1981 ginter Simulation Conference Proceedings
T.I. Oren, C.M. Delfosse, C.M. Shub (Eds.)

E QUTCRIIL G fIMULAYICE

363

PFLCCRAMNMIKCG WITH SINTASL

E. M. Eryant¥
Cepartrent cf Cecmputer Scilernce
Univercity of ¥iscenzin-Madison

121C v,

Leyten Street

Faciscen, V-iscensin 537C6

KPRS 1s & pertsble, strongly-typed, event—oriented, discrete system

C‘I

g
gimulation
st

¢reation and
anc statistics c¢cllection. A
nurber generators
simulation programming
criented simulztion

cestruction,

using

extensions that SIMPAS provicdes.

1. INTRCDUCTION

Over the past two
developing a

years, we have been
strongly-typed, discrete-
system simulation language enbedded in
PASCAL. SINPAS 1is the result of this
c¢evelopment effert. Previous papers on
SIMPAS have discussed the advantages of
using strongly-typed languages for simula-

tion prcgram development (Bryant 1980),
and an experimental version of SIMPAS that
executed (slowly!) on an LSI-11 microcom—
puter system (Bryant 198la). This paper
is a tutorial describing the use of the
present version of the SIMPAS system for
the c¢reation of a simple simulation. A
detailed description of this version of
SIMPAS is available in the version 5.0
SIMPAS usger manual (Bryant 1981b).

Succinctly stated, SIMPAS provides the
following extensions to PASCAL:

(1) Event declaration and
statements.

scheduling

(2) Entity declaration, creation andé

disposal gtatements.

*This work was supported in NSF

grant MCS-8C0-3341.

part by

language erbedded in FASCAL.
atements for cevernt declaration an¢ scheduling, entity

It extends PASCAL by adéing
declaraticn,

linked list ceclaration and rmanipulation,
library cf
is alsc provided.
SIMPAS, e
language concerts, give an overview cf the prc-
¢granming language PASCAL, ané then describe in detzil the

stancdard peeudc-randon
This paper gives a tutorial on
briefly dJiscuss event-

simulation

(3) Linked list declaration and manipula-
tion statements.

(4) Statistics collectiocn statements.

(5) A pre&eclared 1library of
random number generatcrs.

rsuedo—

Furthermore, SIMPAS is a closed system in
the sense that even though it is imple-
mented as a preprocessor for PASCBL, the

this. The
statements can be intermixed
with standard PASCAL statements in a
natural way. Also, the preprocessor
automatically builds, inserts, and ini-
tializes all data structures necessary for
the simulation. This is to be contrasted
with PASCAL simulation packages such as
PASSIM (Uyeno 1980), which although they
are substantially simpler than SIMFAS,
require the user to know many details of
the package implementation and to assist
in declaration and initialization «f the
package interface variables.

user need not be aware of

extension

The preprocessor implementation was chosen
to make SIMPAS highly portable without
sacrificing executicn efficiercy. On mest
systems where it is installed, the prepro-
cessing and compilaticn ghases can be com—

bined under ccntrel of a single command
prccedure so that they are
essentially transparent to the user.

81CH1709-5/81/0000-0363500.75 () 1981 IEEE

R.M. BRYANT

364

Careful attention has been paid to the

problems of tracing error messages from
the output PASCAL back to the SIMPAS
source, as well as reporting run time

errors in terms of the original SIMPAS
source line whenever possible.

Frcom the standpoint of teachirng simula-

tion, BSIMPAS has been especially success-
ful. Since more and more students are
being expoesed to PASCAL, it has become a

relatively simple matter to state the SIM-
PAS extensicns and then give the students
a simple simulation assignment.! Further-
more, since SIMPAS inherits strong typing
from PASCAL, the resulting simulation pro-
. grams gre reliable ané easy to debug.
Thus primary effort can be directed toward

understanding the simulation problem
itself, rather than tracing down numerous
storage exception faults and other
hardware detected errors.

In the next sections of this paper, we
first introduce the basic concepts of
event-oriented, discrete-csystem simula-
tion, and then outline some of the

features of PASCAL that make it especially
well suited to the implementation of
discrete~systém simulation., We then dis-
cuss the SIMPAS ektensions to the program-~
ming language PASCAL and aescrlbed a sam—
ple SIMPAS program.

2. SIMULATION CONCEPTS

In this section we briefly discuss the
concepts fundamental to event-oriented,
discrete~system simulation. ¥For further
details the reader is directed to (Fish-
man 78).

2.1, Event-oriented Simulation

SIMPAS is an '"event-oriented" discrete-
system simulation language. This means
that changes in the state of the simulated
system are modelled by the occurrence of
"events". (SIMULA, on the other hand, is
"process-oriented," See (Franta 1977) for
a description of the process view of simu-
lation.) An event is an idealization of a
system state change that is assumed to
cceur instantaneously. To represent
activities in the simulation that occur
over an extended period of time (for exam-—
ple, the movement of a box along a con-
veyor belt) one uses g pair .0f events,
One of the events represents the start of
the activity (the beginning of the box“s
movement) and one of the events represents
the end of the activity (the arrival of
the box at its destination).

In the simulation program, each event is
represented by a procedure that is called
when the event occurs; this procedure is
called the "event routine" associated with
the event. Occurrence of an event is
modelled by the execution of the event

routine, and changes in the system state
are represented by changes in the values
of the variables in the simulation pro-
gram. To continue our previous example,
the event routine associated with the
start of a box”s journey down the conveyor
belt would remove the box from its previ-
ous location (perhaps merely by decrement-
ing the number of boxes found there) and
set a variable to indicate that the con-
veyor was occupied. The event routine
representing the box”s arrival event would
mark the conveyor empty and see that the
box 1is sent on to its new location. Thus
there is a one to one correspondence
between execution of an event routine in
the simulation program and the occurrence
of events in the simulated system. For
this reason it is common to refer to the
execution of an event routine as the
occurrence of an eveht 1in spite of the
fact that the event itself ‘s part of the
simulated system while the event routine
is part of the simulation program.

