variate

generation.

A.

We consider the problem of the computer genera-
tion of random variables with a given continuous
distribution function TF on the real line. We
are not concerned here with the uniform distri-
bution on [0,1] , but rather, we assume that

an infinite sequence of independent uniform

[0,1] wvariates is available to us. We also make
the unrealistic assumption that real numbers can
be stored in a computer.

The following issues are discussed:

(1) the average time required per random
variate (here we need the assumption that
the basic operatiomns x , / , + , -,
exp , log , mod , compare , move take a B.
constant time each);
(ii)  the storage requirements for the algorithm;
(i1i) the portability and flexibility of the

algorithms (if F belongs to a para-
meterized family of distributions, how
easy is it to change the parameter at
each call?)

The method one uses depends upon the application

and the manner in which F is given to us. For
example, in complex simulations, the average
time per random variate is less important. But

it is essential that the generators are simple,
short and easy to understand. The distribution
can be given to us in many ways:

F is explicitly known and easy to invert:

the inversion method seems a prime candidate:

generate a uniform [0,l] random variate U
The time taken

lay .
1

is proportional to the "complexity" of F — .
For the exponential or Cauchy distributions,

and exit with X < ¥

L requires a logarithm or a tangent,

respectively. Even when FLois known, its
complexity can make the inversion method
undesirable. On the other hand, the
antithetic variate principle requires anti-
correlated random variates, and these are
ideally obtainable by the inversion method
(Fox, 1980).

F is explicitly known and hard to invert:
if no other method is applicable, one could
try to solve the equation F(X) = U for X
(where U dis a uniform [0,1] random
variate), and stop when a given accuracy is
obtained. Using the bisection method, it

is possible to obtain an algorithm that is
convergent under any circumstances. More
sophisticated methods (secant method,
Newton-Raphson method) require some addi-
tional information about F mneeded to
insure the convergence. For example, the
Newton-Raphson method requires the knowledge
of F' . A theoretical and comparative
study of these techniques for random variate
generation is now carried out by Colleen Yuen
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at McGill University (Yuen, 1981). We cite
a couple of results: (i) If bisection is
applied as follows: "start at O and find
ah interval containihg thée solution of

F(X) = U by successive doubling, i.e.
[0,11; [1,2], [2,4], [4,8], ... or [-1,01,
[-2,-1], ... are the sequences of intervals
under consideration, and use the bisection
method until an interval of length at most

§ 1is obtained", then the average time is
close to a constant times E(log+]X|)+
log(l/8) ; thus, there are distributions

for which the average time is infinite (note
however that E(log+|X|) = o dimplies ‘that

the average number of digits in the integer
part of Xl is infinite ! ), and a constant
number of additional iterations adds a
constant number of digits to the accuracy of
X . (ii) The Newton-Raphson method con-
verges for unimodal distributions when the
search is started at the mode. The average
time taken in that case is equal to a con—
stant (possibly « ) depending upon F only
plus log log 1/6 , i.e. the choice of §

has little influence on the average time.
(iii) The Newton—Rapson method is extremely
well suited for certain families of distri-
butions such as F(x) = 1 - exp(—alx - a2x2 -
- adxd) where all a; 2 0 and x 20 .

Random variates from this distribution can
be obtained as the solution of a.X + .. +
Xd =E or as X+ min ((Ei/ai)l/l)

‘ 1sis<d .
are independent exponen—

24
where E,E‘,...,Ed
tial random variates.
competitive,

Both methods are

Less flexible programs were developed by
numerous authors (e.g., Butler (1970),
Akima (1970), CGuerra, Tapia and Thompson
(1978) and Ahrens and Kohrt (198L)). 1In
essence, they store (xl,F(xl)),...,

(2 Fx))
val

in a large table; on each inter-—

(x,,%.,.) s F dis approximated by a
17141

polynomial. Random variate generation is
extremely fast at the cost of longer pro-
grams, less flexibility with respect to
parameter changes, large storage require-
ments and, in some cases, reduced accuracy.
Yuen (1981) has developed an attractive
general purpose adaptive program in which
a table is constructed as random variates
are being generated. Frequent parameter
changes have a tolerable impact on the
average time per random variate, while no
parameter changes cause faster average times
per random variate as longer sequences are
produced.

