1981 Winter Simulation Conference Proceedings 506

T.1. Oren, C.M. Delfosse, C.M. Shub (Eds.)

GPSS - PINDING THE APPROPRIATE WORLD-VIEW

James O. Henriksen
Wolverine Software Corporation
P.0. Box 1251
Falls Church, VA 22041

Every simulation language embodles a world-view which heavily influences
approaches taken in building models in the language. In most applications for
which & given language is used, the world-view of the language enforces &
discipline of programming which results in models which are time- and
space-efficient, reflecting the usefulness of the language and the appropriateness
of language choice by the programmer. For some applications, however, the
programming style encouraged by the world-view of a language can lead to programs
which are +time- and space-inefficient, even though the programs are natural,
straightforward solutions to the problem at hand. In such casges, one may be
forced to consider alternative languages or to alter one's approech in application
of a given language. This paper briefly summarizes the world-view of the GPSS
language and glves two examples of systems which, when modelled with conventional
GPSS approaches, result in inefficient programs. TFor each system, two GPSS models
are presented: a straightforward model which is inefficient, and a clever model
which is efficient. In both cases, the clever models are easily programmed in
GPSS and require only marginally more skill on the part of the programmer than do
the straightforward models. Once an appropriate alternative to the obvious GPSS
world-view is found, the rest is easy. A working knowledge of GPSS is required to
read this paper.

1. THE GPSS WORLD-VIEW

The world-view of GPSS (Schriber 1974) is that of Transaction flow; i.e., that of motion of dynamie
elements (Transactions) through a flowchart~inspired program specifying the rules of operation of the
system. In GPSS, the resources for which Transactions compete are usually modelled as TFacilities
(single server entities) or Storages (multiple gservers). From a programming viewpoinit, GPSS resources
are passive entities: their behavior patterns are the result of handling requests made by active model
elements (Transactions) in accordance with the predefined, built-in rules of operation of the GPSS
gimulator program. Other languages, such as Simula (Franta 1977), offer world-views in which resources
are programmed as active entities.

The Transaction-flow world-view of GPSS is applicable to a wide range of systems. The examples given in
this paper are from manufacturing systems. For such systems, the Transaction-flow world-view of GPSS
often results in easily written, straightforward, highly readable models. For example, an assembly line
nay be modelled by representing the parts flowing through the system as Transactions, and the resources
for which the parts contend may be represented as GPSS Facilities or Storages.

2. A FIRST HYPOTHETICAL EXAMPLE

A hypothetical manufacturing system %to be considered is showm in Figure 1. The systems operates as
follows:

1. The first machine in the system is preceded by an infinite supply of unfinished parts; i.e.,
whenever the first machine is ready to machine another part, the unfinished part is assumed to be
instantaneously available.

2. The third machine in the system is followed by an infinite output bin; i.e., each time the

81CH1709-5/81/0000-0505300.75 (:) 1981 IEEE

|

506 James 0. HENRIKSEN

third machine finishes a part, the part is instantaneously removed from the machine and exits the
system.

3. The first and second machines are connected by a bin of fixed capacity which serves as an
output bin for the first machine and an input bin for the second machine. The second and third
machines share ar§imilar bin.

4. The three mgchines operate continuously (without breakdowns), subject only to two kinds of
blockage: input bin empty or output bin full. Note that the first machine will never experience an
empty input bin, and the third machine will never experience a full output bin.

5. Machining times for this example are really irrelevent. They have been chosen as 100 +~- 90
seconds, uniformly distributed. This distribution contains enough variance to make the results
noderately interesting.

Machine 1 Machine 2 Machine 3

! Fig. 1 - First Hypothetical System

I
2.1 Naive Approach to ﬁhe First Hypothetical Example
A naively coded model of the first hypothetical system is shown in Figure 2.

Structureé of the Model - The naive approach to modelling our hypothetical system is a classic GPSS
passive server approach. Transactions are used to represent parte flowing through the system. Bins 1,
2, and 3 are represented as Storage entities (multiple servers)y, and machines 1, 2, and 3 are
represented as User Chains (single servers). (If an extremely naive approach were to be taken, machines
would be represented as GPSS Facilities, and the results would be quite disastrous. The use of User
Chains enables the best possible implementation of our (admittedly poor) approach. A tutorial on the
use of User Chains is well beyond the scope of this paper. Interested readers should see references
(Schriber 1974) and (Ingerman 1981).) The operation of the model is as follows:

1. An infinite supply of unfinished parts is simulated by the first GENERATE Block in the model.
Parts are GENERATEd at an infinite rate until Storage BIN1 (the input bin for the first machine)
fills up. After BIN! has initially been filled, whenever the first machine removes a part from
BIN1, storage BIN1 becomes "not full," and another part Transaction is allowed to escape from the
first GENERATE Block.

2. Machines 1, 2, and 3 are modelled as User Chains MACH1, MACH2, and MACH3, respectively. The
conditional form of the LINK Block is used, so that only one part Transaction is allowed to control
a machine at any given time.

3. The most critical aspect of model implementation is the ENTER-UNLINK Block sequence at the
conclusion of the first and second machine operations. This sequence guarantees that a part must
be placed in the machine's output bin before the part Transaction can proceed to the UNLINK Block,
allowing a successor part Transaction to have access fo the current machine.

4. The modelling of input starvation is implicit. Since a Transaction is used to represent a
part, and a User Chain is used to represent a machine, input starvation at a machine corresponds to
a situation where fo part Transactions are currently attempting to pass through a LINK Block for
the User Chain, nor are any Transactions currently on the User Chain as a result of a previously
"unsuccessful” execution of thé LINK Block.