Event routines are called in response to

scheduling statements executed by the
simulation pregram. There are various
forms of scheduling statements in SIMPAS,

but what is essential is that the schedul-
ing statement specifies the simulated time
vhen the event is to occur and the values
of any actual parameters (arguments) that
the event routine should be called with.
One can thus think of a scheduling state-
ment as a "delayed call" on the event rou-
tine. It is like a normal procedure call
in that values for the actual parameters
are provided, but the routine is called
not at the present simulated time but at a
specified time in the future.

Since the scheduling statement does not

actually call the event routine, the
schedule statement code records the event
time and its parameters in an "event
notice”. The event notice holds these
values until they are needed by the event
routine. A separate event notice is
created for each occurrence of each event

in the simulation. After creation, the

event notice is inserted into a list of
event notices wcalled the "event set".
This set is ranked by increasing simula-

tion time and contains event notices for
all events that have been scheduled but
that have not yet occurred. We will say
that an event notice is scheduled so long
as it is in the event set,.

Event notices are removed from the event
set and event routines are called by a
procedure in the simulation called "simu-
lation control reutine". The heart of the
simulation control rcutine is a loop that
consists of the following steps:

(1) Remove the next event notice from the
event sekt. If the event set is
empty, the simulation control routine
returns to its caller (normally the
main program). This stops the simula-

A TUTORIAL ON SIMULATION PROGRAMMING WITH SIMPAS

tion.

(2) Advance the simulation clock to the
gsimulation time of the event notice.

event routine
as saved in the

(3) Call the appropriate
with the arguments
event notice.

These steps are repeated over and over
throughout the simulation. So long as the
event set is non-empty, execution of this
loop causes sirulation time to advance in
an orderly fashion and events to occur in
their scheduled order. Events scheduled
before the simulation control routine is
called do not cccur until after the con-
trol routine is called. For this reascon,
cne says that the simulation is "active"”
from the time when the simulation cocntrol
routine is called until it returns.

2.2, Entities

Just as an event is an idealization cf the
state change in a simulated system, an
"entity" is a idealization of the c¢bjects
which move through the the system (the box
in the conveycr belt example). Entities
can represent Jjobs in a computer system,
customers in a bank, or cars in a car

wash. An entity may have distinguishing
features such as en arrival time, a color,
or & service requirement. Using the

SIMSCRIPT II.5 (Kiviat 1974) terminclogy,
we refer to these guantities as "attri-~
butes" of the entity.

Entities are normally divided intc two
classes: temporary and permanent. Tem—
POrary entities represgent transient

cbiects that are created, move through the
sirulation zna are then destroyed. Per-
ranent entities exist throughout the simu-
lation. Thus while tempcrary entities
could represent the jobs moving through a
computer system, permanent entities wight
be used to represent the system iteelf.
In the next cection, we will discuss how
the features of PAECAL can be used to
represent temporary and permanent entities
ané their attributes.

3. A VERY ERIIF OVIEVIEW OF FASCAL

in this limited spsce, it is «clesarly
impossible to previde a cetailed introduc-
tien to PASCAL, 1let alcne the S8S8IMNPAS
extensicns tc PASCAL, We will therefore
assume that the reader is familiar with
some wodern, blcck structured programring
language such as PL/I, ALGCL, ¢r SINULA.
In this cection, ve wrerely wish describe
those features c¢f PAECAL thaet cre not
fcuna in these cother langueges and that
are significent tc our discussion of SIk-
PAS. For further information abocut PASCAL
see (Jensen 74).

uncderliine PFARECAL

In the seguel, we will

365
(and SIMPAS) language keywords. We will
use angle-brackets ("<" and ">y to

represent portions of statements which are
to be replaced by appropriate user con-
structs. Thus the notation: <identifier>
indicates that the user is to insert an
identifier at this location. We will use
square brackets to indicate a portion of a
statement which may be omitted. Finally,
we will use an ellipsis (". . .") to indi-
cate zero or more repetitions c¢f the
preceding construct.

3.1, PASCAL Program Structure

A PASCAL program can be divided into seven
major parts: the label declaraticn part
(which will not concern us here), the con-
stant declaration part, the type declara-
tion part, the variable declaration part,
the preccedure and function declarations,
and the main procedure. Any of the
declaration parts may be empty sc that
only the declaration parts that are actu-
ally required need be included. Each pro-
cedure and function has the same structure
as a PASCAL prcgram in the sense that each
procedure and function has the same parts
as above, except, of course, that a pro-
cedure has a procedure body instead of the
rain procedure. The declaration parts in
the procedures and functions apply cnly to
that procedure or function, while the
declaraticn parts fcor the wain pregram
define identifiers known throughout the
pregram. To distinguish between these two
sets of declaration parts of the program,
we will refer tc the ones at the main pro-
cedure level as the '"globhal" constant
declaration part, the “global® type
declaration part, ané sco forth.

3.2. User Cefined Types

Cf these program parts, the only cne which
ie peculiar to PASCRL is the "type" part.
In PASCAL, there is &a clear d&istinction
between a varizkle and its type. Every
variable must be declared as a ¢epecific
type; this type can be cne cof the base
types (integer, real, boolean, ¢r charac-
ter) or a defined type built up cut of the
base types ané record or array declara—-
tions. Cne refers to a defined type by
giving it a name in the type declaraticn
part c¢f the prcgram cr preocedure.

Eowever, there is ro mechanism fcr defin—
ing ¢cperatione cn thkese new types.
Instead, user defined types are used to

é¢efine dJdata structures and to insure that
identical cobiects have the sazme declara-
tions. Fer exeample, suppose that cne

wvishes tc declare A and B tc ke arrays of
integers, each 10C elements icng. Cne
cculd cdeclare A and B as fcllows:

var
A 1 arreay [1..100] of integer:;
B : array [1..100] cof integer;

——— Tl

If the cdeclaraticon for A is rnow charged,

R.M. BRYANT

366

the progranmer that made the change will
have toc remember to change the declaration
for B as well. This can be a demanding
task if the declarations for B and B are
seperated by s few hundred or thcusands of
lines of ccde! To avoid this, we could
declare s user defined type:

type

intarray = array [1..100} of integer;
then declare 32 ané E as instances of this
array:
var
intarray;
intarray;

A
B

Now any changes made to the declaration of
"intarray” will properly migrate to all
instances of the inveolved arrays.