The density f is explicitly given. This
is the best developed case. Often f can
be decomposed into a.f, + ... + adfd where

171

l""’fd are component densities -and
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£
are probability weights. Or

another density g is known such that

f(x) € c g(x) for some ¢ 21 . Or ome
recognizes that f(x) = max (alfl(x),...,

adfd(x)) where al,...,a are constants

and fl,...,fd
to obtain random variates from £ 4if we
we know how to obtain random variates from

g » fl,...,fd » by the composition and

d

are densities. We know how

‘rejection methods (for a survey, see

Schmeiser (1980) ox Vaduva (1977)). We
should point out the benefit (in time) of
using a squeeze step (as demonstrated, for
example, in the fast and short gamma
generators of Marsaglia (1977) and Best
(1978)). Ahrens and Dieter (1981) report
some success with the following new method:
let g be a density close to £ and let
T={x : g(x) > £(x)} ; generate a random
variate X with density g ; if X £ T ,
exit; if X ¢ T , generate a uniform [0,1]
random variate U ; if U < £(x)/g(x) ,
exit; otherwise, generate'a new X from the
density c(f(x) - g(x)) , x £ T , where ¢
is a normalization constant. Finally, we
would like to point out that most well-known
densities can be dominated by a function of

the form min(cl,czlxz) (which is propor-
e, v

tional to the density of 2 1 where
¢

Vl’VZ are independent uniform [-1,1]

random variables). TFor these densities,
the rejection method is essentially equi-
valent to the ratio-of-uniforms method
(Kinderman and Monahan, 1977).

The density is given as a series. When £(x)
is given as a convergent series, such as

_ ;L_,—XZ/Z ~ 1 3 xv:2 i
£ = gre” U= m L e o

i=0 7°

one can use the method of consecutive

acceptance and rejection. For example, in

the example of the normal density, we

genérate X from a dominating density g

(f s c g for some constant ¢ ) and have to

compute f£(X) at some point in the stan-~

dard rejection algorithm. Of course, since
, A %2 .

£(x) 2 Jom - 7?0 , We can accept after

considering only one term of the series
with fairly high probability. Similarly,
we may reject X by using

1 x
f(x)Sm(l——z“
other words, we use only a partial sum to
make our decision. For the details, see
Devroye (1981la). TFor the normal distribu-
tion, this method is 1riot competitive with
other methods., Several éxamples are given
in Devroye (198la) where this method is
either the fastest known method of reason-~
able size or where this method seems to be
the only feasible one, e.g. when £ dis the
derivative of

X
+ 7;) , etcetera. In
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oo
F(x) = }

o4 o

2.2
(_1)1 o217

the Kolmogorov-Smirnov distribution.

The characteristic function is given.

When ¢, ¢" are absolutely integrable and
absolutely continuous, then

£Gx) s 2 [|e(e)]at end

1

2nx2
dominated by a function of the type

£(x) s []e"(t)|dt . Thus, £ is

min(cl,cz/xz) . The latter function is pro-~
Koy

; v
portional to the density of v// VL where G,

°1

»

Vl,V2 are independent uniform [~1,1]

random variables. ~Thus, in essence, we can
use the rejection method here if it is
feasible to compute the integral

g? [ o(t) el*t 4t . In the case of a perfect

rejection algorithm, this integral needs to
be computed once for every random varlate X .
For a discussion with further details, see
Devroye (1981b). It is an open problem
whether the Iintegral computation can be
avoided altogether. An acceptable solution
of this problem could lead to fast,algorithms
for the symmetric stable distributions

o

(L) = e'|t| , @ € (0,2] that are competi-
tive with the method of Chambers, Mallows
and Stuck (1976) [generate a uniform
[‘ % ’ + %]
independent exponential random variate E ,
and exit with .

random valrate U and an

Ll-o

sin(ol) [cos((l-Q)U)] ¢

(cos U)lla E .
and X <+ tan U when a=1 .} . Or it could
be used for the family of unimodal distri-

X + a#l,

. butions with characteristic function

1/ + |t|a) , 0 <a <2 (given in Lukacs,
1970, pp. 96).

We note here that the sin~cos method for
stable distributions is time consuming.
Perhaps an intelligent application of the
series method using the Bergstrom series
for the stable densities (Bergstrom, 1952;
see Bartels (1981l) for truncation bounds
for the series) will lead to a faster method
(but certainly not to a shorter method!).

The hazard rate is given. The hazard rate
h(x) is given by £f(x)/(1 - F(x)) , and the
cumulative hazard rate is

X

H(x) = [ h(y)dy = log (1 - F(x)) . Thus
—00

when E 1is exponential, H—l(E) has

cumulative hazard rate H ; sometimes, we

need to solve HE) =E for X . If
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xl""’xn are independeﬁt wlth hazard
rates hl,...,hn , then min(xl,...,xn) has
Finally, if g2 h 1is

a hazard rate on (0,%) , and we use the
thinning algorithm (Lewls and Shedler, 1979):
1. X+«0.

