1981 Winter Simulation Conference Proceedings
T.I. bren, C.M. Delfosse, C.M. Shub (Eds.)

489

THE AUTOMATION OF SIMULATION

G. K. Hutchinson
University of Wisconsin-Milwaukee
Milwaukee, Wisconsin 53201

The principles of Computer Aided Design (CAD) have been incorporated in a
simulation system to reduce the time and cost to produce simulations and expand

the set of potential users to nonprogrammers.

Computer Aided Programming for

Simulation (CAPS) is an interactive program which queries the user and processes
the responses to write a simulation program which, for models in its domain, is

guaranteed to be logically correct and execute on the first run.

CAPS is based

upon the use of activity cycles for decomposition of the problem under study.
Activity cycles, which appear to be a super set of Petrie Nets, are simply

directed graphs.
minutes at a cost of under $1.00

This technique permits one to do the classic barbership in 10

Activity cycles concepts will be described and the CAPS program demonstrated on

an ALTOS 8000 micro computer.

After the formal session is completed, a

spontaneously submitted problem will be simulated on an interactive basis. CAPS
writes Extended Control - Simulation Language (ECSL) which is a complete language
with outstanding statistilcal characteristics and unique language features.

Recent additions to the ECSL include *FIT, which tests distributlon data against
the 25 most commonly used statistical functions, and DISPLAY, which enables one

to easily develop interactive simulations.

CAPS/ECSL will be demonstrated on a

personally owned micro computer, but will run on any system with ASCll Fortran IV,
backing store, and sufficient care (16K words minimum).

1. INTRODUCTION

The analysis of complex systems generally requires
that one have some method of simplifying the
situation whether the intent is to better under-
stand the system or to simulate it. There are
many techniques for accomplishing this, including
the flow of entities, the events that take place,
the processes involved, and the behavior patterns
of the entities. This latter technique, formally
known as the activity cycle approach, has been the
basis of much of the English activity in simula-
tion., Dr. A. T. Clementson in teaching simulation
using activity cycles at the University of
Birmingham noted the similarity of structure of
the code for these simulations and, applying the
principles of computer aided design (CAD),
developed CAPS, Computer Aided Programming for
Simulation. CAPS accepts on an interactive basis
user developed activity cycle diagrams, which are
simply directed graphs, and produces a simulation
model which, for problems within its domain, are
guaranteed to be logically consistent and to
execute on first submittal., The intellectual work
of simulation is thus transferred from programming
to the development of the activity cycle diagram.

Once completed, the remainder of interactive input
is essentially a clerical process.

Considerable work has been done by engineers and
computer scientists on the development of the
theory of Petrie Nets (1) and their use in the
study of systems which exhibit conflict and con-
currency of distributed control and multiple pro-
cesses. Petrie Nets appear to be a subset of
activity cycles and theilr similarities will be
explored.

2, ACTIVITY CYCLES

The first step in model building is frequently the
choice of a rationale for viewing the system, i.e.
a world view, whether this is done expldicitly or
implicitly. The second step is often to simplify
the system by breaking it down into smaller and
more easily understood subsystems, a process often
called decomposition, There are many techniques
for this but the end result is always the same, a
method of defining the status of the system and

81CH1709-5/81/0000-0489%00.75 (:) 1981 IEEE

490 G.K. HUTCHINSON

changing the status over time, Probably the most
common method in the U. S. is events (SIMSCRIPT)
or entity flow (GPSS) but in Epngland and Australia
the activity cycle approach is most widely used.

The activity cycle approach is to first determine
the entities, or things of interest, in the system.
These may be physical components, such as men,
machines, CPU's, or seats, or logical components,
such as the conditions necessary for an activity
to take place - the tide must be high for a large
ship to dock. This is not unlike the approach
used in other methods. The next step is the
behavior patterns of the entities are determined.
Basically, there are only two states in which an
entity may be, active or idle, Later we will see
that these correspond to the Petrie Net places and
transitions. Conceptually at least, one can think
of thesé entities as alternating between the
active and idle states, either of which may have a
zero duration. The implication is that an entity
going directly from one active state to another
passes through an idle state Wwith no delay. 1In
the same sense, an entity going from one idle
state to another passes through an active state of
zero duration.