User defined types also simplify the con-
struction of structured or reccrd types.
For exanple, one can create a
SIMSCRIPT II.5-1like entity with the fol-
lowing declaraticns:

type
box = record
arrival_ time : real;
destination : destination id;

weight integer;

some_box : box;
another_ box : box;

(Note: The underbar character "_" is not
part of the standard PRSCAL character set,
although it is used in many implementa-
tions to improve readability of variable
names.)

in this example, "some_ box" and
"another_box" refer to two gifferent vari-
ables of type "box". Each has their own

copies of the "fields" arrival_time, des-
tination, and weight. One refers to the
fields ' of a record using the PASCAL dot
notation:

some_box.arrival time
some_box.destination
some_box.weight

used to
references to field variables.
consider the folleowing state-

The PASCAL with statement can be
abbreviate
For example,
ment:

with some box do

begin

end;
In between the begin and end in this
statement, references to "weight" are
interpreted as references to
"some_box.weight". Other fields of

“some_box" can be referenced in the same

way .

3.3. Entity Representation

As seen sbove, PRSCAL reccrds can be wused
to represent entities in a gimulaticn andé
the record fields can be thought of ss the
attributes cf the entity. For examnple, to
represent a collection of conveyor belts,
one - might use the following declarations
(comrents in PASCAL are delimited by { and

by

const .
{the total number of kelts ir the shopt
number_belts = 10;

type
?a conveyor belt id is a number between
1 and number_belts]
cv_belt _id& = 1..number_belts;

cv_belt = record
Tis belt in use? true or false}
busy : boclean;

{hew long does it take to move
a2 box cown the belt?
move_time : real;

{ccunts nurber of boxes on the belt}
number_ boxes : integer;

{counts nunber of boxes delivered}
delivered_boxes : integer;
end;

var
conveyor_belt : array [cv_belt id]
of cv_belt;

These declarations declare a set of 10
conveyor belts, each with a busy flag, a
real variable indicating how long it takes
to move a box down the conveyer belt, and
two count fields. The 3rd conveyor belt
is described@ by the record stcocred at
conveyor_bkelt[3] and has attributes:

conveyor_belt([3].busy
conveycr_belt[3].move time
cenveyor_belt[3].number_ boxes
conveyor_belt[3].delivered boxes

This representation is suitable for per-
manent entities that exist throughout a
simulation, but is not convenient for

representation of temporary entities,
since the number of conveyor belts is
fixed at compilation time. Instead one

should use a PASCAL "pointer" variable:

var
boxp : “box;
at the

The variable "boxp" is-a pointer

record "box" (whiech we are using to
represent an entity). One can convert a
pointer variable into an object through

[Rad 1]
-

the use of the dereference operator:
Thus boxp” is a box record and its fields

A TUTORIAL ON SIMULATION PROGRAMMING WITH SIMPAS

can be referred to as

boxp”.arrival_time
boxp”.destination

boxp”.weight
The advantage of the pointer representa-
tion for temporary entities is that new

instances of the entity can be generated

using the PASCAL procedure "new". Thus,

to create a new box, one can say:
new(boxp) ;

The previous value of boxp (if any) is

lost so that the previous record pointed
to by boxp is no longer accessible as
boxp”. Instead a new record is now avail-
able.

Similarly, one can destroy a previously
created entity using the PASCAL procedure
"dispose™:

dispese (boxp) ;

Cne of the problems in using "new" is that
the fields of a record created in this way
are undefined and must be explicitly ini-
tialized by the user. Similarly, if you
wish to insert an entity into a 1linked
list, you must explicitly declare and set
the 1link fields. SIMPAS provides mechan-
isms for automatically doing both of these

tasks through the insert, remove, and
create statements, and the gueue member

anéd queue declarations. These statements
are discussed in the next section.

4. SINPAS LANGUAGE DESCRIPTION

simulation extensions
have been incorporated
into SIMNPAS. For simplicity, this presen-
tation <kips some non-essential details.
I more precise description of the language
extensicns is available in the latest ver-

We new discuss the
tc PASCAL which

sion of the SIMPAS user manual (Bryant
81).

4.1. S8INPAS Program Structure

& EBIMPAS prcgral has essentially the sarne
structure as & PASCAL program. The only
Gifferences sre that an "include" state-~

ment has been added to allow insertion of
predefired procedures and types from the
SIMNPAS scurce 1library and that event
declarations can appear in the global pro-
cedure and function declaration part of
the main progra=m.

4.2. The Include Statement

Because external conpilation of PASCAL
procecures is nct part of standard PASCAL,
there is no completely transportable way
tc create a library of PASCAL routines.

367

Since implementing a
random number
necessary for SIMPAS, we implemented a
symbolic 1library. The include statement
indicates which portions of the symbolic
library are to be included in the program,
The include statement is found at the
start of the procedure, function, and
event declaration part of the program and
has the form:

library
generation

of pseudo-
routines was

include <section> [, <section>] . . .;

Each section specifies a portion of the
library to be included. For example, to
include the exponential pseudo-random
number generator “expo" in the program,
one would use this include statement:

include expo;

For each section, all global constant,
type, and variable declarations required
by that section are also included. Thus
if ‘"expo" required a special global vari-
able to function properly, the library can
be configured to include this variable in
the source program whenever expo is
included.

4.3. Event Declaration

An event declaration has exactly the same
form as a PASCAL procedure declaration,
except that the reserved word event
replaces the reserved word procedure. To
continue our conveyor belt example:

event bhox_moves(belt : cv_belt id);

{belt tells which of the conveyor
belts we are using

begin

{mark the belt as being busy and
move a box onto the belt}

with conveycr_belt(belt] do
begin

busy := true;

number_bcxes := nurber boxes - 1
end;

{schedule the arrival event }
schedule box_moved (kelt) delay
cenveyor_kelt[belt] .rnove time;

Y

enda;

event box_moved(belt : cv_belt_id);

begin

{move the current box of off the belt
and mark the belt nct busy if it
is empty}

with conveyor_ belt[belt] do
begin
nuwber_boxes := number boxes - 1;

368 R.M. BRYANT

if number_boxes = 0 then busy:=false;
delivered_boxes:=delivered boxes+l;
end; .

end;

This eode declares twe events, one to
represent the start of movement of a box
down the conveyor belt, and the latter to
répresent the arrival of the.box at the
end of the conveyor belt, The scheduling

statement assures that the arrival event
cccurs at the proper time. (We will dis-
cuss the scheduling statements in more
detail bélcow).

