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ABSTRACT

An algorithm for generating phase type random variates is presented.

A phase

type distribution is any distribution which may be that of the time until ab=-

sorption in a finite state Markov process.

us to record only the number of visits,

and then generate appropriate Erlang-k random variates.

The exponential sojourn times allow
to each state before absorption
A related algorithm

for the superposition of renewal processes of phase type is also discussed.

I. TINTRODUCTION

Random variate generation is an important tool in
simulation as indicated by the abundance of liter-
ature in this area. This literature spans over
twenty years of research and is still growing.
Sampling algorithms have been devised and imple-
mented for almost all of the classical univariate
distributions. These have then been examined,
corrected and enhanced by various authors. A
basic reference on random variate generation is
Fishman [4].

Qur present concern is to study the generation of
random variates from distributions defined as
absorption time distributions in absorbing Markov
chains. Such distributions are called phase type
distributions (PH-distributions) and were first
introduced in [8]. Their use in queues and reli-
ability is discussed in [9] and [10]. Erlang,
hyperexponential and geometric distributions are
very special cases of PH~distributions.

It is necessary to develop algorithms for both
continuous and discrete PH-distributions. These
algorithms are analogous but the desire for effi-
cient implementation warranted careful considera-
tion of each case.

As an application of the methods for the genera-
tion of PH-variates, we developed algorithms for
realizations of the superposition of stationary
PH-renewal processes. These are renewal proces-
ses in which the distribution of the time between
renewals is of phase type. PH-renewal processes
were first discussed in [8], explored in more
detail in [11] and are also treated in [9]. The
Markovian nature of the PH-distribution leads to
efficient and exact algorithms with applications

in other contexts, such as multi-server queues
and stochastic networks. These applications will
not be discussed here.

ITI. BACKGROUND MATERIAL
A. PH-Distributions

There are two parallel discussions of PH-distri-
butions; one corresponding to distributions on
[0,2) obtained from absorption times in contin—
uous parameter Markov chains; the other to dis-
tributions on the nonnegative integers obtained
from discrete parameter Markov chains. The de-
tailed discussion of the continuous case, along
with the appropriate discrete analogues, is pre-
sented in [9]. Only relevant definitions and
properties shall be mentioned here.

A distribution F(+) on [0,®) is a PH-distri-
bution if it is that of the time until absorption
in a finite state Markov process with gemerator

i}
1) N
0 0

and initial probability vector Qi,um+l). T is

a non-singular matrix of order m and satisfies
T,. <0, for 1<i<m, and Tij >0, for

ii
. . o _ =
i#3j. Also Te+T° =0 and o e +a 1= 5
where e denotes a column vector of appropriate

dimension with all components equal to one. The
distribution F(-) is then given by

2) F(x) = 1 - a exp(Tx)e ,
and we say F has the representation

Sl >0

for x>0

(o,T). 1If

then F has a jump of height o 4 2t
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the origin. The mean, ui, is given by ui =

- aT—¥g.

The analogous definition for the density {rk}

on the nonnegative integers is as follows. If
{rk} is the density of the time until absorp-

tion in a finite state Markov chain with station-
ary transition probability matrix given by

T T°
01

and initial probability vector

P

(@e ), the
density {rk} is of phase type. T is an mxm

substochastic matrix such that Te + T° = e and
I - T dis nonsingular. The density of the time

until absorption is given by Iy = and T

. S+l k
=aT "lgf, for k > 1. Note that when m = 1,
the exponential and geometric¢ distributions are
obtained for the continuous and discrete cases

respectively.
B. PH-Renewal Processes

The definition of the PH-renewal process is used
in the development of the superposition algo-
rithms. Consider the following construction.
Suppose that upon absorption into the state
m+1 of the Q chain given in (1), independent
multinomial trials are performed with probabili-
ties (g,um+1) until one of the alternatives

1,2,...,m occurs. The Markov chain is restarted
in the state so determined and this procedure is.
repeated at the times of successive absorptions.
By considering path functions which are right-
hand continuous, a Markov chain with the m
states 1,2,...,m dis obtained. The times bet-
ween absorption into state m + 1 are indepen-
dent and identically distributed with common dis-—
tribution F(+) given in (2). The infinitesimal
generator for this chain is given by Q% where
Q% = T + T°A°. T° is an mxm matrix with iden-

° = -
and A° = (1 ol

(ul,...,um). Note that T°A° may also be writ-—

tical columns T° )_1diag

_10 .
ten as (1 - am+1) T°q. The representation

(a,T) 1is said to be irreducible if and only if
Q* s irreducible. TImn [9] it is shown that we
may always choose Q% to be irreducible.