As one analyzes the system, one finds that there
may be many entities which have the same behavior
pattern. It is usually useful to show the
activity cycles in an activity cycle diagram (ACD).
Idle states are shown as circles and active states
as rectangles. TFor instance, assume that we are
interested in a micro, computer which is set up by
an operator but which runs by itself until -
finished. The ACD for the computer might be as
shown in Figure 1., If we were to simulate the
computer, we could use a marker and move it about
the ACD to show its current status. We would need
to know the durations of the active states and the
rules for going from one state to another. The
point is that the physical location of the marker
(equivalent to a Petrie Net token) gives the
status of the entity.

COMPUTER (1)

LOADED
Flgure 1. Computer ACD

In the same way, the ACD for the operator can be
drawn, as in Figure 2. Note that SETUP occurs in
both ACD's. In systems of interest, there may be
many entities with the same activity in their
ACD's. These activities are known as cooperative

act:.v:Ltles.k/ - - - -~
[SETUP | OPERATOR (1)
~ o~ —_ —

Figure 2. —bﬁzfézor ACD

This means that, in order for such an activity to
start, each of the entities used in that activity
must be in the immediate predecessor idle state.
To illustrate, in Figure 3 the ACD's for the
computer and operator are combined. The computer
is in IDLE and the operator in WAIT, thus SETUP
could begin. The duration of SETUP would be
determined by the technology of the system.

™ OPERATOR(L)_ 7
N — —
Figure 3. Combined ACD

When SETUP was completed, the markers would be
moved into the successor idle states, LOADED and
WAIT respectively. Note that RUN could start
immediately upon completion of SETUP, as no other
entity is required. Activities such as RUN are
called bound activities. These occur when their
immediate predecessor activity releases all of the
entities needed for them to start. These entities
will nevér spend any time in the idle states
between these activities and the intervening idle
states are known as dummies.

It is interesting to observe the similarities
between ACD's and actual systems. In any type of
system there are two types of time delays,
technological and organizational. Technological
delays are those which are determined by the basic
technology of the system, i.e. the time that it
takes the computer to RUN or to be SETUP. These
delays are associated with changing the status of
entities, such as changing a computer run from un-
processed to processed, or moving a workpiece from
one location to another. Reducing technological
delays usually must be domne by physical changes to
the activity, introducing a faster computer,
increasing the speed of a transporter. Often
these changes can be accomplished only at high
costs of time and money. Organizational delays
are those which occur due to a lack of proper
coordination. The computer is idle because the
operator isn't available. 1In a typical job shop,
the average workpiece spends 957 of its time
waiting and work-in-process inventory is the
second largest expense.

ACD's highlight the two types of time delays
above. Technological delays are the durations of
the activities and are input to the simulation.
Organlzational delays are the result of the manner
in which the system is operated and the variance
in durations. Often the reason for the use of
simulation is to determine the organizational
delays, which are the idle states in the ACD's and
generally known as queues. Thus in important
aspects of complex, dynamic systems, AGD's closely
parallel the actual system and Petrie Network
Models.

There are many useful aspects of ACD's. Perhaps
most important is that it gives a visual represent-
ation of the complete logic of the system, much as
a PERT Network does. This enchances communica-—
tions between people concerned with the system
and, as will be seen, with computer programs using
ACD's as input. Since the logic of the system is
complete, they can be used as the basis of pro-
gramming simulations, either by programmers or by
automated systems such as CAPS. Note that the
ACD's concentrate on the entities and their
behavior. The ACD in Figure 3 could be used for a
semi-automatic machine as well as for a computer.
In fact it could be used for anything that
followed the behavior pattern shown. The logic of
ACD's is independent of the number of each type of

THE AUTOMATION OF SIMULATION 491

entlty; thus the same diagram could be used for
one operator and ten computers or three operators
and five computers, There 1s no mention of the
object belng processed, thus the ACD in Figure 3
can be used for many systems, This is not always
the case, but frequently one finds that the things
being processed do not place a constraint on the
system operation and need not be included, The
entire focus 1s on the resources, i.e. the
entitles,

ACD's also serve ag an excellent vehicle for the
analysis of systems, agaln because the complete
logic of the system is shown. Cooperative
activitlies become obvious. In only those queues
which are immediate predecessors of cooperative
actlvities can entities be forcad to inecur organ~
lzational delays. The activities for each entity
are easily determined by tracing its path. BRound
actlvities are also obvious. This is important
because they cannot cause operational problems.