4,4, Start Simulation

'To activate the simulation (i. e. call the

simulation c¢ontrol routine),

statement:

one uses the

start simulation (status)

While
the global vari-
current simulation

Here status is ah integer variable.
the simulation is active,
able "time" gives the
time.

As described in Section 2.0, the simula-
tion control routine will return if the
event set becomes enpty. In certain
cases, one may want to terminate the simu-
lation prematurely according to some arbi-
trary stopping criterion. SIMPAS provides
this capability by predfining the pseudo-
event "main". Event main is predeclared
as 1f it looked like: :

event main(status : integer);

As a matter of fact, there is no event
routine associated with event main. When
an event notice for event main reaches the
front of the event set, the simulation
control reutine terminates the simulation
exactly as if the event set had become
empty. In this case, the status variable
in the start gimulation statement is set
to the argument of event main. By setting
this argument to a non~zero number, the
user can return a flag to indicate why the
simulation terminated.

Thus, statements after the start simnula-
tion statement will be executed when the
event set becomes empty or when event main
oCccurs., Normally, one places code to
print simulation statistics at this point
in the program.

4.5. Event Scheduling Statements

Event notices are created and inserted
into the event set by scheduling state-
ments. Typical scheduling stateéments are
of the form: ‘

schedule box_start(3) at 10.0;
schedule box moved(4) delay 5.0;
schedule box_start(which_belt) now;
The difference between schedule at and

delay is that the time expression in the
first case is an absolute simulation time,

while in the second case the time expres-
sion gives how long in the future the
event should occur. The now phrase is

used to schedule an event to occur immedi-
ately and is equivalent to scheduling the
event to oeccur at the présent time.

An event must be declared before it is
scheduled. This means that any scheduling
statement referring to a particular event
must syntactically follow the declaration
for that event. To allowy this in general,
an event declaration can be forwarded
exactly like a PASCAL procedure. This is
done by giving the event declaration with
the event body replaced by the word for=
ward. Later in the program one repeats
the event declaration (without the formal
arguments) and follows this declaration
with the event body. .

Each execution of a sc¢heduling statement
causes the generation of an event notice
and the insertion of the event notice into
the event set. The event notice contains
all of the information necessary to exe-
cute an event routine. Thus to identify a
particular ewvent execution, it is suffi-
cient to identify that event notice. The
named clause in a schedule statement can
be wused to record a pointer to the event
notice generated by a scheduling state-
ment. The form of the named phrase is,
for example:

schedule box moved(3) named a_box_moved
delay 20.0;

must be declared as
(pointer to event

Here "a_box moved”
type "ptr_event"
notice).

If an event has been scheduled with a
named clause so that you can identify a
particular event notice, you can remove
the event notice from the event set by
using the cancel statement:

cancel <event-pointer>
Here <event-pointer> must be a variable or

expression of type ptr_event., A cancel
statement does not destroy the event

notice. One uses the destroy statement to
dispose of a previously canceled event
notice:

destroy <event-pointer>

It is an error to try to destroy an event

notice which is still scheduled.

To put an event notice back into the event
set, one uses the reschedule statement.
The reschedule statement has the same form

as a schedule statement except that one
specifies an ptr_event variable rather
than the name of an event. The actual

arguments of the event remain the same as

A TUTORIAL ON SIMULATION PROGRAMMING WITH SIMPAS 369

those on the original schedule statement.

For example, if one wished to change the
time of the event "a_box moved", one could
use the following code:

cancel a box_moved;
reschedule a box moved at new_time;

Thus if to change the time of an
first cancel the event, and
reschedule the event.

event,
then

When an event routine is called, a pointer
to the event notice is placed in the glo-
bal variable "current", Thus if the user
wishes to reschedule the current event at
a later time he can say

reschedule current at <time-expression>;
If "current" is not

event routine, the
automatically destroyed.

rescheduled by the
event notice is

4.6. Queue Handling Statements
SIMPAS also provides SIMSCRIPT II.5 1like
"sets". Since PASCAL already includes

"sets" of a different kind, we wuse the
terminology "queue" to describe the SIMPAS
structures. A queue consists of a partic-
ular type of entity. Only entities of
that type can be placed in the queue.

4.6.1. Entity and Queue Declarations
One declares an entity type in the global
type declaration part of the program; the
declaration looks 1like a special record
declaration, The preprocessor inserts
additional field names to contain links to
other members of the gueue and to record
which queue (if any) this entity is a
member of. Continuing our conveyor belt
example, one could change our previous
declaration of box to the following:

box = gqueue member

arrival_time : real;
destination : destination_id;
weight : integer;
end;
Unlike the record declaration, this

declaration results in box being a pointer
type, since this is the natural declara-
tion for a temporary entity.

After the type declaration, one declares a

particular instance of an entity as fol-
lows:
var

this box box;

that_box : box;

Then "this_box" and "that box" represent
two G&ifferent box“s. Attributes of each
distinct box are referred ¢to using the
PASCAL dereference and dot operators:

this_box".arrival_time

this_box".weight

Entities by themselves are not very useful
unless they can be stored and accessed
easily. 1In SIMPAS, a collection of enti-
ties can be placed in a gueue and
retrieved in order for 1later processing.
To declare . a gqueue one first declares a

queue type:

type
<queue-type> = queue of <entity-type>;

where <entity-type> must have been previ-
ously declared. This declaration may only
appear in the global type part of the pro-
gram. In any var part of the program (or
procedure) one can declare a particular
queue with a declaration like:

var

<gqueue> : <gueue-type>;

For example, to declare a queue of boxes
called box queue one could proceed as fol-
lows:

{must be in global type part of program}
type
box = gueue member
. . . las before}
end;

{declare the box queue type}
box_g = queue of box;

var
{declare the box queue itself}
box_ queue : box q;

4.6.2. Entity Creation and Disposal
Since a variable of type "box" is actually
a pointer variable, one can use the stan-
dard PASCAL procedure "new" to create new
boxes. However, there is no guarantee
that all the fields of an entity created
in this way will be consistent, since PAS-
CAL does not require the initialization of
variables allocated by "new" (or of vari-
ables in general for that matter). To
overcome this problem, SIMPAS providesg the
create and destroy statements:

create this_box;
destroy that box;

Create will insure that all preprocessor

defined attributes of this box will be
properly initialized. Simlarly, destroy

will insure that that_box is not presently
in any gqueue, since this could result in
dangling pointer errors.