Since Q% is irreducible, existence of the
stationary probability vector, =, of Q% is

assured. The following vesults are proved in
[9].
Theorem: If F(+) is a PH-distribution with,

mean ui, with (irreducible) representation

(a,T) and with corresponding vector =, then
X

% (x) =—}j [1-F(u)]du , for x > 0,

Y170 h

is a PH-distribution with represemtation (u,T).
Definition: A probability distribution F(-)

is asymptotically exponential if and only if
for some K >0 and n >0

1 - Fx) = Ke—nx + o(e—nx), as X > o,

Theorem: If the matrix T 4is irreducible, any
PH~distribution F(+) with representation

(0,T) is asymptotically exponential and -n

is the eigenvalue with largest real part of T.
The constant K = g v, where v ds the positive
right eigenvector of T, corresponding to -n,
is uniquely determined by the requirements that
u+v=u-+e=1, where u is a left eigen-
vector of T, associated with -n.
C. The Alias Method

Walker's alias method as explained by Kronmal
and Peterson [6] is a modified acceptance/re-
jection technique for generating random variates
from a discrete distribution. It is based on
the following theorem proved in [6].

Theorem: Any discrete distribution with density
pn(ki)’ 1 <i<n, with a finite number (n)

of outcomes can be expressed as an equiprobable
mixture of n two-point distributions q (),
i

1 <i <n, in such a way that each mass point,
-ki’ pn(-) is a mass point of qki(-).

=

of

Definition: For 1 < i <n, e (ki) is called
i

the cutoff value for ki and the mass point of
9 (+) that is not k.  is the alias of k..
1 i —_ i

By generating only one uniform variate we can
produce a variate from pn(-). In the notation

of Kronmal and Peterson the algorithm is as
follows.

Alias

1] Generate U uniform on (O,n).

2] Set I«4U+, i.e. I is the smallest integer
greater than or equal to U. I is now an
integer uniform on {1,2,...,n}.

3] Set U<« I-1U. U is now uniform (0,1).

4] If U <gq, (k.) then return k_; else
kI I 1

return j, the alias of kI.

To implement the algorithm, three full-word vec-
tors each of dimension mn are required. These
contain

1) the original density pn(-),
2) the cutoff values for each ki,
3) the aliases of each ki'

An overhead cost of 3n words is small for a
method which requires only one compari:son and one
table lookup per variate generated.

To generate these vectors of cutoff values and
aliases, Kronmal and Peterson devised an algo-
rithm with two appealing features. No extra
"temporary" storage is required and the number
of operations to create the list is proportional
to mn. The procedure systematically reduces the
support of pn(-) by one point so that after k

reductions:
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= k-1 . L . .
p () =" p () += [qjl( )+ qu( ) + ...
+ qjk(-)] .

The mass point ji is chosen such that
pn+l—i(ji) < 1/(a¥1l-i), while its alias, &,
has pn+l_i(2) > 1/(o+l-i). A linked list struc-

ture determines the indices ji and the corres-

ponding f-values efficiently.

D. Generating Random Variates from an Erlang
Distribution
In the sequel we shall need to generate Erlang
(k,A) variates. Since an Erlang(k,)A) random vari-
able is the sum of k independent exponential ran-~
dom variables, each with parameter A, the random
variate may be generated as such. The algorithm,
given below, is constructed so that the logarithm
function need only be executed once.

Erlang (k,)\)

11 Generate Ui uniform on (0,1) for i=1,2,
ek Kk

2] Set U= T U,.
=1 3
1 J
3] X+ Y n(U).

The execution time is directly proportional to
k. If k is greater than fifteen, we use the
method of Cheng [3] to generate a gamma (k,1)
variate, X. Y < AX is then gamma (k,}A).

Cheng's method is an acceptance/rejection techni-
que whose efficiency increases as k increases.
It requires two uniform and three log/exponential
evaluations per trial. The expected number of
trials per random variate is 1.47 for k =1 and
tends to 1.13 as k - «. The algorithm in com-
pact form is as follows.

Gamma
1] Generate Ul’ and U, uniform (0,1).
2] Set V <« a nfU./(-U)1.
v 1 1
Set X <« ke .

3] (Accept or Reject). If b + ¢V - X >
zn(UiUz) then accept X; else return to 1.