Comments on this Approach -~ The approach outlined above is very straightforward, but as we will see
below, it resul$s in a very inefficent model. Some refléction on our approach will make the reasons
clear. Since Transactions have been used to represent parts, the number of Transactions active in the
model at any given point is (approximately, for purists) equal %o the number of parts currently in the
system. In this example, BIN1, BIN2, and BIN3 have capacities of 100 parts. Thus, in the worst case,
300 Transactions could be simultaneously active in the model. If the capacities of these bins were
altered to 1000, in the worst case, the model could contain 3000 active Transactions. The pattern is
apparent: as the size and traffic of the system increase, so do the size and complexity of the computer
run-time representation of the system. The approach which is given below alleviates +this problem.

GPSS - FINDING THE APPROPRIATE WORLD-VIEW 507

GPSS/H VP/CSS RELEASE 1.0 (UN261) 29 JUL 81 8:30:56 FILE: WIDGETUC

LINE# STMT# IF DO BLOCK# *LOC OPERATION A,B,C,D,E,F,G COMMENTS

00010 1 SIMULATE

00020 2 REALLOCATE COM, 20000 SUFFICIENT COMMON

00040 4 H e R R R R A e K2 B e e T e AN AW W R R KK H N KN W KRR R KRR W RN KRR R R KN
00050 5 # *
00060 6 C* WIDGET PRODUCTION LINE MODEL *
00070 7 * (PASSIVE SERVER, ACTIVE WIDGET APPROACH) *
00080 8 * *
00090 9 FHEREXEXEHREREHREEXEEEREFEREFEREREXEEERE TR RRHRRRR R R R R R E R SRR ERHEERR
00110 11 STORAGE ~ S$BIN1,100/S$BIN2,100/S$BIN3,100 INTERMEDIATE BINS
00130 13 PROCt FUNCTION RN1,C2 MACHINE 1 PROCESSING TIME

00140 14 0,10/1,191

00150 15 PROC2 FUNCTION RN2,C2 MACHINE 2 PROCESSING TIME

00160 16 0,10/1,191

00170 17 PROC3 FUNCTION RN3,C2 MACHINE 3 PROCESSING TIME

00180 18 0,10/1,191

00200 20 1 GENERATE SIMULATE AN INFINITE SUPPLY

00210 21 2 ENTER BIN1 ONLY CONSTRAINT: BIN 1 CAPACITY
00220 22 3 LINK MACH1,FIFO,GOT1 GRAB FIRST MACHINE

00230 23 4 GOT1 LEAVE BIN1 LEAVE FIRST BIN WHEN FIRST MACH FREE
00240 24 5 ADVANCE FN$PROC? MACHINE 1 PROCESSING TIME

00250 25 6 ENTER BIN2 DEPOSIT PART IN OUTPUT BIN

00260 26 7 UNLINK MACH1,G0T1,1 ALLOW NEXT PART TO HAVE MACH 1

00270 . 27 8 LINK MACH2,FIFO,GOT2 GRAB SECOND MACHINE

00280 28 9 GOT2 LEAVE BIN2 REMOVE PART FROM INPUT BIN

00290 29 10 ADVANCE FN$PROC2 MACHINE 2 PROCESSING TIME

00300 30 11 ENTER BIN3 DEPOSIT PART IN OUTPUT BIN

00310 31 12 UNLINK MACH2,G0T2,1 ALLOW NEXT PART TO HAVE MACH 2

00320 32 13 LINK MACH3,FIF0,GOT3 GET THIRD MACHINE

00330 33 14 GOT3 LEAVE BIN3 REMOVE PART FROM INPUT BIN

00340 34 15 ADVANCE FN$PROC3 MACHINE 3 PROCESSING TIME

00350 35 16 UNLINK MACH3,GOT3,1 ALLOW NEXT PART TO HAVE MACH 3

00360 36 17 TERMINATE 1 PART COMPLETED

00380 38 RMULT 11111,33333,55555 MAKE RN1, RN2, RN3 INDEPENDENT
00390 39 START 5000 SIMULATE PRODUCTION OF 5000 PARTS
00400 40 END

Pig. 2 - Naive Model of First Hypothetical System

2.2 Sophisticated Approach to the First Hypothetical Bxample
A sophisticated model of the first hypothetical system is shown in Figure 3.

Structure of the Model - The sophisticated approach to modelling our first hypothetical system uses an
"active server" approach. While this approach is an obvious approach in languages such as Simula, its
use in GPSS requires a bit of extra thought. In GPSS, simultaneous operations are almost always
modelled by simultaneously active Transactions; i.e., Transactions embody the capability for
representing parallelism in a system. In our hypothetical system, there are at most three machining
operations going on at any given time. Accordingly, it is proper to consider whether three Transactions
can be used to model the operation of the system, one for each machine.

The model shown in Figure 3 uses this approach. It operates as follows:

1. Machine 1 is represented by a single Transaction which traverses an infinite loop. In the
loop, machining time is modelled by an appropriate ADVANCE Block. The output bin for machine 1 is
modelled by a Storage named BIN2. Within its infinite loop, the Transaction representing machine 1
is delayed only when BIN2 is full. There is no delay for input starvation, since machine 1 is
agsumed to have an infinite supply of unfinished parts.

2. Machine 2 is also represented by a single Transaction which traverses an infinite loop. The
loop is sdimiler to the loop for machine 1, except that in addition to modelling output congestion,

508 James 0. HENRIKSEN

input starvation must be accounted for. This is handled by including a GATE SNE BIN2 Block.
Inclusion of this Block forces the machine 2 Transaction to wait until its input bin becomes
non-empty. .

3. Machine 3 is represented by a single Transaction which traverses an infinite loop. This loop
is similar to the loop for machine 2, with two exceptions: first, there is no need to provide for
output congestion (by definition of the hypothetical system), and second, logic has been included
to terminate model execution after 5000 parts have been machined.

Comments on this Approach - The approach outlined above is readily implemented in GPSS, using standard
language constructs; however this approach is almost certainly not the first approach that would occur
to a beginning GPSS modeller. Since the model contains only three simultaneously active Transactions,
one can readily anticipate comparative results vis-a-vis the naive approach.