4.6.3. Queue Initialization
SIMPAS are represented
lists with head nodes. Before any entity
may be inserted in a queue, it must be
initialized so that that the head node can
be allocated and the queue attributes

Queues in
as doubly linked

R.M. BRYANT

370

properly set. Attempting to place an
entity in an uninitialized queue will
result in unpredictable behavior. To sim~-

plify gqueue initialization,
vides the initialize statement:

SIMPAS pro-

initialize box_gueue;

1

Eventually, we plan to have the preproces-
sor generate code to automatically ini-~
tialize all queues for the user. However,
in certain cases it is impossible to
determine at preprocessing time whether or
not a particular variable refers to a
queue or not (queues declared in variant
parts of records, for example) so that the
initialize statement will still be needed.

4.6.4. Queue and Entity Standard Attri-
butes The preprocessor inserts addi-
tional attributes into each queue member
declaration to allow the entity to be
inserted in queues, to make it easy to
determine if an entity is in a queue and
so forth. The most useful of these are:

next-— This attribute points to the
next member of the queue or to
the queue head if this is the

last member of the gueue.

This attribute points t6 the
previous member of the queue or
to the queue head if this is the
first member of the gqueue.

prev-

Similarly the preprocessor defines several

standard gqueue attributes, some of which

are:

empty~— This boolean attribute is true
if the gueue is empty.

size- This integer‘attribute gives the
number of members in the queue.

stat- This attribute is of type
"statistic" and is used to col-
lect statistics about gueue
occupancy. See Section 4.8 for
details about type "statistic".

4.6.5. Queue Manipulation Statements To

insert or remove entities from a queue,
SIMPAS provides insert and remove state-
ments. To insert an entity 1last in a
gueue one can say either:

insert this_box last in box_ queue;
or
insert this_box in box_queue;

Similary, one can place the entity at the
front of the queue by

ingert that box first in box queue;

To remove a particular entity from a gueue
one uses the statement:

remove this_box from box_queue;

Corresponding to insert first and insert

last statements are the statements:

remove the first new_box from box_queue;

remove the last new box from box_queue;

These statements differ from the first
example of the remove statement in that
the variable "new_box" is set to point at
the specified entity while in the first
case, "this box" already points at a par-

ticular entity and the execution of the
statement merely removes it from the
queue.

In all cases, the inserted (removed)
entity must be of the same type as the
queue into which it is to be inserted
(removed from). Attempts to insert or
remove entities in queues of the wrong

are detected either at preprocessing
or compile time. Other errors, such as
attempting to insert an entity into a
queue when . it 1is already in a dueue,
attempting to remove an entity from a
queue it is not in, and so forth are
detected at run time.

type

4.7. Pseudo-random Number Generation

A standard collection of pseudo-random
number generators are provided in the SIM-
PAS library and can be incorporated in the
user program through the include state-
ment. These routines all depend on a sin-
gle uniform random number generaktor which
is a portable version of LLRANDOM (Fish-
man 1978) suitable for use on all machines
with a word size of 32 bits or larger. A
16 bit version of this generator is also
available, but is much "less efficient.
Given the existence of the basic uniform
random number generator, random number
generators for the following distributions
are provided:

exponential poisson

binomial discrete uniform
general discrete normal

lognormal gamma

erlang continuous uniform
beta hyperexponential

The generation algorithms were taken from
(Fishman 78).

SIMPAS provides 10 random number genera-
tion streams (numbered 1 to 10). Each

random number generator takes as input one
of these stream id”s. Distinct streams
represent different portions of the LLRAN-

DOM base random number generation
sequence. Initially, each stream is
separated from its neighbors by at least

A TUTORIAL ON SIMULATION PROGRAMMING WITH SIMPAS

100,000 calls.

Distinct streams can be used to reduce the
possibility of any dependence between suc-
cessively generated random variables, or
to keep a sequence of random variables in

the simulation fixed while varying
another.
4.8. Statistics Collection

At present, SIMPAS does
automatic statistics collection features
of SIMSCRIPT II.5. However, SIMPAS does
provide a statistic collection type and an
observation statement that simplifes the
collection of simulation statistics.

not provide the

To allocate a variable for statistic col-
lection, one declares a variable of type
"statistic." For example:

var
nsys : integer;
nsys_stat : statistic;
tsys : real;
tsys_stat : statistic;

A statistic can be either time or event-
averaged. For a time averaged statistic,
values observed are weighted by the length
of time the value was held; event averaged
statistics give equal weight to all
values.

The distinction as to type of statistic is
made when when the statistics variable is
initialized with the "clear" routine:

{ time averaged }
clear(nsys_stat, accumulate);

{ event averaged }
clear(tsys_stat, tally);

The routine "clear" can also be used to
reset statistic collection during a run.

To observe a value of a variable, one uses
the observation statement:

observe nsys in nsys_stat;

observe tsys in tsys_stat;

The max, min, and mean value over all
observations of a variable are available
through the standard statistic attributes.
At any time, the values of these attri-
butes reflect the values of the observed
variable up to the last time it was
"observed". Thus:
nsys_stat.mean is the time averaged
mean of nsys
tsys_stat.variance is the event averaged
variance of tsys

nsys_stat.max is the maximum of nsys

37

tsys_stat.min is the minimum of tsys
Other attributes are easily added. The
observation routine uses the algorithm of
(West 79) to stably update the mean and
variance.