2. Generate Y with hazard rate g(x - X).
Generate an independent uniform [O0,1]
random variate U , Set X<+« X+ Y,

3, If U S_S_L:&) , exit with X . Go to 2 ,

then X has hazard rate h on (0,®) . 1In

other words, the inversion, composition and
rejection principles have analogues in the
case that h dis gilven.

hazard rate Ehi .

An approximation of £ on F is known.
can be'given a good approximate density g
or a close distribution function G . The
problems that we are faced with here are:

One

(1) 1Ie the replacement of £ by g (or of
F by G) for the purposes of simula~-
tion allowable?

. (2) If_not, how can we use this information

in the generator itself?
In Devroye (198lc), several arguments are
glven for the use of [|f(x) - g(x)|dx as
a measure of the goodness of the apTroxima—

tlon, rather than sup |F(x) - G(x)| , or
%
sup IF-l(y) - G_l(y)l . The main argument

O<y<l
was based upon the relation

sup|£ £(x)dx - £ g(x)dx| = %{|f(x)—g(x)idx

where A ranges over all Borel sets on the
real line. For example, if the said inte-
gral 1s - 0,001 , then, no matter how one
chooses A (e.g., an interval, a union of
intervals, etcetera), the probabillity of

[X € A] will differ from the desired
probability of [X € A] by at most 0,0005
(0.05%) . 1In experiments with samplé size

not exceeding 4000 , the replacement of
f log g would hardly be noticeable.

If F ~G 1s small, we can try to solve
F(X) = U starting with the estimate

X <« G—l(U) Thus, in the inversion method,
the information contained in G can be of
some use (see Yuen (1981)).

In the rejection method, we may use the
information contained in g as follows:
since f < g+ |£ - g] , we generate two
independent uniform [0,1] random variates
U and V . Then, if V < E%E (o = [|f-g]
is known, but small compared to 1 ),
generate X with demsity g . Otherwise,
enerate X with density proportional to
Tf -gl . If £®X) 2z gX) , exit with X .
£ £(X) < g(X) , and U-[zgio—’%—l]sl,

exit with X . Otherwise, start all over
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The average number of restarts is
(including the original start).

Note

that it is not necessary that f <c g for

some constant c¢ .

The density is given as

an integral.

Khintchine's theorem states that X has a

unimodal density £ if

where U is uniform on (a,b)

and only if X = UY
and Y ids a

random variable, independent of U . If

(a,b) = (0,1)
X has density

g(x) = f f(Z)
. X

and Y has density £ , then

From this-and related results one can deduce

an enormous number of facts that are useful
in random variate generation (see Lux (1978),
Mikhailov (1965) and Bryson and Johnson
(1981) for details and extensions), for
example, we have the relations:

densityf of ¥

dgnsityg of X

Maxwell (/-5; x

.density of U"

exponential (e—x)

.2

Ze-x/Z)

density of max (U,V) or
vl (U,V are inde-
pendent uniform
(0,1) random vari-
ables)

gamma (2,1) (xe *)

beta (2,b)

uniform (0,1)

_a

atl (a>0)

density of z2 where
a>) and Z is a
gamma (b,1) random
variable

(same with a = 1/2)

‘ 1
: normal (Jf; e

A similar theorem leads

exponential-integral
~Z

4l E;F dz)
X
2
density of min(U,V)
(U,V are indepen-
dent (0,1) random
variables)
=X
expanential (e ™)
beta (1, b+l)

logarithmic (~log x,
0<x < 1 )

(a+1) (@-x2)
distribution of John-
son, Tietjen and
Beckman (1980)

distribution of John-
. son and Jolnson
(1978)

to the well-known

method for generating random variates from
the stable distribution (Chambers, Mallows

and Stuck, 1976):
uniform [0,1]

variables, and g : [0,1] »

if U,E are independent
and exponential random

[0,9) dis given,

then E/g(U) has density

F

£(x) =

o

[ gw) e¥8® 4

) 0sx<1 .

I. The moments of the distribution are given.
Assume that we are given the moments
of the distribution.

HysHgsHgseee By the

celebirated Carleman criterion (Shohat and

Tamarkin, 1943, pp. 19), these moments
determine the distribution in a unique way if

-3 l ‘ ~
L /2 = ©
n=1 (u2n)

How does one generate X with this distri-
bution? If only a finite colection of
moments is specified, the distribution is
not uniquely determined of course. Still,
one might ask for a simple procedure to
generate a random variate X with any
distribution having the said moments. No
satisfactory answer is known at this moment.
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