The constants are a = (Zk—-l)_l/2

s, b=k - n4,
and ¢ =k +-§. For our implementation a, b,

and c¢ must be computed each time the algorithm
is invoked.

III. THE PROCEDURE FOR THE DISCRETE CASE

Consider a discrete PH-distribution on m states
with representation (g,T) and transition proba-
bility matrix

T T°

01

Let T, be the ith row of T and T° the ith
=i i

component of T°. The algorithm simulates the

Markov chain and retains only the number of time

epochs required before absorption into state
m + 1, This count is a PH random variate.

The simulation is accomplished through use of the
alias method for the initial probability vector
Qg,am+l) as well as for each of the rows

(zi,T;), 1 <i <m. Since the absorbing state

m + 1 requires neither storage nor computation-

al effort, the total storage needed is 3(m+l)2
full words. The simulation algorithm is as fol-
lows.

PH1
1] Initialization
A) Create aliases and cutoff values for

(g,am_,_ ).

B) Create aliases and cutoff values for
(T.,T%), i=1,2,...,m.
=i’7i

2] Repeat for the number of variates desired.

A) Initialize random variate XPH to 0.
B) From Ql’am+l) choose current state, I.
C) 1If (I is state mtl) then branch to Dj;
else
i) XPH < XPH + 1,
ii) choose next state J from
@19

iii) I+« J,
iv) return to C.
D) (Absorbed). Return XPH'

Implementation of the algorithm was accomplished
in FORTRAN on a Burroughs 7700. As this is a
computer with a 48-bit word length, adequate
accuracy is granted by single precision. To

gain efficiency, our data structures take advan-
tage of the standard FORTRAN features column
major ordering and call by reference. The matrix

P = |T 1°| is stored in transposed form as the
FORTRAN variable XGEN, dimensioned (m+l) x (m+l),
so creating stochastic columns. The (mt+l)st

column contains the vector (m,o . ). The

aliases and cutoff values needed are stored in
the corresponding columns of matrices which we
denote by L and F respectively. By referen-
cing these matrices only in subroutines, double
indexing computations are avoided. The imple-
mentation herein allows the user to specify the
transition matrix in the usual probabilistic

row format so that this transposition technique
is of no consequence to him. This should, how-
ever, be borne in mind if XGEN is accessed for
later computation. Throughout this work uniform
variates on (0,1l) are generated by the con-
gruential generator devised by Lewis et al. [7]
available through IMSL (version 8).

Iv. THE PROCEDURE FOR THE CONTINUOUS CASE
Consider the continuous PH-distribution on m

states with representation (g,T). Let the
infinitesimal generator

T T°
Q= -
[
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have elements Qij’ for i,j=1,2,...,mtl, where

Q.. < 0 for each 1.

ii

Tn the simulation of the underlying Markov chain
the time spent in state i before making a tran-
sition to state j is a random variate contribut-
ing to the total time until absorbtion. Such so-
journ times in state 1 are exponentially dis-
tributed with parameter —Qii' The transition to

state J occurs with probability Qij/(—Qii). By
retaining the number of times, ki’ that state i

was encountered before absorption, a PH variate
results as the sum of Erlang variates., That is,

m
XPH = .Z Erlang (ki,—Qii)
i=1

To simulate the state transitioms by using the
alias method, it is necessary to consider the dis-
crete time Markov chain embedded at the transi-
tions of the Markov process Q. For 1 < i <m,
-Q;i is placed in a temporary locatiom, XEXP (i),
to be used in the generation of Erlang variates.
Let Q denote the probability transition matrix
of the embedded chain. Then for 1 5 i <m,

»

= % (4 .
Qij Qij XEXP(i) ,, for 1<j<m,
Q; =0
Qi = L- El Q

The normalizing condltlon applied to Qi mHl as-
>

sures that the rows of Q sum to one within com-
puter limitations. The necessary tables needed
for the alias method are computed from the sto-
chastic rows of Q

The extra matrices required of the alias method,
the matrix Q and the Erlang parameter vector ,
XEXP, bring the storage requirements to 3 (mt+1)
+m full words. Q is stored to utilize column
major ordering. Q dis then replaced by Q. This

2
avoids increasing the storage by m yords.

Let k “be the number of visits to state 1. Let

gi be the ith row of Q The simulation algo-

rithm is as follows.

PH2
1] (Initializatign).
A) Compute Q.
B) k <« 0; for 1i=1,2,.

c) Generate alias tables for Q

2] (Simulate the underlying Markov chain) .
Repeat for the number of variates desired.

