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A procedure is presented for assessing the sensitivity of a discrete event digital

simulation model to the values assumed for its input parameters.

A freguency

domain approach is taken where the input parameters oscillate throughout a run

of the model.
spectrum of the simulation response.

eters may be screened in a single run.

1. INTRODUCTION

In a simulation study one is often interested in
how the simulation output, or response, depends on
the input parameters. Parameters are fixed but

unknown quantities affecting the system environment.

For example, the averace demand rate is a parameter
of a simulated inventory system. The system's
sensitivity to a particular parameter influences
the amount of effort that should be spent in esti-
mating the parameter and in experimenting with the
simutation model for different values of the param-
eter. In this paper we present an inexpensive
experimental method for characterizing the sensi-
tivity of the response to the input parameters.

The experimental unit in a simulation study has
traditionally been a single run of a computer pro-
gram. For each run the parameter values are set
according to an experimental design and remain
fixed throughout the run. When the number of input
parameters is large, classical experimental designs
require a large number of runs. The result is
that classical experimental designs can be prohi-
bitively expensive for assessing the sensitivity of
the simulation response to the parameters, partic-
ularly when one does not know whether some of the
parameters are important at all. Hillier and
Lieberman (1980) summarize this unfortunate situ-
ation and give an indication of the current state
of practice in simulation sensitivity analysis:

Therefore it is very expensive to

conduct a sensitivity analysis of

the parameter values assumed by the

model. The only possible way would
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Parameter sensitivities are indicated by changes in the freguency
The spectrum can be used to identify a
regression model for the simuiated response surface.

Several continuous param-

be to conduct a new series of
simulation runs with different
parameter values, which would
tend to provide relatively little
information at a relatively high
cost.

We propose a method that increases the amount of
information that can be obtained from each simula-
tion run by shifting the analysis into the fre-
quency domain. In the frequency domain, the
experimental unit is a frequency band within a
run, and each run contains a large number of
experimental units. During each run, each param-
eter is assigned to one of the frequencies and is
varied according to a sinusoidal oscillation at
its assigned freguency. This is possible in simu-
lation studies because one can design a simulation
model to give the experimenter complete control
over the parameter values, including the ability
to change those values during a simulation run.

If the response is sensitive to a particular
parameter, then the modulation of that parameter
will tend to induce predictable oscillations in
the response series. If the response is insensi-
tive to a parameter, then the modulation of that
parameter will not alter the response. Spectral
analysis can be used to identify the induced
oscillations in the response series and attribute
their cause to particular parameters.

The simulation response surface acts to ampliify
parameter oscillations. Consider the simple situ-
ation pictured in Fig. 1. The response is a linear
function of one parameter over the experimental
region. If the parameter oscillates during the

run at the frequency w, the response will dis-
play an oscillation at the same freguency
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amplified by the slope of the response surface.

Response

Time

Parameter

Time

Figure 1
Parameter Oscillations Causlng
Response Osciliations

Driving a system with sinusoidal oscillations is
common in areas such as electrical engineering
and seismology. To the authors' knowledge, this
technique has not beep applied to the analysis of
discrete event digital simulation models. OQur
development differs from that found ip the elec-
trical engineering literature in that we make use
of elementary statistical experimental design
concepts. We presume the reader has some famil-
iarity with the spectral analysis of t{ime series
and the statistical design of experiments.
Chatfield (1975) gives a sufficient background in
spectral analysis in Chaptersé and 7 of his book,
and Kleijnen (1975) gives an overview of experi-
mental design for simulation studies in Chapter 4.

2. 'TECHNICAL DEVELOPMENT
The objective of the simulation study is to iden-

tify a polynomial regression model which expresses
the response as a function of the input narameters;

that is,
? a.t.
s JJ

3=1 |
is the simulation responseJ

Efy] =

a; is the regression coefficient corre-
sponding to the term tj,

t. 1is a term in the regression model;

it is a product of powers of the_param-
eters such as. t.=x; or 't.==xfx,,
and 3o VI

g is the number of terms in the regression
model.
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We propose to identify the proper terms to include
in the regression model by driving the parameters
with sinusoidal oscillations and analyzing the
spectrum of the simulation response.