Because of the simplicity of the dilagrams
discussed to this point, queues with multiple
exits have not been discussed. However, they are
of major importance because they are the only
points in a system where management can influence
operation thru decision making. Most intereating
management problems involve the assignment of
scarce resources. The cholce of which activity

to undertake (selection of an axit path from a
queue to an activity) is the gsgsignment decleilon.
The correct decislon can reduce organizationgl
delays, often with little or no cost. An example
of a more complex system, an advanced batch
machining system, is given in Figure 4. The queue
TIDLE in the center of the AGD is the queue of
idle transporters. An idle transporter may undex-
take either TWP or GETT as its next activity, a
choice which 1s very important to system operation.

3. THE AUTOMATION OF PROGRAMMING

Since the loglc of the system under study is
completely glven by the ACD, it 1s a relatively
small matter to add the Information necessary for
gimulation. For simulation purposes, the number
of each type of entity must be given, often

shown in parenthesis after the name, The duration
for each activity must be specified elther as a
constant, a function of the attributes of the
entities involved, a sample from a distribution,
or some combination of the foregoing., Furthermore,
one may wish to determine the order in which
entities in queues are chosen to be something
other than flrst-come-flrst serve, i,e. generally
the setting of prlorities., Specilfiying the above
provides the basic inputs for simulation., 1In
addition, one would usually like to control
starting conditlons and report generation.

Robin Hills (2) showed how the writing of simula=
tions could be automated, using ACD's as input.
Alan Clementson (3) noted the simllarity of
strcture of simulation models and, applying the
principles of computer aided design, developed
Computer Aided Programming for Simulation (CAPS).
CAPS is an interactive language consisting of five
dialogs which query the user to assist him in
specifying ' his model and simulation requirements,

The first and most important phase is Systems
Loglc. The user describes the topology of his ACD
by giving, for each entity, the ordered list of
alternating queues and actilvities. The second
dialog is Arithmetic which requests for each
activity in the ACD a statement of the manner in
which the duration is ecalculated, The final three
dialogs, Priorities, Initial Conditions, and
Reporting, glve the user the opportunity to
enhance his simulation run by choosing optional
facilities,

The real point is that the user has completed the
intellectual work of the simulation when his ACD
1s done. The CAPS dialogs can be performed by a
knowledgable clerk quickly and inexpensively. Fox
instance, the classical barbershop problem was
done in under ten minutes at the VDU, from the
start of CAPS to simulation output, at a cost of
$0,66 (see appendix). A simple model of an inter-
active computer network took 23 minutes and cost
$3.29 (4).

When the interactive dialog is completed, CAPS
wrlites the user's model in Extended Control and
Simulation Language (ECSL). For models in its
domain, CAPS guarantees to produce an ECSL (5)
program that represents a logically consistent
model and that will complle/execute on the first
run. Essentially this rapid feedback of model
results may alter the traditional procedure of
development, validation, and use of a model, With
rapld feedback, macro level models can quickly be
developed in the traditional manner. Only the
most sensiltive elements indlcated by the macro
level model need be expanded for the final micro
level model., By applying one's modeling effort in
those areas with the greatest potential payoff,
one can achleve a more useful model for the same
level of effort or the same quality of model for
less effort.

4, COMPARISON WITH PETRIE NETS

In the foregoing, several similarxities of ACD's to
Petrie Nets have been pointed out. Both are not
only directed graphs, but bi-partite directed
graphs, i.e. the arcs connecting graph elements
never go between the same type of elements but,

in ACD's, content queues to activities and
activities to queues. The queues in ACD's
correspond to places in Petrie Nets and the
activities to transitions., Petrie Nets have only
one type of entity, a token, which moves about the
Net. AGD's have multiple types of markers,
serving the same purpose, one type for each entity
type. Transitions are used to change the status
of the system in Petrie Nets, as activities do in
ACD's., 1In ACD's the activities take place over
time, a duration, which may be zero or greater
than zero,

The conditions for a transition to take place,
"fire", is that a token 1s in each of the
immediate predecessor positions. The result of
firing is to place tokens in each of the successor
positions. There may be differences in the
numbers of predecessor and successor positions,
i.e, the transition may be a source or sink for
tokens, ACD's may have multiple predecessor and