A subtle point here deals with the time-
averaged observations. A convention must
be adopted as to when to do an observa-
tion; the convention can be to do it
immediately before changing the value of
the observed variable or immediately after
changing the value. We have adopted the
convention that one must observe the value
before changing the variable.

5. AN EXAMPLE SIMULATION

In this section we combine the examples
from the previous sections to illustrate
their use in a simple simulation. The
system we are going to simulate can be
described as follows:

Trucks arrive a loading dock every 10
to 20 minutes (uniformly distributed)
and deliver from 1 to 20 boxes
(again, let us say, uniformly distri-
buted). When a truck arrives, a
worker unloads the boxes and places
them on one of 5 conveyor belts to be
delivered to various parts of the
plant. It takes 1 minute to wunload
each box and place it on the con-
veyor. Ten percent of all boxes go
onto conveyor belt 1, 20% go on belt
2, 30% go onto 3 and 4, and 10% go
onto 5. It takes 5 minutes for a box
to traverse each of the conveyor
belts. On the average, how many
boxes are on each conveyor belt, and
how many are waiting at the loading
dock to be placed on a conveyor?
Finally, what is the average transit
time from the loading dock to the
box”“s final destination?
5.1. Entity Declarations
To model this system, we need a queue of
boxes to represent the collection of boxes
at the loading dock. For simplicity, we
are also going to use a queue of boxes to
hold the boxes present on each conveyor
belt in the factory. Boxes will be
declared as gueue members with attributes
defining the box“s destination (for con-
venience we will number the destinations
the same way we number the conveyor belts)
and the box”s arrival time (to allow us to
compute its time from arrival at the load-
ing dock until it is delivered at its
final destination). The following SIMPAS
declarations allow us to do this:

const
the total number of conveyor belts};
number_belts = 5

372 R.M. BRYANT

type

{a conveyor belt id is a number
between 1 and number_ belts}
cv_belt id = 1..number belts;

box = queue member

destination : cv_belt_id;
arrival_time: real;
end;

{ box_g is the type which represents a
queue of boxes ?
box_g = gueue of box;

{ cv_belt describes one conveyor belt }
cv_belt = record
is belt in use? true or falsel
busy : boolean;

{how long does it take to move a
box down the belt?}
move_time : real;

{queue of boxes}
boxes : box a;

{counts the number of boxes

delivered}

delivered boxes : integer;
end;

var

{ the set of conveyor belts is an array
of records of type cv_belt indexed by
belt id }

conveyor_belt : array [cv_belt_id]

of cv_belt;

{ loading_gueue conhtains the set of
boxes delivered but not yet
placed on a conveyor belt

loading_queue : box_g;

Note that conveyor_belt[i].boxes is the
queue of boxes on conveyor belt "i",

To represent the worker we will use the
following record declaration:
worker : record
idle : boolean;
boxes_moved : integer;
end;

Here "idle" will be used to represent the
worker”s status and "boxes_moved" will be
used to count the number of boxes the
worker has moved.

5.2. Event Declarations

We also need three events in the simula~
tion; one event to model arrivals of
trucks at the loading dock, one to model

movement of boxes to the conveyor belt,
and one to model the arrival of a box at
its final destination. In this simula-

tion, the names we have chosen for these
three events are "truck_arrives",
"box_moves" and "box delivered" respec-

tively.

Let”s first consider what event
"truck_arrives" must do. Every time a
truck arrives, we must generate a number
of boxes for that particular truck to
deliver. To do this we wuse the SIMPAS

library function "udisc". This function

is called as
udisc(a, b, k);

and returns an integer uniformly chosen
between a and b (inclusive) according to
random number stream k. This number of
boxes are then generated and placed in the
loading_gueue. For each box, we must chose
a destination according to the percentages
given above. To do this we use the SIMPAS
library function "i_gdisc" which returns
an integer valued random variable with a
general distribution. An associated rou-
tine, "i_gdsetup" is used to establish the
values and associated probabilities for
the random variable. Next, if the worker
is idle, we then start the movement of
boxes to the conveyor belt. The event
"box_moves" will only mark the worker as
idle when all boxes have been locaded onto
the appropriate conveyor belt. Hence if
the worker is presently busy, we neéd not

awaken him when new boxes arrive.
Finally, we must arrange for the next
truck_arrives event to occur. The SIMPAS

code for this event is:

event truck_arrives;

yar
new_box : box;
number_boxes : integer;
i : integer;
begin

number_boxes :=
udisc (min_boxes, max_boxes,box_stream);

for i := 1 to number_boxes do

begin
create new_box;

with new_box” do
begin
arrival time := time;
set the destination of the box }
destination :=
i_gdisc(dest_rv, dest_stream);
end;

insert new_box in loading_queue;
end;

{ if the worker is idle, then start
moving boxes
if worker.idle then worker moves box;

{ finally, schedule the next truck
arrival

reschedule current delay
unif (min_ia time,max_ia_ time,

A TUTORIAL ON SIMULATION PROGRAMMING WITH SIMPAS 373

arrival stream);
end; {event truck_arrives}
Recall that the variable "current" points

to the event notice of the currently exe-
cuting event routine. Thus the reschedule

current statement above causes a
"truck_arrives" event to occur after a
delay of Dbetween "min_ia_time" and

"max_ia time"” minutes.