A) XP < 0.

B) From (g,am+l

€) If (i=mtl) then branch to Dj else
£k <k Tl

i
ii) from Q

) choose current state, i.

choose next state, j,

iii) i< 3,
iv) branch to C.

D) (Absorbed). Repeat 1 =1 to m.

M.E. PAGANO

i) XPH = XPH + Erlang (ki,XEXP(i)).
ii) k, « 0.
i
End repeat.
End repeat.

V. SUPERPOSITION OF STATIONARY PH-RENEWAL
PROCESSES

It is well known that under suitable conditions
the superposition of independent renewal proces-—
ses is asymptotically Poisson. This limit
theorem as an approximation theorem has been re-
cently discussed in Albin [2]. We now define an
exact process for the simulation of r indepen-
dent stationary PH-renewal processes.

A. The Continuous Case

Suppose F(+) is a continuous PH-distribution
with representation (g,T) where T = {Tij},

i,j = 1,2,...,m. Let Q% =T + T°A° be the id-
finitesimal generator for the Markov chain asso-—
ciated with the PH-renewal process with underly-
ing distribution F. Consider the superposition
of t i.i.d. stationary remewal processes each
with underlying distribution F(+). The super-
position variate consists of the time between
successive renewals among these r processes.
Let XS be the sth variate generated for s > 1.

In the simulation we maintain one counter for
each of the m phases of the Markov chain with
infinitesimal generator T. Let Nj(i) be the

number of processes in phase 1 at the jth
iteration of determining Xs’ for 1 <i<m,

j > 0. Then,

m
T N.(i) =r, for 4>0.
i=1 7

To begin the simulation we generate ¥ multino-
mial observations from the stationary vector, T,
of Q%*. NO(-) is then initialized.

Consider the process in the (n-1)st iteration
where n > 1. From the exponential sojourn times
characterizing the states of the r dindividual
processes, we have that the time until the next
phase transition is exponentially distributed
with parameter en_l given by

m
9 =- 3 N __.()T,.
n-1 j=1 n-1 ‘ i3
Generate such an exponential variate, E(en—l)'

Let the phase from which this transition will oc-
cur be denoted by j. Using a probabilistic ar-—
gument we may generate j as a discrete variate
from P ( ), where

3) P

) = -N v)T

n-1 n—l( v

) =B /ey, for l<v<m.
The state h to which the process moves is det-
ermined by T. As in the algorithm PH2, h is
an observation from qj(v)' where
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_ij/Tjj , for 1 <v<m, v#]j,
4) qj(v)= 0 , for v=13j,
=m+ 1.

-T%/T.. for v
J/ ji

If h is not mwhl then update the nth iteration
for Xs as follows.

UPDATEL
1] Nn(j) = Nn_l(j) -1
2] Nn(h) = Nn_l(h) +1
3] N (1) =N _,{), for i # h,j
41 8 =86 .+ Ti5 ~ Ton
51 Pn(j) = Pn—l(j) + Tjj
6] Pn(h) = Pn_l(h) - Thh
If h is mwtl, then a renewal among the =
processes has occurred. The variate Xs is the
sum of n exponential variates. That is,
n-1
X, = iio E(8,) .

We now restart the process which has renewed
by observing variates from the discrete density

Qi,am+l) until one of the states 1,2,...,m oc-

curs. Suppose the Lth trial is the first trial
that a state, kz, not equal to mtl is ob-

served. If ¢-1 > 0, instantaneous renewals oc-
cur and the next &£-1 interevent intervals of
the superposition process are equal to zero.
That is,

X g =X ==X =0

To begin the first iteration for the random
variate XS+2, we update the necessary para-

meters as follows.

UPDATE2
11 8@ =8 () -1

2] Nykp) =N (k) +1

3] Ny =N _ (@), for i#f3,ifk,
4] Py =P @)+ Ty

51 Pylk,) =2 (k) - Tk2k2

6] eg=6,,+ Ty~ Tksz .

The method continues until all required variates
are generated.

The superposition algorithm only requires that we
generate random variates from discrete distri-
butions and an exponential distribution. The
variates from the discrete densities (g,am+l)
and qj(-) for 1 < j <m defined in (4) are
generated by the alias method. At each itera-

tion the exponential distribution parameter

en—l is changed. For this reason exponential

derivatives are generated by calling a logarithm
function.