G.K. HUTCHINSON

492

@ XPON
-)

ENTER

D

CN I

TRANP

Activities
ENTER MVOF - Move WP to Off Queue ——— Workpiece
GEIT - Get Transport UNLD - Move WP to Tramsporter —6— Arrival Control
TRANP - Transport Workpiece 1L0G ~ WP Completed - - - ~Transporter
LOAD - Move WP to On Queue TRANG — Transport between Groups ——6—— On Queue
MVON - Move WP to Machine Bed TBUF - Transport WP to Buffer —3¥—— Machine
PROC -~ Process WP TWP — Pick up WP Move —3F%—— Machine Bed

—F—— Off Queue

Fig. 4 Activity cycle diagram for an ABMS

successor queues but the rules for choosing
entities from them may Be very complex. Multiple
entities may be required, "batching'". The entities
may bBe placed in more than one successor queue
depending on the result. of the activity: In
general, ACD's seem oriented tc real world problems
of analysis and simulation which Petrie Nets appear
to be superior for analytical, theoretical investi-
gations.

5. SUMMARY

ACD's appear to hold much. promise as a means of
studying and simulating complex, dynamic systems.
The automation of the generation of simulation
programs has Been accomplished through CAPS. CAFPS:
has been successfully implemented throughout the
world on any computer with ASCll Fortran IV,
backing store, and 16K word memory. In fact CAPS
is operational on the Zilog Z8Q chip based ALTOS
8000 micro computer.

REFERENCES

Clementson, A.T., (1978), "ECSL CAPS, Detdiled
Reference Manual," University of Birmingham,
Birmingham, England.

Hills, P.R. (1969), "HOCUS--USER's Manual," P.E.
Consulting Group, London.

Hutchinson, G.K. (1978), "Computer Aided Simula-
tion for Computer System Studies," 1978
Winter Simulation Conference, Vol. 1, IEEE
78, CH 1415-9.

Hutchinson, G.K. (1975), "An Introduction to
Activity Cycles," Simuletter, October.

Peterson, James L. (1977), "Petrie Nets,"
Computing Surveys, Vol. 9, No. 3, September.

THE AUTOMATION OF SIMULATION

APPENDIX
@XQT K*KK.CAPS (Exacute the CAPS program)
EXTENDED CONTROL AND SIMULATION LANGUAGE

COMPUTER AIDED PROGRAMMING SYSTEM

DO YOU WISH TO HAVE INSTRUCTIONAL COMMENTS=-
No

PROBLEM NAME~

Barber

DO YOU WISH TO START A NEW PROBLEM
Yes

_ TYPE NAME OF ONE KIND OF ENTITY

Barber,2
TYPE A LIST OF THE STATES THROUGH WHICH THESE
ENTITIES PASS. PRECEDE QUEUES BY Q AND
ACTIVITIES BY A.

Acut

IS THIS CYCLE CORRECT
Yes

TYPE NAME OF ONE KIND OF ENTITY
Cugtomer,25

TYPE LIST OF STATES AS ABOVE.
Qout, Aarrive, Qwalt, Acut, Qout

IS THIS CYCLE CORRECT
Yes

TYPE NAME OF ONE KIND OF ENTITY,

ARE THERE ANY (OTHER) ACTIVITIES WHICH USE MORE
THAN ONE ENTITY OF A PARTICULAR TYPE
No

FROM WHAT YOU SAID SO FAR, THE FOLLOWING ARE THE
MAXIMUM NUMBER OF SIMULTANEOUS REALISATION OF THE
ACTIVITIES.

ACTIVITY NUMBER

CcuT 2 LIMITED BY THE NUMBER OF BARBER
ARRIVE 25 LIMITED- BY THE NUMBER OF CUSTOM
DO YOU WISH TO APPLY ANY LIMITS WHICH ARE BELOW
THESE

Yes

WHICH ACTIVITY

Arrive

WHAT IS THE LIMIT

1

WHICH ACTIVITY

NOT MORE THAN 3 OF THE 25 CUSTOM CAN BE ACTIVE AT
ONE TIME.