GPSS/H VP/CSS RELEASE 1.0 (UN261) 29 JUL 81 8:32:35 FILE: WIDGETAS

LINE# STMT# IF DO BLOCK# *LOC OPERATION 4,B,C,D,E,F,G COMMENTS

00010 1 SIMULATE

00020 2 REALLOCATE COM, 15000 ~ SURFICIENT COMMON

00040 4_ ********éﬁ****************-Xl-*** ‘
00050 5 * : *
00060 6 * WIDGET PRODUCTION LINE MODEL *
00070 7 *® (ACTIVE SERVER, PASSIVE WIDGET APPROACH) *
00080 8 * *
00090 9 66 W W KoKW K TR K R R R XX R RERRERREREXEEERRRREREEEXXEEEEREXERERERRERERER
00110 11 PROC1 FUNCTION RN1,C2 ' MACHINE 1 PROCESSING TIME

00120 12 . 0,10/1,191

00130 13 PROC2 FUNCTION RN2,C2 MACHINE 2 PROCESSING TIME

00140 14 0,10/1,191

00150 15 : PROC3 FUNCTION RN3,C2 MACHINE 3 PROCESSING TIME

00160 16 0,10/1,191

00180 18 1 ' GENERATE = ,,,1 MACHINE 1 XACT

00190 19 2 MLUP1 ADVANCE FN$PROC! MACHINE 1 PROCESSING TIME

00200 20 3 ENTER BIN2 PLACE PART IN OUTPUT BIN

00210 21 4 TRANSFER ,MLUP1 PROCESS PARTS FOREVER

00230 23 5 GENERATE ,,,1 MACHINE 2 XACT

00240 24 6 WLUP2 GATE SNE BIN2 WAIT POR PART IN INPUT BIN

00250 25 7 .LEAVE BIN2 'REMOVE PART FROM BIN

00260 26 8 ADVANCE FN$PROC2 MACHINE 2 PROCESSING TIME

00270 27 9 ENTER BIN3 PLACE PART IN OUTPUT BIN

00280 28 10 TRANSFER ,MLUP2 PROCESS PARTS FOREVER

00300 30 11 GENERATE ,,,1 MACHINE 3 XACT

00310 31 12 MLUP3 GATE SNE BIN3 WAIT FOR PART IN INPUT BIN

00320 32 13 LEAVE BIN3 REMOVE PART FROM INPUT BIN

00330 33 14 TASTM ADVANCE FN$PROC3 MACHINE 3 PROCESSING TIME

00340 34 15 TEST E N$LASTM,5000,MLUP3 PROCESS 5000 PARTS

00350 35 16 TERMINATE 1 AND STOP

00370 37 . RMULT 11111,33333,55555 MAKE RN1, RN2, RN3 INDEPENDENT
00380 38 START 1 SIMULATE PRODUCTION OF 5000 PARTS
00390 39- END ‘

Fig. 3 - Sophisticated Model of First Hypothetical System
2.3 First Hypothetical Example - Comparison of Results

Due to space limitations, results of running the two models cannot be included herein; rather,
comparative resulis will be briefly summarized. "Although differences in approach dictated that the two
models collected different statistics, it was immediately apparent from common statistics that the two
models were functionally identical. The time- and space-efficiencies of the two models, however,
differed dramatically. The naive model took twice as much execution time and 28 fimes as much COMMON
storage as the sophisticated approach. (COMMON storage is used for Transactions, among other things.)
The cost savings achieved in this example are fairly modest, but this is an extremely simple example.
In larger, more complex systems, even greater cost savings could be achieved. In addition, the

GPSS - FINDING THE APPROPRIATE WORLD-VIEW 509

sophisticated approach offers a highly desirable form of modularity and readability, by localizing the
logic for operation of a machine. For all machines in the model, the rules by which the machine
operates are contained in the infinite loop for the machine. This is in contrast to the naive approach,
in which the same rules of operation are imbedded in the flowchart-inspired description of overall part
flow. In larger, more complex models, with more complex contention for resources, the rules of

operation for resources can easily become dispersed throughout the model, making the model more
difficult to read and debug.

3. A SECOND HYPOTHETICAL EXAMPLE

A second hypothetical example, a sparkplug packaging line, is depicted in Figure 4. The system operates
as follows:

1. At time zero, a stream of sparkplugs begins flowing into the packing area on a conveyor belt at
a rate of 1000 plugs per minute. The stream of sparkplugs is assumed to be continuous. It takes
0.3 minutes for the initial flow of sparkplugs to reach the first of several packing machines.
2. Each packing machine operates as follows:
A. The machine is initially idle.
B. VWhen spark plugs reach the position of the packing machine along the conveyor, the packing
machine begins packing plugs at a rate of up to 333 plugs per minute.
C. If the rate of flow on the conveyor at any given machine exceeds 333 plugs per minute, the
excess flows downstream to the next machine.
D. Machines are susceptible to failure. For every 400 +- 200 (uniformly distributed) plugs a
machine packs, a Jjam requiring operator intervention occurs. The operator requires 15 +- 9
seconds to unjam the machine. When a machine fails, the flow of plugs that the machine was
packing begins to flow past the machine; i.e., a downstream surge is created. When a machine
has been repaired, it continues from step B, above; i.e., if at the time it is becomes
available, a non-zero flow exists on the conveyor at the point of the machine, the machine
will resume packing plugs at a rate up to its maximum. The resumption of a machine will cause
a decrease in flow downstream, i.e., a "negative surge."
3. The time for a spark plug to travel from one machine to the next is 0.15 minutes.
4. The system is to be configured with a fixed number of packing machines. If enough of the
packing machines fail with sufficient simultaneity, spark plugs flow past the last machine, off the
end of the conveyor, into a barrel. Plugs which flow into the barrel must subsequently be manually
reloaded onto the conveyor, upstream from the first packing machine. (Reintoduction of dumped
plugs is ignored here.) The purpose of the model is to enable management to make a cost/benefit
analysis of the number of packing machines to be installed in the packing subsystem.

