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Further Investigation into Spectral Analysis
for Confidence Intervals in Steady State Simulations

Neil B. Marks
Department of Mathematics
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In using spectral analysis for confidence intervals in
steady state simulations, the parameter 1 must be specified.
This quantity determines the order of the covariances which

are needed in computation of the standard error.

This paper

investigates the effect of 1 on the standard error using a
small experiment conducted on four queueing systems.

1. INTRODUCTION

The construction of confidence intervals based on
simulation output has been a subject of great
interest for some time. Confidence intervals com-
puted by ordinary methods often fail far short of
desired coverage levels. This problem stems from
an underestimated sample variance often. This in
turn is the result of the simulation output's
tendency to violate assumptions of classical
statistics. This is, the data are often not in-
dependent observations of a process and are not
identically distributed. Hence, under these con-
ditions use of the customary t distribution and
the simple sample variance are very difficult to
Justify.

Fortunately, several methods are available for
confronting the variance estimation problem in
simulation. The ones mentioned concern simula-
tions of fixed sample sizes, and each will be
described briefly below.

In the method of replications a total of n obser-
vations is collected (Law, 1980). This sample is
obtained by k independent replications of sizem
(k-m=n). The mean of each replication is com-
puted, and from these a grand mean is calculated.
Then, the standard error of the grand mean is
figured by standard procedure, leading to a con-
fidence interval of the following form:

R+t s e(R) ()

This method is based on the central [imit theorem
for justification, but in practice the sample
means and variances are still biased, producing
unreliabie interval estimates (Blomqvist, 1970;
Fishman, 1972; Turnquist and Sussman, 1977).

The technique of batch means involves a single
simulation run of length n. This sample is
divided into k subsamples (batches) of length m
(k:m=n). Then, construction of the confidence
interval proceeds as in repiications. Under well
prescribed conditions, this method produces unbi-
ased sample means and highly acceptable estimated
variances (Fishman, 1978; Fraser, 1957; Law, 1977).
in addition, the batch means will be approximately
normally distributed. However, for highly auto-
correlated data or for m chosen too small, this
technique 1s unacceptable.

The autoregressive procedure is not concerned with
producing independent random variables from corre-
Tated raw data. Here the data are assumed to be

a covariance stationary time series. Developed by
Fishman (Fishman, 1971; Fishman, 1973; Fishman,
1978), tnis technique involves estimation of the
variance using covariances of assorted orders.
While theoretically elegant, this method fails
often because the stationarity assumption is vio-
lated, and the use of the t-distribution for the
interval itself is sometimes not justified. Spec-
tral analysis builds from this based with modifi-
cation to provide a more cogent model. It too has
Timitations but in some situations is superior to
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the other three techniques méntioned, Since this
paper is concerned with one aspect of spectral
analysis, the next section will describe the
method and the specific problem to be analyzed.

2. SPECTRAL ANALYSIS

As with the auteregressive approach,:the data are
assumed to comprise a covariance stationary time
series. However, some problems encountered in
connection with estimation of parameters of the
autoregressive model are avoided in spectral anal-
ysis.

In this technique a single sample of :size
Ny X1s Xoseooss »X, 1s collected. The sample mean,

X; is computed from all n observations. As usual,
however, the variance estimation is a complicated

matter. One form which has met with popular ac-
ceptance is the foliowing:
1-1
i Cy * zszlw1(s)
Var (X) = . (2)
n-1
where f-s o )
. ) tEl(xt - X)(xt+s - X) |
s (3)
n

Co is seen to be the ordinary sample variance,
while the Cs are covariances of different orders.
The w](s) term is known as the spectral window.

Though it can assume several functional forms,
the Tukey window

% (1 + cos(mws/1)) (4)

appears to be superior to the rest. The choice
of 1 is obviously very important, but its dis-
cussion will be delayed briefly. F1shman (1969,
1973) shows that the t-distribution is appropri-
ate for this situation, so that the confidence
interval is

X + tk’-l' ,Z(Var(i));&

The degrees of freedom, k-1, are equal to cn/1,
where c=1.33 for the Tukey window.