DO YOU WISH TO SEE A SUMMARY OF THE CYCLES.
No

DO YOU WISH TO MAKE ANY CHANGES IN THE LOGIC
SECTION
No

PRIORITIES

e et e o o

ARE THERE ANY QUEUES WHOSE DISCIPLINE IS NOT
FeT=F=0
No

493

THE ORDER OF THE FOLLOWING ACTIVITIES IS UN=-
IMPORTANT
ARRIVE
cuT
DO YOU WISH TO MAKE ANY CHANGES IN THE PRIORITY
SECTION
No

ARITHMETIC

AFTER EACH ACTIVITY NAME, TYPE FORMULA FOR ITS
DURATION

IF THE DURATION MIGHT BE ZERO, TYPE O+....
ARRIVE=

NEGEXP (MAT, XX)

CUT =
NORMAL(MST, 3, XX)

IN WHICH ACTLVITY IS ‘MAT
WHAT IS ITS INITIAL VALUE
22
IN WHICH ACTIVITY IS XX
WHAT IS ITS INITIAL VALUE
1243
IN WHICH ACTIVITY IS MST
WHAT 1S ITS INITIAL VALUE
20
DO YOU WISH TO DEFINE ANY MORE ATTRIBUTES FOR
ENTITIES
No
DO YOU WISH TO MAKE ANY CHANGES IN THE ARITH~
METIC SECTION
Yo

EVALUATED

EVALUATED

EVALUATED

RECORDING

WAIT =

5

OUT =

0

DELAY HISTOGRAM RANGES

WAIT RANGE=0 TO

100

WHAT LENGTH OF RUN-IN PERIOD IS REQUIRED
100

DO YOU WISH TO MAKE ANY CHANGES IN THE RECORDING
SECTION
No

INITIAL CONDITIONS

ARE THERE ANY ACTIVITIES IN PROGRESS
Yes
ACTIVITY -~
Arrive
TERMINATION TIME =
12
ACTIVITY
CcY\YuT
TERMINATION TIME =
18
TERMINATION TIME =
8
TYPE HOW MANY ENTITIES SHOULD BE IN EACH QUEUE
LISTED AFTER THE QUEUE NAME
CUSTOM -~ 25 ENTITIES
3 USED BY ACTIVITIES IN PROGRESS
WAIT -

494 | G.K. HUTCHINSON

2
ouT ~
20
PLEASE GIVE THE DURATION OF THE SIMULATION
2100 .
DO YOU WISH TO MAKE ANY CHANGES IN THE INITIAL
CONDITION SECTION
No

SOME ENTITIES ARE APPARENTLY SUITABLE FOR
AGGREGATION

I1.E. THEY HAVE NO ATTRIBUTES, NO DELAY RECORDING
AND. USE ONLY FIFO Q-DISCIPLINE

DO YOU WISH ME TO AGQREGATE BARBER

PARDON - PLEASE ANSWER YES OR NO
Yes

YOUR PROGRAM HAS BEEN WRITTEN HAVE YOU FINISHED
Yes

ECSL PROGRAM WRITTEN TO FILE BARBER

B e L A e S A T S P T S R S T

@CoST
FOR Y59184 AT 18:05:38 ON 10-20-80..,COST VERSION
80-01. ..
SPECIFY ITEM:175725
ALL
ITEM AMOUNT SPENT LIMIT
CAU 0.27 $.02 60
CARDIN 595 $.06
CONNCT 8 $.02
CORE 0.03 $.03
CORESQ 0.57 $.01
FILERQ 255 $.09
FILEWD 78679 - $.01
J0B i $.02
PRINT 2 $..02 222
PUNCH 0 $.,00 200
TOTAL $.40 8777.33
MORE?
@
$.41 (Use EDIT program to list the ECSL
READY program written by CAPS. (Not
READY required to do so.))

@EDIT,U BARBER.
EDIT 1.46-10/20/80-18:06:30

EDLT

:P 222

*COMPILE BARBER .
THERE ARE 25 GUSTOM SET WALT ouT
THERE ARE 1 ZZARRI

FUNCTION PICTURE NORMAL NEGEXP

CUSTOM1 1INTO WAILT AFTER 12
TIME OF ZZARRI = 12

BARBER+ 1 AFTER 18

CUSTOM2 INTO ouT AFTER 18
BARBER+ 1 AFTER 8

CUSTOM3 INTO ouT after 8
RECYCLE '