Machine 1
Machine 2
Machine 3
Machine 4
Machine N

Conveyor Belt -———3=

Barrel

Fig. 4 - Second Hypothetical Example
3.1 DNaive Approach to the Second Hypothetical Example
A naively coded model of the second hypothetical system is shown in Figure 5.
Structure of the Model - The naive approach to modelling the sparkplug packing line is

GPSS approach, representing sparkplugs as Transactions and machines as Facilities
counters). The operation of the model is as follows:

(again) a classic
(with associated

1. At time zero, random samples are drawn to determine the number of plugs until the first failure
of each packing machine in the system. The Transaction which performs this initialization also
gerves as a timer Transaction, shutting off the model after 10 minutes of simulated operation.

510

James 0. HENRIKSEN.

2. The time unit of the simulation is .001 minute. Since the initial surge of sparkplugs takes
0.3 minutes to reach the first machine, a GENERATE 1,,300 Block accomplishés the purpose of
introducing a flow of 1000 plugs per minute at the first machine, beginning at time 0.3 minutes.

3. 4 sparkplug flows through the niodel by looking at each machine in succession until it
encounters a packing machine which can pack the plug or until it flows off the end of the conveyor,
into the barrel.

4. When a plug finds a machine that can pack it, it SEIZEs the Facility representing the machine,
ADVANCES for .003 minutes, and executes the logic corresponding to machine failure.

5. Machine failures are assumed to occur at the conclusion of packing of a sparkplug. ZEach time a
plug is packed, a failure counter is decremented. When the counter goes to zero, a failure is
simulated by making the machine Facility unavailable until it has béen repaired. When the machine
has been repaired, the Facility is once again made available, and a new random sample is drawn to
determine the number of plugs that will be processed until the next failure occurs.

Comments on this Approach - The approach outlined above is very straightforward, but leads to a very

inefficient model. The reader who has carefully read through the first hypothetical example should
cringe at the mere mention of phrases like "1000 plugs per mirite." The numbers chosen for this example
are reasonably realistic; however, it should be obvious that were the size and traffic level of this
system to be increased, correspondingly large numbers of Transactions would be required for model

execution.
GPSS/H VP/CSS RELEASE 1.0 (UN261) 26 JUL 81 15:39:18 FILE: SPARKEZ
LINE# STMT# IF DO BLOCK# *LOC OPERATION 4,B,C,D,E,F,G COMMENTS
00010 1 SIMULATE ‘
00020 2 REALLOCATE COM, 50000 LOTS OF COMMON
00040 4 Fo e Ko e B e 2K I IEAE I K TN I I I HH I JE IR IETE KN oK T H T NI KN IR RN RN NRN
00050 5 * *
00060 6 * SPARKPLUG PACKING LINE MODEL *
00070 7 * NAIVE GPSS APPROACH *
00080 8 * | *
00090 9 * TIME UNIT = .001 MINUTES *
00100 10 * o %
00110 11 R 262 H T H K e T I IE N6 26 30260 S 636 36 30 36 6 2 I 3626 36 3696 36 3 H I e T 3636 H 2 H 0TI 236 2 26 369 36 36063636 96 3 I 6 2
00130 13 * FAILURE AND REPATIR RANDOM VARIABLES
00150 15 NTILX FUNCTION RN(PF$MACHNO),C2 NUMBER OF PLUGS 'TTIL FAILURE
00160 16 0,200/1,600
00180 18 REPAIR FUNCTION RN(PF$MACHNO),C2 REPAIR TIME (MEAN = 15 SEC) f
00190 19 0,100/1, 400
00210 21 * FAILURE, TRACE INFO (VERIFICATION),
00230 23 TFAIL MATRIX MX,50,2 TRACE FAILURES (VERIFICATION)
00240 24 FMACH SYN 1 COLUMN 1: MACHINE ID
00250 25 . FTIME SYN 2 COLUMN 2: FAILURE TIME
00270 27 * CONFIGURATION DEFINITION
00290 29 ‘ MACH EQU 1(10),7 MAX ‘OF 10 MACHINES
00300 30 FATIL EQU 1(10),X DITTO
00310 31 INITIAL X$LASTHM, 4 RUN WITH 4 PACKING MACHINES

Fig. 5 -~ Naive Model of Second Hypothetical System

GPSS - FINDING THE APPROPRIATE WORLD-VIEW o

GPSS/H VP/CSS RELEASE 1.0 (UN261) 26 JUL 81 15:39:18 FILE: SPARKEZ

LINE# STMT# IF DO BLOCK# *LOC OPERATION 4,B,0,D,E,F,G¢ COMMENTS

00330 33 o b o e 0 B e e e T o o e 0 B e S0 B 0 B P00 90 6 0 0 0 9 0
00340 34 * *
00350 35 * PLUG PLOVW LOGIC *
00360 36 #* *
005 70 37 e e D e e e B e B e e B b A o e B e 0 0 e B A 3 B 203 A S 3
00390 39 1 GENERATE 1,,300,,,1PF 1000 PLUGS/MIN