To avoid m unnecessary multiplications per
iteration, Pn_l(-) defined in (3) is not

stored. Instead we generate an observation

from ﬁn_l(-) directly from Pn_l(-) using the
inverse distribution method as follows.

PN
1] Generate U uniform (0,1).
2] U+ U * en_l. U is now uniform (O,Bn_l) .

3] x<+® (D)

I+« 2.
4] If (X > U) then return X; else X« X +
Pn_l(I), I+« I+ 1, branch to 4.

At each iteration of the superposition algorithm,
two mass points of Pn_l(-) are altered. The

commonly used sorting of the set of probability
weights is not carried out here. Since this
would require up to m comparisons per itera-
tion, it would not enhance the algorithm PN.

The superposition algorithm begins by generating
variates from the discrete distribution =m. Af-
ter simplifying we may write 1w as

n= r et art .

Let ' = (gi_¥g)3, Then 7' 1s computed using
Gauss-Seidel iteration to solve the system

T =a .

Then we see that

m
= !
T, wi(( b ¢

for 1l <i<m .
i . -7 =
i=1

1
i),
As the number ¥ of superimposed processes is
typically large, the alias method is used to
generate variates from w. The extra storage
that this method requires is then reused for the
alias tables required to generate variates from
qj(-) for 1 < j <m. The total storage re-

quired is 3(m+1)2 4+ 3m full words.

Let N(j) be the number of processes in phase
j for 1 <j<m Let P(+) denote Pn_l(-)
and let 8 denote 8 The superposition

n-1°
algorithm follows.
SUPER1
1] (Generate initial variates from m)
A) Compute .
B) Compute alias tables for .
C) Generate r variates from m dinitial-
izing N(j) for 1 < j <m.
2] (Initialize)
A) Compute alias tables for qj(-) for

1 <j<m
B) Compute alias tables for (a,o

) .

mt1
C) Initialize P(<) and 8.
D) s« 1.
3] (Generate random variates, Xs)
A) X <« 0.
s

B) Xs « XS + E(9).

C) j < PN. j is a variate from P(+).
D) Generate h from qj(-).

E) If (h=mtl) then
1) store Xs’

2) UPDATEZ,
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3) s<+s+1,

4) branech to Aj;
else 1) UPDATEL,

2) branch to B.

B. The Discrete Case

Let F(+) “be a PH-distribution with representa-
tion (a,T) where T is the transition proba-
bility matrix for an m state Markov chain.

The vector Qg,am+1) is the initial probability

véctor for the chain. Let Q% =T + T°A° be

the transition probability matrix for the Markov
chain associated with the PH-renewal process with
underlying distribution F. A realization of the
superposition of r i.i.d. stationary renewal
processes is fully characterized by specifying
the number, Xn, of processes which renew at

time epoch n for n > 1. Xn counts any in-

stantaneous renewals that may occur.

As in the continuous case we begin the simulation
by caleculating the stationary vector, m, of

Q*%. The simplification of 7Q* = 1w results in
7 being given by

Ty L.

o= (af
1
e)m. The system
x'(I-T) =g
is solved using Gauss—Seidel iteration and =
is determined from

Let 7' = (o

1
i

Let Nn(j) be defined as the number of processes

in phase j at time epoch n for 1 < j £ m¥l,
n > 0. Using the alias method, we generate
variates from = to initialize No(j), for

1<j<m with No(m+l) =0,

To proceed from the (n-1)st epoch to the nth,
we need to generate Nn_l(j) variates from the
discrete density qj(-) where

) ij‘, for 1L <v<m
5) a4y (v) =
Tg , for v = mwHl
for 1 < j <m. To that effect the alias method

is used and the resulting summary of phases part-
ially determines N (j) for 1 <j <mtl.

If Nn(m+l) = & then & processes have renewed.

The number of times that each of these & pro-
cesses will then instantaneously renew is geo-
metrically distributed with parameter y = 1 -
Ol Since the sum of 2 geometric random

variables is a negative binomial random variable,
we generate Xn as a negative binomial variate

with parameters & (number of successes) and y
(probability of success).

The phases in which the & processes will re-
start are determined by & random variates

generated from o' = a/y. We generate £ such
variates using the alias method and update
Nn(j) appropriately. By setting Nn(m+l)

equal to zero, we are now ready to begin the
next iteration. The iterations are continued
until all variates are generated.