The procedure "worker_moves box" marks the
worker as "not idle", removes the next box
from the loading_ gueue, and schedules a
box _moves event for one minute later.
Event "box_moves" increments the number of
boxes the worker has moved, places the box
in the gqueue of boxes representing the
conveyor belt and schedules a
"box_delivered" event to remove the box
from the conveyor belt. If a sufficient
number of boxes have been moved,
"box moves" will terminate the simulation
by scheduling an occurrence of event
"main". Procedure "worker_moves box" and
event "box_moves" are declared as:

procedure worker_moves box;
var

carried_box : box;
begi

{ mark the worker as being busy}
worker.idle := false;

{get the first box from the loading
queue
remove the first carried box

from loading_gueue;

{schedule the delivery of the box to
the conveyor

schedule box moves(carried box)
delay box_move_time;

end; {procedure worker_moves_box}

event box moves(b : box):;
yvar

belt : cv_belt id;
begin

with worker do

begin
iincrement the number of boxes
the worker has moved
boxes_moved := boxes_moved + 1;
{stop the simulation if more than
max_boxes_moved }
if boxes_moved > max_boxes moved
then
schedule main(2) now;
end;

{go back and move another box unless
no more boxes to move
if loading queue.empty then
worker, idle := true
else
worker_moves_box;

{place the box in the appropriate

conveyor belt queue}
belt := b".destination;
insert b
in conveyor_belt{belt] .boxes;

{schedule the box delivery event}
schedule box delivered(belt)

delay
conveyor_belt[belt] .move time;

end; {event box moves}

Finally, the event "box_delivered" handles
delivery of a box to its final destina-
tion. The box is removed from the con-
veyor belt gueue, the number of delivered
boxes on that conveyor belt is incremented
and the transit time for the box is calcu-
lated. The transit time is then observed
in a statistics variable declared for this
purpose and the box entity is destroyed:

event box delivered(belt : cv_belt_id);

{belt gives the belt upon which the
box will be delivered?
var
moved_box : box;
transit_time : real;

begin

remove the first moved_box
from conveyor_belt[belt] .boxes;

with conveyor belt[belt] do
delivered_boxes:=delivered_boxes+l;

transit_time:=
time-moved box”.arrival_time;

observe transit_time in t_time_stat;
destroy moved_box;
end; {event box_delivered}

5.3. Initialization,
Statistics Reporting

Execution, and

All that is left is to
thing,

initialize every-
properly start the simulation, and
print the statistics. Three things must
be initialized: the queues, statistics
variables, and the general discrete random
variable used to choose a box”s destina-
tion. The queues are easy to initialize:

for belt := 1 to number_belts do
with conveyor belt[belt] do

begin
linitialize the conveyor belt
queue
initialize boxes;

{initialize other conveyor belt
attributes}

move _time := 5;

delivered_boxes := 0;

374

end;

{initialize the loading dock queue}
initialize loading_gueue;

The only explicit statistics variable we
need is for the box transit time. The
other statistics of interest (mean number
of boxes at the loading dock and on each
conveyor belt) are automatically main-
tained in the "stat" attribute of each
gueue. To declare and initialize the box
transit time statistics variable we use
the following code:

var

t_time_stat : statistic;

begin {main procedure}

clear(t time_stat, tally):

Finally, to initialize the general
discrete random variable used to assign
box destinations, we need the procedure
i_gdsetup. This procedure takes as its

arguments a pointer to a list of probabil-
ity and value pairs, a flag indicating
whether or not this is the first time that
i_gdsetup has been called for this list,
and the probability and value associated
with this call., Each new probability and
value pair is appended to the end of the
list of pairs. The list of pairs is
passed to i_gdisc in order to generate a
random integer. The declarations and code
to do this are:

var

{this type brought in from library
file by "include gdisc;"
dest_rv : gdiscvar;
begin {main procedure}

{iniéialize destdrv}

i_gdsetup(dest_rv, true, 0.10, 1);
i_gdsetup(dest_rv, false,0.20, 2);
i_gdsetup (dest_rv, false,0.30, 3);
i_gdsetup(dest_rv, false,0.30, 4);
i_gdsetup(dest rv, false,0.10, 5);

A call of the form
dest := i_gdisc(dest_rv, dest_stream);

will then assign to dest an integer chosen
according to the specified distribution.

After initializing the "worker" record so
that the worker starts out idle and having
moved zero boxes, the first events are
scheduled and the simulation control rou-
tine is called:

R.M. BRYANT

schedule truck_arrives now;

schedule main(l) at sim run time;

start simulation (status);

The second schedule statement is used to
guarantee termination of the simulation at
a specified maximum run time.

Statements after the start simulation
statement can be used to print simulation
statistics, since they will be executed
only after the end of the simulation. For
example, "time" will be the time that the
simulation stopped. The status variable
can be printed to determine which of the
schedule main statements caused the simu-
lation to terminate (status=1 or 2) or 1if
the simulation terminated because the
event set became empty (status=0). Simi-
larly, +the mean loading_queue size is
avallable as

loading_gqueue.stat.mean
and the maximum number of boxes on con-
veyor number 3 is given by

conveyor_belt[3].boxes.stat.max;

5.4. The Conveyor Belt Simulation

To give a concise summary of the conveyor
belt simulation, here is a skeleton of the
entire simulation, with the event declara-
tions we have already discussed removed.
The primary additions here are forward
declarations necessary since events and
procedures must be declared prior to their
being scheduled or called. Spacing of the
program has been abbreviated in order to
fit in the two column format of this

paper.
program conveyor (output) ;

const
Tthe total number of belts in the shop}
number_belts = 5;

parameters to control the numberi
of boxes each truck delivers

1;

20;

min_boxes
max_boxes

{minimum truck inter-arrival time}
min_ia time = 10.0;

{maximum truck inter-—arrival time}
max_ia_time = 20.0;

{how long it takes the worker to
move a box from the truck to_the
conveyor belt it belongs to
box_move time = 1.0;

{constants to control simulation run
length}
sim_run time = 200.0;

A TUTORIAL ON SIMULATION PROGRAMMING WITH SIMPAS 375

max_boxes moved= 500;