00400 40 2 ASSIGN MACHNO, 1,PF START AT MACHINE NO 1

00420 42 % MLOOP GATE NU PF$MACHNO,NEXTM BUSY MACHINE => TRY NEXT

00430 43 4 GATE FNV PPSMACHNO,PACKIT AVAIL => GO PACK PLUG

00440 44 5 NEXTM ADVANCE 150 ELSE, PROCEED TO NEXT MACHINE

00450 45 6 ASSIGN MACHNO+,1,PF NEXT MACHINE NUMBER

00460 46 7 TEST G PF$MACHNO , XSLASTM, MLOOP LOOP THRU ALL MACHINES

00480 48 8 SAVEVALUE OFFEND+, 1 FALL~THRU => RAN OFF THE END

00490 49 9 TERMINATE O

00510 51 10 PACKIT SEIZE PFSMACHNO GRAB MACKINE

00520 52 1 PRIORITY 1 DEPARTURES HIGHER THAN ARRIVALS

00530 53 12 ADVANCE 3 PACK AT 333/MIN

00540 54 13 RELEASE PF$MACHNO FREE MACHINE

00550 55 14 SAVEVALUE PFSMACHNO-,1 DECREMENT FAILURE COUNTER

00560 56 15 TEST LE X(PP$MACHNO),0,EXIT SKIP AHEAD IF NO FAILURE

00570 57 16 SAVEVALUE NFAIL#,1 ONE MORE FAILURE

00580 %8 17 MSAVEVALUE TPAIL,X$NFAIL,FMACH,PF$MACHNO RECORD MACH NO

00590 59 18 MSAVEVALUE TFAIL,X$NFAIL,FTIME,AC! RECORD FAILURE TIME

00600 60 19 FUNAVAIL PF$MACHNO STIGNAL FAILURE

00610 61 20 ADVANCE FPNSREPAIR REPAIR TIME ELAPSES

00620 62 21 TAVAIL PPSMACHNO MAGHINE BACK ONLINE

006%0 63 22 SAVEVALUE PFSMACHNO,FNSNTILX RESET NEW RANDOM FAILURE CTR
00640 64 23 BXIT TERMINATE O EXIT SYSTEM

00660 66 et b D0 06 1 T T U 1 3 D T 1 DT 6 0 S0 B e B S B e e e B 3 A 90 B B e 96 B e e B 3 3
00670 67 * *
00680 68 # RUN CONTROL #
00690 69 * *
00700 70 e H e N B 2 B e T b B e U e 0 3 0 0 6 2 30 2 B B 0 6 0 B 06 T 9 T 6 9 2 9
00720 T2 24 GENERATE ,,,1,,1PF CONTROL XACT

00730 73 25 ASSIGN MACHNO, X$LASTM, PF NUMBER OF MACHINES

00740 T4 26 ILUPE SAVEVALUE PF3MACHNO,FN$NTILX INIT RANDOM FAILURE COUNTER

00750 75 27 LOOP MACHNO$PF , ILUPE

00770 77 28 ADVANGE 10000 RUN FOR 10 MINUTES

00790 79 29 TERMINATE 1 SHUT DOWN

00810 81 RMULT 111,%33%,555,777

00820 82 START 1 RUN WITH 4 MACHINES

00830 8% INITIAL X$LASTM,S FIVE MACHINES

00840 84 RMULT 111,333,555,777,999

00850 85 CLEAR X$LASTM CLEAR ALL BUT CONFIG COUNT

00860 86 START 1 RUN WITH 5 MACHINES

00870 87 END

Fig. 5 - Naive Model of Second Hypothetical System (Cont.)
3.2 Sophisticated Approach to the Second Hypothetical Example
A sophisticated model of the second hypothetical system is shown in Figure 6.

Structure of the Model - The sophisticated approach to modelling the second hypothetical system is
motivated by combined discrete/continuous simulation techniques available in such languages as SLAM IX

512 i James 0. HENRIKSEN

(Pritsker & Associates 1981). The essence of this approach is that we need only to concern ourselves
with the dynamics of aggregate sparkplug flow; rather than with the flow of each and every sparkplug.
The model shown in Figure 6 implements this approach. It operates as follows:

1. The model contains three segments, a surge tracking segment, a failure scheduling segment, and

a timer segment.

2. The surge tracking segment operates as follows:
A. A single Transaction is used to represent the initial surge of plug flow into the system.
Subsequent surges within the system, which result from machine failures and repairs, are also
modelled with a single Transaction per surge.
B. A surge Transaction executes a loop, tracking each surge from its origin through each
successive machine in the system. For each machine not currently in a state of failure, a new
rate of operation is calculated, based on the magnitude of the surge and the capacity of the
machine. If the rate of operation of a machine is changed from its previous rate, its
estimated time of failure must be updated. This is accomplished by PREEMPTing and immediately
RETURNing a Facility unique to each machine, which has been SEIZEd by a Transaction used %o
model failures in the failure scheduling segment of the model. When PREEMPTed, the failure
Transaction is routed from the ADVANCE Block in which it currently resides (where estimated
time until failure is elapsing) to a Block at which a new estimated time of failure is
computed.
C. TPor each change in the rate of operation of a machine, a corresponding adjusiment is made
to the magnitude of the surge represented by the surge tracking Transaction. If the system
configuration is sufficient, nearly all surges will die out prior to reaching the last
machine. X
D. Vhen the surge Transaction reaches the end of the conveyor, statistics for non-zero surges
off the end of the conveyor (into the barrel) are collected.

3. The failure scheduling segment operates as follows:
A. At time zero, a failure scheduling Transaction is GENERATEd for each machine in the!
system. For each machine, a random sample is drawn, corresponding to the number of plugs
until the next failure occurs. The failure scheduling Transaction SEIZEs a Facility, so it
may subsequently be signalled of machine rate changes (via PREEMPT). Each failure Transaction
then goes into an ADVANCE Block with an extremely large ADVANCE time, corresponding to
"infinite" wait.
B. VWhen a surge tracking Transaction causes a change in the rate of operation of a machine,.
it PREEMPTs the corresponding failure Transaction out of the infinite wait ADVANCE Block and
routes it to a Block called SCHEDF, at which an updated estimate is made of the time at which
the machine will fail.
C. At SCHEDF, an the number of plugs until the next failure of the machine is updated by
subtracting the current rate of machine operation times the length of time the machine has
been operating at this rate from the previous value of the failure counter.
D. If a failure Transaction has been routed to SCHEDF because a machine has become idle, the
failure Transaction returns to the infinite wait ADVANCE Block. Otherwise, the remaining
number of plugs until failure are converted into an estimated time until failure, and the
failure ‘Transaction enters an ADVANCE Block, assuming that the proper time has been
calculated.
B. If no other changes take place, the failure Transaction will exit the ADVANCE Block and
model machine failure. When a machine fails, a surge Transaction is SPLIT off to model
increased downstream flow, and when the machine is repaired a surge Transaction is SPLIT off
to model decreased downstream flow.
F. If rate changes take place while a fallure Pransaction is in the ADVANCE Block
corresponding to the elapsing of estimated time until failure, the Transaction is PREEMPTed
out of the ADVANCE Block and routed back to SCHEDF, where an updated estimated time until
failure is calculated.