The chojce of 1 is a wide open matter. If one
wishes to establish k-1 in the manner of prepar-
ing for batch means, then 1 is found to be
cn/(k-1). Some have suggested that ] should be
a fraction of sample size, e.g., n/i0, n/6, n/4,
but no consensus has been reached on the correct
proportion. Clark (1978) has developed an heu-
ristic procedure for choosing 1, but his method
was complicated parameter estimations which make
practical implementation difficult.

The purpose of this paper is to examine empiri-
cally the choice of 1 as a function of sample
size. The next section describes the methodology
for the study, while the following section per-
tains to the analysis of results.

3. HMethodotogy

Data was obtained for transit times through four
simple queueing systems: M/M/1, M/M/2, M/E2/1

and E2/M/1. The traffic intensity in each case

was set to .8 to insure congestion and a reason-
able amount of autocorrelation in the output. A
GPSS program was utilized to generate a 15 trans-
action warmup run followed by eight batches of
size twenty for each system. For each of the
eight batches the variance was computed according
to equations (2), (3) and (4) above, obtaining
results for 1=2,3,4, and 5. By doing this 1 is
ranged from n/10 to n/4 the suggested span in the
Titerature.

Thus, for each system 32 variances were calculated,
four for each sample. To test for differences
attributable to the values of 1, the appropriate
technique is two-way analysis of variance. Due to
the distinct possibility that the assumptions of
the F-test would be violated with data on vari-
ances, the nonparametric Friedman two-way ANOVA
test was employed 1n analysis. Where significant
differences across 1 values were found, the V¥il-
coxon matched pairs signed ranks test was used to
compare adjacent values. Both tests are nearly

as powerful as their parametric analogues, espe-
cially when distributional assumptions cannot be
proven. The methods will be described in the next
section as the results are analyzed.

4. ANALYSIS OF RESULTS

Below in tabular form are the variances computed
for each system, sample and 1 value.

Table 1
Variances
M/M/1
1= 2 3 4 5
Sample

1 72,9479 80.6970 77.2925 71.7444
-2 65.1718 71,4575 70.0003 66.8403
3 65.0607 72,3338 73,5866 72.8412
4 56.7841 60.5267 56.7350 49.7624
5 36,1882 37.4067 32.8029 24.9731
6 36.1364 42.0250 42.6164  40.0403
7 38,2172 43.8075 43,3907 39.0726
8 35,6607 37.9211 35.5355 31.5604

M/M/2
1 32.4078 35.4548 34.4197 32.1798
2 25,4109 22.6155 17.5507 13.2147
3 31.6356 33.6014 30.6525 26.0418
4 28.2329 27.4240 23,3258 18.1594
5 39.6358 42.2308 29.5964 34.4480
6 47,8247 47.6985 38.4600 26.7411
7 51.7861 49.6159 38.2029 25.9471
8 50.1340 49,3730 42.4463 35.8855

M/Ez/l
1 44,3204 46,2087 43,4277 41,3175
2 40.1241 38,5791 32.4486 27.5701
3 38,1541 36.4604 31,2896 27,7513
4 29,3937 32,1985 33,7829 35,3755
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5 32,0882 97,3123 40,5793 43,4978
6 42,9156 50,9449 55,1495 67,1487
7 43,7709 52.3299 58.2252 64,9937
& 44,1215 51,5753 59,0730 67,1271
Ep/M/1
1 32,0085 44,4802 50,7552 59.7101
2 31118 355935 39,2775 42,4101
3 46,9553 53,1208 55,0609 56,1537
4 40.5819 46,5028 48,6149 50,2785
5 38,9881 40,9996 40,1350 39.4595
6  30.2836 32,5563 32,1464 30,4153
7 48,5517 52,8434 49,8013 43,7006
8  75.9960 83.8758 81,9040 77,4233