RUNINZ= 100 AND SWITCH ADD ON AFTER RUNINZ AND
PREVCLOCK =RUNINZ

ACTIVITIES 2100

DURATION= CLOCK - PREVCLOCK

ADD WAIT TO HIST ZAWAIT DURATION
ADD TIME IN WAIT TO HIST ZBWAIT (11,5,10)
ADD DURATION* BARBER TO AZBARBER

FOR ZZARRI WITH TIME
DURATION TO BZZZARRI:
- PREVCLOGK = CLOCK
BEGIN ARRIVE
TIME. OF ZZARRI LE 0

OF ZZARRI LTOADD

FIND FIRST CUSTOM A FROM ouT

DURATION= NEGEXP(MAT » XX)

ADD 1 TO ARRIVE

CUSTOM A FROM OUT INTO WAIT AFTER DURATION
TIME OF ZZARRI= DURATION

BEGIN CUT

BARBER GEL

FIND FIRST CUSTOM A FROM WAIT
DURATION= NORMAL(MST » 3, X)

ADD 1 TO CUT

BARBER- 1 AND BARBER+ 1 AFTER DURATIOM

CUSTOM A FROM WALT INTO OUT AFTER DURATION
REPEAT
FINALISATION
PRINT “ ARRIVE WAS STARTED“ARRIVE“TIMES~
PRINT “ CUT WAS STARTED“CUT “TIMES~
PRINT“UTILIZATION OF BARBER“+4, (1.0~AZBARBER/
(2.0*%(CLOCK -RUNINZ)))
PRINT“UTILIZATION OF ARRIVE“+4, (1.0-BZZZARRI/
(1.0%(CLOCK -RUNINZ)))
PRINT /“HISTOGRAM OF LENGTH OF QUEUE WAIT~
/PLICTURE (ZAWAIT)
PRINT /“HISTOGRAM OF DELAYS AT WAIT” /PICTURE
(ZBWAIT)
DATA
BARBER 0
WAIT 4TO 5
ouT 6T0 *
MST 20
XX 1243
MAT 22
END
*STOP
%%TOP OF FILE%%
:@COST
NOTHING CHANGED, NOTHING FILED .
FOR Y59184 AT 18:07:51 ON 10-20-80...COST VERSION
80-01...
SPECIFY ITEM:
@p :
$.51 (Cost up to now)
READY
READY (Execute the ECSL program)
@XQT K*KK.EGSL
TYPE NEXT CONTROL CARD NOW
@ADD BARBER. (Add the file with your program in
it - note period!_

6308 SPACES AVAILABLE FOR LISTS
TYPE NEXT CONTROL CARD NOW
ARRIVE WAS STARTED 104 TIMES
CUT WAS STARTED 104 TIMES
UTILIZATION OF BARBER .5277
UTILIZATION OF ARRIVE .9665

(Execution
Results)

HISTOGRAM OF LENGTH OF QUEUE WAIT

CELL FREQUENCY
L4191 sesede dedededesede e dedededede e deso dede dodede e dede oo oo doe e oo e

FHAAAAK AR AHAARERA R F A AR AR AR R KA AR AR AR
1 19Q#kskkkiikidis
11 kkdedddd
39w
5%k
55%%k
LO%R%
16%
4

O~

HISTOGRAM OF DELAYS AT WAILT

CELL FREQUENCY
L e L T e T P T T T

THE AUTOMATION OF SIMULATION

15 20%dekickkicofoiohidiokdakiiek

25 Sidvivk
35 Gk
45 Shdekik
55 4k
65 5k

TYPE NEXT CONTROL CARD NOW (Running took 1 min.
14 sec. —- cost $0,26;

END OF ECSL PROGRAM a%ototal time to
e defosk devledede ek e ekl results w/o printing -
9 min, 27 sec. - cost
$0.661)
@cosT
FOR Y59184 AT 18:09:05 ON 10-20-80.,.C0ST VERSION
80-01...
SPECIFY ITEM:
@p
$,77 -~ ,51 (The remaining output
READY is reruns of problem
READY’ with more arrivals of
@EDIT,U BARBER, customers)
EDIT 1.46-10/20/80-18:09:24
EDIT
340

PRINT/ “HISTOGRAM OF LENGTH OF QUEUE WAIT~
/PICTURE (ZAWAIT)

+50

EXECUTE

495