4. The timer segment generates a single Transaction after 10 minutes of simulated operation. The

timer Transaction updates statistics for flows off the end of the conveyor and shuts down the

model.

3.3 Second Hypothetical example - Comparison of Results

Due to space limitations, actual results from running the two models cannot be presented herein;
however, comparative results will be briefly summarized. Results for the two models agreed within
acceptable bounds. Slight differences were due to the effects of truncation in integer arithmetic in
the sophisticated model. Run-time performance of the two models differed significantly. The naive
solution required 13.5 times the COMMON storage and 105.8 times the CPU time required by the
sophisticated solution. Selecting the proper view of the problem really paid off here.

4. GENERALITY OF SOPHISTICATED TECHNIQUES ILLUSTRATED

The techniques that have been illustrated in the sophisticated models for the two hypothetical systems
are applicable to a wide class of problems. However, they do have one shortcoming, namely that as
coded, they apply only to systems which have contain flows of homogeneous elements. The parts machined

GPSS - FINDING THE APPROPRIATE WORLD-VIEW 513

in the first example are all identical, as are the sparkplugs in the second example. In many systems,
components flowing through the system are heterogeneous. For such systems, two possible techniques
exist. It ie possible that the unique characteristics of components flowing through a system can be
determined by random sampling at critical points. For example, we may know that 35 percent of the parts
flowing through a system have a particular characteristic. If this is the case, sampling from a uniform
distribution may enable us to avoid having to explicitly carry a unique attribute for each part. The
examples shown can rather easily be extended to include such sampling.

In cases where attributes must be carried for each moving component, the techniques illustrated must be
modified significantly. In GPSS, the easiest vehlcle for implementing dynamic elements with unique
attributes is, of course, the Transaction, with its associated Parameters. Much of the time and space
efficiency in the techniques illustrated was achieved by relieving the overburdened GPSS simulator from
having to manage excessive numbers of Transactions. What can one do? What is really needed here is a
class of objects which have usger-specified, user-accessible attributes, and which can be created,
destroyed, and collected into sets, all under user program control. This description begins %o sound
very much like Simscript II.5 temporary entities and sets (Russell 1981). Temporary entities look very

GPSS/H VP/CSS RELEASE 1.0 (UN261) 29 JUL 81 8:25:16 FILE: SPARKCD

LINE# STMT# IF DO BLOCK# *LOC OPERATION A,B,C,D,E,F,G COMMENTS

00010 1 SIMULATE

00030 3 I T 3001 A N I I TN R B T 00 606 0 36 3036 21 36 300 31 3 S 6 06 K 2
00040 4 * *
00050 5 * SPARKPLUG PACKING LINE MODEL *
00060 6 * "GOMBINED DISCRETE/CONTINUOUS APPROACH" *
00070 7 * *
00080 8 * TIME UNIT = ,001 MINUTES *
00090 9 *
00100 10 F NN T B TN e e T T 2 3 3 T B T 3 T 30 3K 3 3K 3 0 0 T 40 B 2 1 2 B B B 26 3 B N
00120 12 * PARAMETER DICTIONARY

00140 14 MACHNO EQU 1,PF PACKING MACHINE NUMBER

00150 15 SURGE EQU 2,FF SURGE RATE (PLUGS/MINUTE)

00160 16 TLAST EQU 3,PF TIME OF LAST UPDATE

00180 18 * MACHINE FAILURE MATRICES

00200 20 FAIL MATRIX MX,10,3

00210 21 INTO SYN 1 COLUMN 1: RATE INTO MACH (PLUGS/MIN)
00220 22 MRATE SYN 2 COLUMN 2: CURRENT MACHINE RATE

00230 23 NTILF SYN 3 COLUMN 3: REMAINING PLUGS 'TIL FAILUR
00250 25 TFAIL MATRIX ¥X,50,2 TRACE FAILURES (VERIFICATION)

00260 26 FMACH SYN 1 COLUMN 1: MACHINE ID

00270 27 FTIME SYN 2 COLUMN 2: FAILURE TIME

00290 29 * FAILURE AND REPAIR RANDOM VARIABLES

00310 31 NTILX FUNCTION RN(PF$MACHNO),C2 NUMBER OF PLUGS 'TIL FAILURE

00320 32 0,200/1,600

00340 34 REPAIR FUNCTION RN(PF$MACHNO),C2 REPAIR TIME (MEAN = 15 SEC)