To estimate the response spectrum, the response

must be observed at equally-spaced intervals. Let

ACERERIVA be the response series. The spectrum
is estimated by computing

~ '| m

flu) = = L Ay Gy ©0S wk

using the samp]e auto-covariance function

Z (YY) Ygqy) If k20

C_k if k<0

and the spectral window
= %{1 + cos wk/m)

I/
S

m= n.

L=

The spectral window should be chosen to smooth the
spectrum, balancing resolution against the pre-
cision of the estimates. Ue have used the Tukey
window whose size is one-third of the number of
observations for reasons that will be discussed
later,

There are two major advantages in shifting the
analysis into the frecuency domain. The first is
that independent frequency bands of the spectrum
provide the vehicle for screening several param-
eters in the same run. The spectrum of the
response decomposes the variability of theresponse
into components at each particular frequency. A
peak in, the spectrum indicates a large contribu-
tion to the variability of the response at the
corresponding frequency. For a linear system with
a uniform gain (gain will be discussed later),
driving the parameters with sinusoidal oscilla-
tions induces sinusoidal oscillations at the same
frequency in the response. The response oscilla-
tions are amplified by the slope of the response
surface for each parameter. Suppose the param-

eters Xys....x, are driven by sinusoidal
oscillations at the driving frequencies m],...,ww
respect1ve1y The spectral estinates

Flu)seeos (w ) at the driving frequencies indi-

1)
cate the re]at1ve importance of these frequencies
in the response, from which we can make inferences
about the relative importance of the parameters
oscillating at these freguencies. Because the
frequency domain approach provides a large number
of frequency bands in one run, severa] '‘parameters
may be screened in ohe run.

The second advantage in shifting the analysis into
the frequency domain is that non-linear effects,
such as powers and product interactions of the
parameters, can be detected with no additional
experimentation. When the paraméters are driven
by sinusoidal oscillations, it turns out that
powers and products of the parameters are driven
by compound oscillations which are the sums of
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sinusoidal oscillations. The frequencies present

in a compound oscillation are called the indicator

frequencies for the power or product term. Each
term in the response model has a unique set of
indicator frequencies. The presence of a particu-
Tar term is indicated by increases in the spectrum
at its indicator frequencies. Indicator frequen-
cies can be determined by examining trigonometric
identities.
is driven by a sinusoidal oscillation at the fre-
quency w,»

X_it = oy cos wit.

The guadratic term x? can be expressed

X?t = %~a$(1 + cos Zwit).

Hence the presence of the term X3 is indicated
by an increase in the spectrum at the frequency

2w1. For products suppose
Xog = @, €OS wht and
Xjp = o3 €OS wst.
Then

XppXig = %’“hai(cos(wh+“i)t + cos(wh-mi)t),

so that the presence of the term Xp %y is indi-
cated by increases in the spectrum at both w0, oy

and W0 - In general, the indicator frequencies
for the power xk

p are kwi, (k-Z)wi, (k-4)w1,

etc., and the indicator freaguencies for a product
are all possible sums and differences of the
driving frequencies of the factors in the product.
By looking for increases in the spectrum at the
indicator freouencies of powers and products,
non-Tinear terms can be detected with no addi-
tional experimentation.

There are a few considerations to keep in mind
when using the frequency domain approach to iden-
tify the important terms in a model of the
response. The first is that the response spectrum
can become quite crowded with indicator frequen-
cies. For example, if screening four parameters
for linear effects, quadratic effects, and two-way
product interactions, there are twenty indicator
freguencies to consider, {“i’ Zwi, w-iwj for

i
i,J = T,...,4}. To ensure that effects at these
frequencies can be distinguished from one another,
a2 high-resolution spectrum should be used. The
spectral window provides control over the resolu-
tion of the spectrum, with larger window sizes
giving estimates with higher resolution and lower
precision. Chatfield (1975) recommends that the
window size be between one-third and one-twentieth
of the number of observations. Because resolution
is important in this approach, we recommend a
window size from the higher end of this range. An
added benefit of a high-resolution spectrum is
that spectral estimates at different frequencies,
especially non-neighboring frequencies, are more
nearly independent.