{constants that define which streams
are used to generate the truck
inter-arrival times, the number of
boxes delivered per truck and the
box destination random variables }

arrival_stream = 1;
box_stream = 23
dest_stream = 3;

type

{a conveyor belt id is a number
between 1 and number_belts}
cv_belt_id = 1l..number belts;

box = queue member
destination : cv_belt id;
arrival_time : real;

end;

box_q = queue of box;
cv_belt = record
busy : boolean;
move_time : real;
boxes : box_g;
delivered_boxes : integer;
end;
var
conveyor_belt : array [cv_belt_id]
of cv_belt;
loading_gueue : box_g;
worker : record
idle : bcolean;
boxes_moved : integer;
end;
dest_rv : gdiscvar;
t_time_stat : statistic;
belt : cv_belt_id;
include udisc, unif, gdisc, statistics;

procedure worker_moves box;
forward;

event truck_arrives;

var
nev_box : box;
number_boxes : integer;
: integer;

oy

[N
[ws
=

end; {event truck_arrives}

event box_moves(which_box : box);
forward;

procedure worker moves box;
var
carried_box : box;

begin
end; {procedure worker_moves_box}

event box_delivered (belt : cv_belt_id);

forward;

event box_moves;

yar
which_belt : cv_belt_id;
egin

i

end; {event box moves}

event box_ delivered;
yar
moved_box : box;
transit_time : real;
begin

end; {event box_delivered}

99%33 e > main procedure <m———— }

————— > initialize <-—---
for belt := 1 to number_belts do
with conveyor belt[belt] do
922&5
initialize boxes;
move_time := 5;
delivered_boxes := 0;
end;

initialize loading queue;
clear({t_time stat, tally);

i_gdsetup(dest_rv, true, 0.10,
i gdsetup(dest_rv, false,0.20,
i _gdsetup(dest_rv, false,0.30,
i gdsetup(dest rv, false,0.30,
i gdsetup(dest rv, false,0.10,

U W N
LIl
o w8 ne e e

with worker do
begin
idle := true;
boxes moved :
end;

=0;

 —— > schedule initial events <————- }
schedule truck_arrives now;
schedule main(1) at sim_run . time;

{~mmm= > run the simulation <———=-- }
start simulation (status);

E— > print statistics <———-- }

writeln(“simulation terminated at ~,
time:10);

writeln;

writeln(” status=",status:2);

writeln;

writeln(“mean boxes at loading dock: 7,
loadlng _Qqueue,.stat.mean:7);

writeln(“max boxes at loading dock: ~,
loading_queue.stat.max:7);

writeln;

for belt := 1 to number belts do
with conveyor_ | “belt[belt] .boxes
do
T writeln(’belt: “,belt:1,

“ contains “, stat.mean:10,
boxes (average)”);

-

writeln;

R.M. BRYANT

376

writeln(”average box transit time: “,
t_time_stat.mean:10);
writeln;

writeln(“worker moved ~,
worker.boxes moved:3,” boxes”);
writeln;

for belt := 1 to
number_belts do
with conveyor_belt[belt] do
begin
writeln(“belt:
“ delivered
delivered_boxes:3,
writeln(” ‘.
“ currently contains *,
boxes.size:3,” boxes”);
writeln;
end;
end.

“, belt:1,

14
“ boxes”);

The output produced by this simulation is:
simulation terminated at 1.99E+02
status= 1

mean boxes at loading dock: 2.59E+00

max boxes at loading dock: 1.50E+01
belt: 1 contains 7.97E-02 boxes (average)
belt: 2 contains 5.15E-01 boxes (average)
belt: 3 contains 1.0lE+00 boxes {average)
belt: 4 contains 6.84E-01 boxes (average)
belt: 5 contains 3.28E-01 boxes {average)
averagée box transit time: 1.08E+01
worker moved 106 boxes
belt: 1 delivered 3 boxes
currently contains 0 boxes
belt: 2 delivered 20 boxes
currently contains 2 boxes
belt: 3 delivered 40 boxes
currently contains 1 boxes
belt: 4 deliwvered 27 boxes
currently contains 0 boxes
belt: 5 delivered 13 boxes

currently contains 0 boxes

6. CONCLUDING REMARKS

SIMPAS has been in use in the Computer
Sciences Department at the University of
Wisconsin since Spring 1980. Versions of
SIMPAS tailored for execution under VAX
VMS, VAX UNIX, and Univac 1100 0S8, as well
as a portable version designed to run
under standard PASCAL are available from
the author for a standard distribution
fee. It is presently installed at several
different sites across the country. For

further information, feel free to contact
the author at the mailing address speci-
fied on the title page, or at 608-262-5386
or 262-1204,

ACKNOWLEDGEMENTS

Mark Abbott, John Bugarin, and Bryan
Rosenburg have worked on various phases of
the SIMPAS implementation and without
their assistance the project would never
have been completed. This project was
supported in part by the Wisconsin Alumni
Research Foundation and by NSF Grant MCS-
800-3341. I also would 1like to ack-
nowledge the support of the Madison
Academic Computing Center, and in particu-~
lar the assistance provided by its direc-
tor, Dr. Tad B. Pinkerton.

REFERENCES

Bryant, R. M. (1980), SIMPAS —- A Simula-
tion Language Based on PASCAL,
Proceedings of the 1980 Winter Simu-
lation Conference, T. I. Oren, C. M.
Shub, and P. F. Roth (eds)., Orlando,
Florida, December 3-5, 1980, pp. 25—
40.

Bryant, R. M. (1981), Micro-SIMPAS: A
Microprocessor Based Simulation
Language, Proceedings of the Four-
teenth Annual Simulation Symposium,
R. M. Huhn, : BE:. R. Comer,
F. O. Simons, Jr. (eds)., Tampa,
Florida, March 17-20, 1981, pp. 35-
54.

Bryant, R. M. (1981b), SIMPAS Version 5.0
User Manual, Computer Sciences
Department Technical Report, Univer-
sity of Wisconsin-Madison, in
preparation.

Fishman, G. (1978), Principles of Discrete
Event Simulation, John Wiley and
Sons, New York.

Franta, W. R. (1977), The Process View of
Simulation, Elsevier North-Holland,
Inc., New York.

Jensen, K. and N. Wirth (1974), PASCAL
User Manual and Report. Springer-
Verlag, New York.

Kiviat, P. J., R. Villanueva, H. M. Mar-
kowitz (1974) SIMSCRIPT IIL.5 Program—

ming Language. c. A. C, 1., Inc,
12011 San Vicente Boulevard, ILos
Angeles, California.

Uyeno, D. H. and W. Vaessen (1980), "PAS-

SIM: A Discrete-event Simulation
Package for PASCAL," Simulation, 35,
6, pp. 183-190.

West, D. H. D. (1979), "Updating the Mean

A TUTORIAL ON SIMULATION PROGRAMMING WITH SIMPAS 277

and Variance Estimates: An Improved
Method," Communications of the ACM.
22, 9, pp. 532-535.