00350 35 0,100/1,400

00370 37 * TABLE TO TABULATE FLOW OFF END OF MAIN CONVEYOR

00390 39 OFFEND TABLE ((AC1~-X$TLASTO }*X30RATE/1000),50,50,10

00410 41 * CONFIGURATION DEFINITION

00430 43 INITIAL X$LASTM, 4 RUN WITH 4 PACKING MACHINES

00440 44 STORAGE 51-810,333 MACHINES RUN AT 333 PLUGS/MIN

Fig. 6 - Sophisticated Model of Second Hypothetical System

514

James 0. HENRIKSEN

GPSS/H VP/CSS RELEASE 1.0 (UN261) 29 JUL 81 8:25:16 FILE: SPARKCD

LINB# STMT# IF DO BLOCK# *¥LOC .OPERATION A,B,0¢,D,E,F,G COMMENTS

00460
00470
00480
00490
00500

00520
00530
00540

00560
00570

00590
00600
00610
00620
00630
00640
00650
00660

00680

00700
00710
00720

00740
00750
00760
00770
00780

00800
00810

00820

00830
00840

00860
00870
00880
00890
00900
00910

00930
00940
00950

00970
00980
00990

01010
01020

01030

01040
01050

01070

46
47
48
49
50

52
53
54

56
57

59

101
102
103
104
105

107

—eh
A SHVIE N @ RV 33 I e Ul W N -

- -
~ oW +~

N = =
. OO0

NN
N =

23
24
25
26
27
28

29
29

30
31
32

33

FREEERRFEREREERXEXERRRRFEERRERERBEXREEEEXREXLRREREXRERERREEEREXERERRERR

* *
* SURGE TRACKING SEGMENT *
* ‘ *
FXEREERERREFFEEEREERLEEREERRLRXXERERERXEEEEFXRF XX RXRERREERLEXR BB X RXXREXEKR
GENERATE ,,300,1,,5PF XACT FOR INITIAL SURGE INTO SYSTEM
ASSIGN MACHNO, 1, PF START WITH MACHINE NO 1
ASSICN SURGE,1000,PF 1000 PLUGS/MIN INTO SYSTEM

MLOOP MSAVEVALUE FAIL,PF$MACHNO,INTO,PF$SURGE RATE INTO MACH
GATE SV PPSMACHNO, NEXTM SKIP IF MACHINE UNAVAIL

BAKUP TEST NB PR$SURGE, S (PFSMACHNO),NODIF SKIP IF NO RATE CHANGE
SAVEVALUE NEWRATE,S(PF$MACHNO)+R(PFSMACHNO) MAX RATE
TEST & X$NEWRATE, PF$SURGE, ¥+2 SKIP IF SURGE >= MAX
SAVEVALUE NEWRATE,PF$SURGE SURGE < MAX

LEAVE PF$MACHNO,S(PF$MACHNO) EMPTY STORAGE

ENTER PPEMACHNO, XENEWRATE NOW SET NEW RATE

PREEMPT PF$MACHNOG, ,SCHEDF WAKE UP FAILURE XACT

RETURN PFSMACHNO IMMEDIATELY RETURN MACHINE FACIL
NODIF ASSIGN SUﬁGE—,S(PF$MACHNO),PF REDUCE DOWNSTREAM SURGE

NEXTM ADVANCE 150 TIME TO GET TO NEXT MACHINE
ASSIGN MACHNO+,1,PF NEXT MACHINE NO

TEST @ PFSMACHNO, X$LASTM,MLOOP LOOP THRU ALL MACHINES
TEST NE X$ORATE,0,NOTAB SKIP TABULATION IF CURRENT RATE = O
TABULATE OFFEND TABULATE PREV SURGE OFF END
NOTAB SAVEVALUE TLASTO,ACH TIME OF LAST RATE CHANGE = NOW
SAVEVALUE ORATE,PF$SURGE NEW RATE OFF END
TERMINATE O END OF SURGE
FHRRXRHER KA X RRHXRE R R KRR R NRFIE KRR RN RN R KR I RN R K KRN He N R R IR H
* *
* MACHINE FAILURE SCHEDULING MECHANISM *
* *

He RN N H KRR A I W IR WA KR RN KRR R HRHHER RN EEERRREERRERERRRXXRKW

GENERATE ,,,X$LASTM,,3PF ONE XACT PER MACHINE
HERE ASSIGN MACHNO, N$HERE+1 ,PF ASSIGN MACHINE TID
SEIZE PF$MACHNO USE FACILITY SO WE CAN PREEMPT
MSAVEVALUE FAIL,PF$MACHNO,NTILF,FNSNTILX NO 'TIL 1ST FAIL
INFWT ADVANCE 1000000 "INFINITE" WALT
SEIZE X$ERROR ERROR IF WE GET HERE
SCHEDF MSAVEVALUE FAIL-,PF$MACHNO,NTILF,

MX$FAIL(PFSMACHNO, MRATE) ¥MPSTLASTSPF /1000
* ABOVE LINE UPDATES REMAINING NO OF PLUGS UNTIL FAILURE

MSAVEVALUE FAIL,PF$MACHNO,MRATE,S(PF$MACHNO) CURRENT RATE
MARK TLAST$PF TIME OF LAST RATE CHANGE = NOW
TEST G S(PF$MACHNO),O, INFWT GO WAIT IF MACHINE NOW IDLE

THE FOLLOWING ADVANCE BLOCK CORRESPONDS TO THE TIME

UNTIL A MACHINE FATILURE OCCURS, ASSUMING NO CHANGES IN

RATE OF OPERATION. IF A RATE CHANGE TAKES PLACE, AN XACT

IN THE ADVANCE BLOCK WILL BE PREEMPTED OFF THE FUTURE EVENTS
CHAIN AND ROUTED TO THE "SCHEDF" BLOCK.

* ¥ ¥k % k

ADVANCE MX$SFATL(PFP$MACHNO, NTILF)*1000/S (PFSMACHNO)

Pig. 6 - Sophisticated Model of Second System (Cont.)