Another consideration is the phenomenon of
aliasing. When the spectrum is estimated from

For exampie, suppose the parameter x,

observations taken at equally-spaced intervals, the
hidhest frequency that can be detected is one-half
cycle per observation, known as the Nyquist fre-
quency. Freauencies above the Nyguist frequency
appear as if they were other frequencies below the
Nyquist frequency. Aliasing has the effect of
"folding" the entire range of frequencies onto the
interval between zero and one-half; its effect is
determined by the following rules:

(1) Frequencies w e [0, 1/2]
we [1/2, 1]

appear at the frac-
that is, at w-lwl.

are unchanged.

(2) Freguencies appear at 1T-uw.

(3) Frequencies w > 1
tional part of w;

(4) Frequencies w < 0 appear at |w|.

A11 frequencies must be interpreted in terms of
their aliases. For example, suppose wy = A4 is
the driving freguency of the parameter X; - The
indicator frequency of the quadratic term x? is
2v; = .8. Under rule (2) this frequency appears

in the spectrum at the alias frequency .2.
a quadratic effect would be indicated by an
increase in the spectrum at the frequency .2.

Hence

Another consideration is the system gain. The
system gain prescribes how the system amplifies or
suppresses input oscillations at each frequency.
Systems sometimes have the effect of filtering out
particular types of variability. A low-pass filter,
such as computing an exponentially-smoothed average,
suppresses high-freguency fluctuations so only low-
frequency variability appears in the spectrum. A
high-pass filter, such as computing a period-by-
period change, suppresses low-frequency cycles so
only high-frequency variability appears in the
spectrum. In general, the system gain can greatly
affect the spectrum, raising it at some frequencies
and lowering it at others. If it lowers the spec-
trum at one of the indicator frequencies, it may
cause one to miss identifying an important term in
the response model. One way to compensate for
system gain is to estimate it. This requires addi-
tional simulation runs and is rather complicated,
considering there may be an interaction between
parameter and frequency~-the system may act as a
low-pass filter for one parameter and a high-pass
filter for another. Instead of estimating system
gain we recommend treating gain as an unknown
nuisance factor and blocking on it. A few simu-
lation runs could be made changing the driving
frequencies of each parameter between runs. For
example, a second run could assign a high driving
frequency to each parameter that had a Tow driving
frequency in the first run and a low driving fre-
quency to eacn parameter that had a high driving
frequency in the first run. This way there is a
smaller 1ikelihood tnat an important term can be
suppressed by a Tow system gain on every run. We
have found blocking to be an effective and effi-
cient technique for dealing with system gain.

In many systems the spectrum may show such a dis-
tinct increase at some of the indicator frequencies
that a visual inspection is sufficient to identify
the important terms in the response model. Rigorous
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statistical analysis of the spbectral results is
also possible. Significance tests for changes in
the spectrum at particular_frequencies can be based
on the fact that [8n F(w)]/[3m f(w)] has an
asymptotic chi-square distribution with 8n/3m
degrees of freedom. For example, suppose w is

an indicator frequency of a particular term. Let
fs(w) be the spectral estimate from a signal run

in which the parameters are driven by sinusoidal
oscillations, and let fn(m) be the spectral

estimate from an independent noise run in which
the parameters are held fixed. If the term has no
effect in the response model and if driving the
parameters with sinusoids changes the spectrum
only at the indicator frequencies, then the true

spectral values fs(m) and fn(m) are equal.

Hence the spectral ratio %s(w)/%n(w) has an F

distribution with 8h/3m and 8n/3m' degrees of
freedom and can be used to test for the presence
of the term in the response model.

3. DESCRIPTION.OF THE PROCEDURE

The following steps outline a procedure for screen-
ing parameter sensitivities in the frequency '
domain.

(1) Design the simulation model so the parameters
can be driven with sinusoidal oscillations.

(2) Decide what types of terms will be screened;
for example, linear effects only or linear
effects and interactions. The procedure
will select a subset of these terms for
inclusion in the response ‘model.

(3) Choose driving frequencies so that the indi-
cator frequencies of the terms are distin- -
guishable from gne another.