The method used for negative binomial generation
is described fully in Fishman [4]. By generating
a variate, Y, from a gamma (2,1) distribution
and a variate, X, from a Poisson (Yv/(1-Y))
distribution, we have that X 1is a variate from
a negative binomial distribution with parameters
% and y. Gamma generation is accomplished

using Cheng's method [3]. Poisson variates are
generated by an inverse distribution method
utilizing the recursive property

. . A
Poisson(),x+l) = Poisson(A,x) * ozl

for x>0

Two vectors, N of dimension m and NEW of
dimension mtl, are used in the discrete simu-
lation. The jth element of each vector accounts
for the number of processes in phase j. A sum-
mary of the discrete superposition algorithm to
generate M variates, for M > 1, is as
follows.

SUPER2
1] (Generate initial state configuration from
m)
A) Using Gauss—-Seidel compute .
B) Compute the alias tables for 7.
C) Generate r variates from « dinitial-
izing N(3) for 1 < j < m.
2] (Initialize)

A) Compute alias tables for qi(-) defined

in (5), for, L <i<m,
B) NEW(§) « 0 for 1 <3 <m¥l; y«1.0 -

b1

C) Compute alias tables for a' = a/y.
3] (Generate random variates, Xn’ for

l<n<M

Ay X <« 0
n

B) Repeat for 1 < j < m.
variates from q.(*)
for 1 <i < mhls

C) Generate ® from negative binomial
(NEW (m+1),v) .

D) Xn ~ W.

E) Repeat for 1 <j 5_NEW(m+l).
i) Generate k from a'.
ii) NEW(k) <« NEW(k) + 1.
F) (Update for the next iteratdon)
i) n <« ntl.
ii) N(j) « NEW(j), for 1 <j <m.
iii) NEW@mHL) <« 0.
iv) Branch to A.

Generate N(Jj)
updating NEW(i)

At each time epoch n, the cost of generating
variates from the discrete superposition process
is the sum of three factors: generating
variates using the alias method, generating

%(n) wvariates to "restart" the £&(n) processes
that have renewed, and one negative binomial

variate. Let CA and CNB be the cost associ-

ated with the alias method and negative binomial
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variate generation respectively. In (0,T) the
total cost of this simulation is CT where
T

CT = rTCA + nil 2(n) - CA + TCNB .

Remarks. A University of Delaware Technical
Report containing documented computer programs
and samples of numerical results is available
upon request from the authors at the Department
of Mathematical Sciences, University of Delaware,
Newark, DE, 19711, U.S.A.

The authors acknowledge with deep appreciation
the helpful comments of Professor B. Schmeiser
of Purdue University who suggested improvements
in the computer implementation of the algorithms.

REFERENCES

Ahrens, J. H. and U. Dieter, "Computer Methods
for Sampling from the Exponential and Normal
Distributions', Comm. ACM, 15, 10, Oct. 1972,
pp. 873-882.

Albin, S. L., "On Poisson Approximations for
Superposition Arrival Processes in Queues',

Manage. Sci., (to appear).

Cheng, R. C. H., "The Generation of Gamma Varia-
bles with Non-Integral Shape Parameter',

Appl. Statist., 26, 1, 1977, pp. 71-75.

Fishman, G., Principles of Discrete Event Simula-
tion, John Wiley & Sons, New York, 1978.

Karlin, S. and H. M. Taylor, A First Course in
Stochastic Processes, Academic Press, New
York, 1975.

Kronmal, R. A. and A. V. Peterson, Jr., "On the
Alias Method for Generating Random Variables
from a Discrete Distribution", Statistical
Computing, 33, 4, Nov. 1979, pp. 214-218,

Lewis, P. A. W., A. S. Goodman and J. M. Miller,
"Pseudorandom Number Generator for the
System/360", IBM Systems Journal, 8, 2,
1969, pp. 136-146.

Neuts, M. F., "Probability Distributions of Phase
Type", in Liber Amicorum Prof. Emeritus H.
Florin, Dept. Math., Univ. Louvain, Belgium,
1975, pp. 173-206.

Neuts, M. F., Matrix-Geometric Solutions in Sto-
chastic Models——An Algorithmic Approach,
The Johns Hopkins University Press, Balti-
more, Maryland, 1981.

Neuts, M. F. and K. 8. Meier, "On the Use of
Phase Type Distributions in Reliability
Modeling of Systems with a Small Number
of Components™, OR Spectrum, 2, 1981, pp.
227-234,

Neuts, M. F., "Renewal Processes of Phase Type",
Nav. Res. Logist. Quart., 25, 1978, pp. 445-
454,

387