GPSS - FINDING THE APPROPRIATE WORLD-VIEW 518

GPSS/H VP/CSS RELEASE 1.0 (UN261) 29 JUL 81 8:25:16 FILE: SPARKCD
LINE# STMT# IF DO BLOCK# *LOC OPERATION 4,B,C,D,E,F,G COMMENTS
01090 109 * FAILURE HAS OCCURRED.
01110 111 34 SAVEVALUE NPAIL+,1 ONE MORE FAILURE
01120 112 35 MSAVEVALUE TFAIL,XSNFAIL,FMACH,PFSMACHNO RECORD MACH NO
01130 113 36 MSAVEVALUE TFAIL,X$NFAIL,FTIME,AC1 RECORD FAILURE TIME
01140 114 37 ASSIGN SURGE,MX$FATL(PFSMACHNO, INTO),PF CURRENT RATE INTO
01150 115 38 SPLIT 1, NEXTM PROPAGATE DOWNSTREAM SURGE
01160 116 39 LEAVE PFSMACHNO, S(PFSMACHNO) EMPTY STORAGE => DOWN
01170 117 40 MSAVEVALUE FAIL,PF$MACHNO,MRATE,O DOWN => RATE=0
01180 118 44 SUNAVAIL PF$MACHNO MAKE MACHINE UNAVAIL
01190 119 42 ADVANCE FNSREPATR REPAIR TIME
01200 120 43 SAVAIL PFS$MACHNO MACHINE NOW AVAIL AGAIN
01210 121 44 ASSIGN SURGE, MX$FAIL(PFSMACHNO,INTO),PF CURRENT RATE INTO
01220 122 45 SPLIT 1,BAKUP ROUTE SURGE TO THIS MACHINE
01230 123 46 MSAVEVALUE FAIL,PF$MACHNO,NTILF,FN$NTILX NEXT FAIL
01240 124 47 TRANSFER , INFW? GO WAIT FOR NEXT "SIGNAL"
(o} 260 1 26 W W TR KWW W W B W R R R KRR R RE R R R ERXEERRREFRRRREEEELEREERRRREE R TR SRR WKW %
01270 127 * *
01280 128 * RUN CONTROL *
01290 129 * *
01 300 1 30 HeKe W A K e B e R B A K HHe e A KN oK F e R RN RN T W I T H T B B N H R N e N H W e B N W K N K RN B
01320 132 48 GENERATE ,,10000,1,,3PF RUN FOR 10 MINUTES
01330 133 49 TEST NE X$ORATE,O,*+2 TABULATE IF FLOWING OFF END
01340 134 50 TABULATE OFFEND LAST UPDATE OF "OFF END"
01350 135 51 TERMINATE 1 SHUT DOWN
01370 137 RMULT 11,333,555,777
01380 138 START 1 RUN WITH 4 MACHINES
01390 139 INITIAL X$LASTM, 5 FIVE MACHINES
01400 140 RMULT 111,333,555,777,999
01410 141 CLEAR X$LASTM CLEAR ALL BUT CONFIG COUNT
01420 142 START i RUN WITH 5 MACHINES
01430 143 END

Fig. 6 - Sophisticated Model of Second Hypothetical System (Cont.)

attractive both from a time and space efficiency standpoint. In GPSS/H (Henriksen 1978), for example, a
Transaction requires 56 bytes of storage for simulator internal data. This overhead is above and beyond
the storage required for representation of (user-requested) Transaction Parameters. Thus, the storage
overhead for creating a Transaction object is substantial. As the comparative results for naive and
sophisticated models shown above indicate, the time overhead in requiring the GPSS simulator to manage
large numbers of Transactions can also be quite large.

Barring major additions to the GPSS language, one can often make use of existing capabilities. For
example, Matrix Savevalues can be used to record the attributes of a collection of entities, with one
row per entity and columns for each required attribute. The number of rows required can often be
determined prior to running a model, because it may relate to some real constraint on the number of
entities in a part of the system. Of course, the use of Matrix Savevalues requires user~provided code

for "allocating” and "releasing” rows in a matrix, corresponding to the creation and destruction of an
object.

5. CAVEATS

The sample programs which have been shown are intended only to illustrate basic programming style.
Systems of the type illustrated are fraught with problems of random sampling, validation, and analysis
of output. Because of the high variance in system performance, sophisticated techniques such as batch
means, multiple replications, autoregressive analysis, etc. would almost certainly be required in
"real-world" models. For a discussion of such topics, see reference (Law 1981).

The sample programs were run under GPSS/H on the National CSS network, where execution times are
measured in ARU's (application resource units). Readers who attempt to reproduce results of the
programs will doubtless experience different timings on other systems. In addition, certesin GPSS/H

516 James 0. HENRIKSEN

features, such as symbolic names for Parameters, have been used to improve program readability. Other
versions of GPSS may not contain the extended features of GPSS/H.

6. SUMMARY

This paper has illustrated two interesting techniques for application of GPSS to problems encountered in
manufacturing systems. In both cases, naive solutions to the problems at hand are readily suggested by
the GPSS world~view; however the world-view steers us in the wrong direction. Fortunately, more
sophisticated techniques, which are far more time- and space-efficient, can be achieved with nearly
equal ease in GPSS. The message should be clear both to the novice and expert GPSS programmer: don't
let yourself get into a conceptual rut, solving all your modelling problems with techniques you have
seen or applied in the past. You may be disastrously off the mark. .

ACKNOWLEDGEMENTS

The "surge" technique used in the second example was first brought to my attention by Dr. Ed Russell of
CACI. My thoughts on the combined discrete/continuous approach to the second example were sharpened by
a conversation with Dr. Charles Standridge of Pritsker & Associates.

REFERENCES

Frantd, W. R. (1977), The Process View of Simulation, Nonth-Holland, New York

Henriksen, J. 0. (1978), GPSS/H User's Manual, Wolverine Software Corporation, P.0. Box 1251, Falls
Church, VA 22041 .

Ingerman, D. (1981), Using Chains and Groups to Make GPSS More Efficient, Proceedings of ‘the 1981
Winter Simulation Conference

Law, A. M. and Kelton, D. W. (1981), Simulation Model;ng and Analys1s, (Scheduled for publication in
Fall, 1981)

Pritsker & Associates (1981), The SLAM IT User's Manual

Russell, B. C. (1981), Building Simulation Models with Simscript II.5, CACI, Inc., Los Angeles

Schriber, T. J. (1974), Simulation Using GPSS, John Wiley & Sons, New York