(4) take a signal run, driving the parameters
with sinusoidal oscillations. Estimate the
response spectrum, and Took for, peaks in the
spectrum. '

(5) Make a noise run, holding the parameters
fixed. Determine the indicator frequencies
at which the signal spectrum shows an
increase. This determination may be made by
either & visual inspection or a statistical
analysis. :

(6) If it is suspected that there may be effects
from a non-uniform system gain, make addi-
tional runs changing the driving frequencies
assigned to the parameters. The ultimate
experimental objective should giiide the need
for additional runs. If the objective is ‘to
determine whether interactions are présent
to guide the choice of a suitable design
for further expérimentation, one signal run
showing peaks at some interactions will
suffice. If the objective is to eliminate
unimportant variables from further considera-
tion, additional runs may be needed to be
sure that an important term has not been .
suppressed by a Tow system gain at its
indicator frequency. :
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4. AN EXAMPLE

To illustrate how spectral analysis can be used

to identify a response model, we will use the
frequency domain approach to analyze a "black box"
Tinear system. The system response is a function
of four input parameters and a noise process:

Vg T X (¢-5)
2
X1 (t-5)

1
30 (1) 2 (£-2) 2 (£-3))

1

T o155 £-1 2 £-2)3(-2) 2 (£-3)%3(¢-3) )
+ at .
where Yt is the response at time t,

X.. is the value of parametér 1 at time t,

it
is the auto-regressive noise process
B3 -+ .
a, .6at_1 Bet, and
ey is a standard normal white noise
process.

A

The response contains X and x% lagged five

-periods, three-period moving averages of Xy and

XpXg, and some auto-regressive noise. The
response is independent of Xy An ideal screen-
ing procedure should identify X1 x?, Xos and
XoXg 85 the important terms in the response model.
To begin the frequency domain approach, we
decided to limit our screening to first- and
second-order effects; namely, Tinear terms, qua-
dratic terms, and two-way product interactions.

We assigned driving frequencies to the parameters
so that these effects can be distinguished from
one another. One possible set of driving fre-
guencies is .06, .20, .29, and .39. The indicator
frequencies associated with each potential first-
and second-order term are summarized in Fig. 2.

A signal run was made in which each parameter
oscillated at its driving frequency with a mean
of 0 and an amplitude of 2. The response was
observed for three hundred periods, and the
estimate of the signal spectrum T_{w) was
computed. s

The signal spectrum showed distinct peaks at the
frequencies .06, .09, .12, .20, and .49, which

correspond to the termé Xy x%, Xos and XoXg.

" To test the significance of these peaks, we made

an independent noise run, in which the parameters
were held fixed at their mean Tevels. A different
random number stream was uSed to ensure that the
two runs were independent. Again the response-
was observed for three hundred periods, and the
estimate of the noise spectrum fn(w) was com-

uted,  We computed the signal-to-noise ratio
fs(w)/fﬁ(w)- Under the assumption that the true

spectral values fs(m) and fn(w) would be equal
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Term Indicator Freauency Formula for Indicator
Freguency

X .06 )

Xy .20 wy

X3 .29 w3

Xy .39 W

x2 A2 2u,

x2 40 20,

x 42 20,

X 22 20,

Xy Xy Jd4 .26 wyEw,

X X3 .23 .35 wytug

X1 %g .33 .45 wytuy
XoXg .09 .49 PECH
Xo¥Xg 90 .41 wotwy
X3Xg Jo .32 wgtw,

Figure 2
Indicator Frequencies for
Potential Model Terms

if the parameters have no effect, the ratio has an
F distribution with 8 and 8 degrees of freedom.
The signal-to-noise ratio is graphed in Fig. 3.
Note that the spectrum at the indicator frequencies

2 . s s
of the terms Xys Xps X and XoXg 18 signifi-

cantly higher in the signal run.

We have correctly
identified the response model.

Xo%3

critical value -
f8,8('95) 243
X x2

8] Q
00000858583030000000800000000000008000000000000000
2 3 4 5

Frequency

Figure 3
Spectral Ratio Showing Important Terms

5. CONCLUSION

Our experiences with using the freauency domain to
characterize parameter sensitivities and identify

a response model have been most satisfactory. The
use of frequency bands as experimental units
increases the amount of information that can be
obtained from each run. Several continuous param-
eters, along with their powers and interactions,
may be screened in one or two runs. Practitioners
with complicated systems and tight budgets may
wish to use this approach to be able to quickly
focus their attention on a few important parameters.
Researchers may wish to explore further the possi-
bilities offered by the frequency domain.
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