The Friedman test requires ranking of observations
in each row and then summation of ranks in each
column as follows:

Table 2
Row Ranks
M MW/
Sample 1= 2 3 4 5
1 2 4 3 1
2 1 4 3 2
3 1 2 4 3
4 3 4 2 1
5 3 4 2 1
6 1 3 4 2
7 1 4 3 2
8 3 4 - 2 1
5 29 723 13
MM 2

Sample 1= 2 3 4 5
1 2 4 3 1
2 4 3 2 1
3 3 4 2 1
4 4 3 2 1
5 3 4 2 1
6 4 3 2 1
7 4 3 2 1
8 4 3 2 1
w® 7T 8

M/E2/1
Sample 1= 2 3 4 5
1 3 4 2 1
2 4 3 2 1
3 4 3 2 1
4 1 2 3 4
5 1 2 3 4
6 1 2 3 4
7 1 2 3 4
8 1 2 3 4
T 20 72T 73

EZ/M/l
Sample 1= 2 3 4 5
1 1 2 3 4
2 1 2 3 4
3 1 2 3 4
4 1 2 3 4
5 1 4 3 2
6 1 4 3 2

7 2 4 3 1
8 1 4 3 2
T 2 % 3

The test statistic is computed as follows:

k
2_ 12 2
Ko= ety 2y (Ry) - (k)

where N = no. of rows
= no, of columns h
R.= sum of ranks in J~ column

J

For each case N = 8 and k = 4, The testing
results are found in the following table:

Table 3
Friedman ANOVA Results
System XE p_valye
M/M/1 12.3 .008
M/M/2 19.95 <,001
M/E2/1 1,95 .98
EZ/M/l 12,15 .008

In three of the four cases, the null hypothesis of
no difference between columns (1 va]uesg can be
rejected at the 1% level of significance., For
these systems obviously judicious care must be
taken in the selection of the 1 value. There is
no obvious explanation for the unusual behavior
of the M/E2/1 system.

The Wilcoxon text will be demonstrated for the
middle two columns of the M/M/1 results, and then
all significance tests will be summarized in Table
4, For this method pairwise differences are com-
puted in each row. Then, the absolute values of
these differences are ranked, but the ranks are
given the sign of the difference, The ranks asso-
ciated with the Jesser number of signs are summed,
and this number is compared with a table value to
establish statistical significance. The critical
values for the sum (T) are 4 at the 5% level of
significance, 2 at 2%, and 0 at 1%. For the sec-
ond and third columns of M/M/1 data, we have

1=3 1=4 d Ranks (signed)
80.6970 77.2925 3.4045 6
71,4575 70.0003 1.4572 4
72,3338 73.5866 -1,2528 -3
60,5267 56,7350 3,7917 7
37,4067 32,8029 4,6038 8
42.0250 42.6164 - ,b914 -2
43,8075 43,3907 L4168 1
37,9211 35,5355 2,3856 5

Thus, T = 3 + 2 = 5, which causes acceptance of
the null hypothesis of no difference between
columns (1 values).

Table 4

Wilcoxon Test for
Significant Differences
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WM/l
Column Pair 2-3 3-4 4-5
Test Result ‘.01 NS L0l
M/M/2
Column Pair 2-3 3-4 4-5
Test Result NS .01 .01
E2/M/1
Column Pair 2-3 3-4 4-5
Test Result .01 NS NS

NS--Mo significant difference
.01--Significantly different.at 1% level

Legend:

4. Conclusion

The effects of varying the parameter .l in the
spectral analysis of simulation data were examined
in this paper. In three of the four queueing sys-
tems modelled, highly sighificant differences in
variances attributable to 1 were found. The ef-
fects of adjacent values of 1 were less obvious.

In nearly half the cases tested, no significant
difference was found due to 1, but from system to
system the placement of this 1ns1gn1f1cance
varied. Thus, no pattern could be established re-
garding the sensitivity of this parameter. Per-
haps larger sample studies will be ab1e to shed
further 1ight on the subject.
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