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The time continuum s often appoximated by discrete time units in the simulation
and mathematical analysis of queueing systems, but Tittle is known about the ef-
fects of this approximation on the final results. This study shows that the
‘effects of time discreteness on some queueing behavior is surprisingly small,
and useful implications of this finding are discussed.

1. INTRODUCTION in which case the service times are restricted to
taking values in discrete steps of 0.1 minute.
In computer simulation, it is often necessary to In spite of this common practice of using discrete
approximate the time continuum of the real world time units in simulation to approximate the time
with discrete time units. In queueing problems, continuum, the effects of this approximation have
two common examples in which time discreteness is seldom been formally investigated. The nurhose
introduced are: of this paper is study the nature and magnitude
of any effects of time discreteness in the simula-
(i) In APL, if a programmer uses the expression tion of simple queues. Examples of practical
questions that this study may help to answer are
(? 1000) + 1000 (1) discussed below:
to generate uniformly distributed "customer (1) What would be the difference betwesn genera-
service times" with a mean of 0.5 minute and a ting random times by statements such as
range of 0-1 minute, the generated random times
are restricted to taking values in multiples of (? 100) + 100 (in APL) {4a)
0.001 minute. That is, the system actually
simulated behaves as if time exists in discrete Generate 10, 5 (in GPSS) (4b)

units of 0.001 minute.

. . versus statements such as
(i1) In GPSS, time is explicitly treated as

discrete units. To generate uniformly distributed (? 10000) + 10000 (in APL) (5a)

customer service times having a mean of 10 minutes

and a range of 5-15 minutes, one can write Generate 100, 50  (in GPSS) (5b)
Generate 10, 5 (2) Of course, every programmer intuitively knows

) . . that by writing
in which case the service times are restricted to

taking integer values from 5 to 15. Alternatively, (? 1E10) + 1E10 {(in APL) (Fa)

one can Qesignate 1 q]ock time unit as equivalent

to 0.1 minute and write Generate 100000, 50000 (in GPSS), (6b)
Generate 100, 50 (3)
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the discreteness problem can be safely ignored.
However, this does not really answer the original
question.

(ii) Relating to the preceding -question, many
users of GPSS will have encountered situations in
which an entire GPSS program can be rewritten to
require much shorter computer time if 1 clock

time unit can be assigned as. equivalent to 0.1
minute instead of, say, 0.001 minute. Clearly, a
programmer wants to know whether the greater :
accuracy of the latter version justifies the
additional computer time.

(ii1) If time distributions are constructed from
empirical data, the times are almost always
collected in "classes" for the construction of
histograms. Two questions will arise in these
situations; firstly, if the times of the process
actually follow a continuous density function,
how reliable"will be the simulation results’
obtained by using the empirically collected
discrete distribution? Secondly, in order to
ensure a good approximation of the natural conti-
nuous process, what should be the "¢lass width"
used to collect the data? Of course, in both
questions, the confounding issue of sampling
error has to be temporarily ignored.

(iv) Eventually, perhaps the most promising
point is to find out the effects of using discrete
time units in mathematical modelling. For example,
if using discrete time units provides good approxi-:
mation in simulating a certain system, then using
discrete time units must also provide good approxi-
mation in the mathematical analysis of that
system. One example is the numerical procedure
presented in the "Methodology" section of this
paper for obtaining a queue's waiting time distri-
?ution, and this point will be brought up again
ater.

2. DEFINITIONS AND OVERVIEW

This study investigates the effecis of different
levels of time discretization on "customers'
waiting time" in single-server queues. The
service rate, u, is fixed at 1 customer per unit
time, and- queues with different utilization
factors p are obtained by varying the arrival
rate A.

2.1 Definitions

(i) The "level of discreteness" s .is the smallest
unit of time permissible in the simulated system.
For example, referring to the riormalized ¢ of 1
per unit time, simuTating at the discreteness
Tevel of ¢ = 0.1 means that the service and
interarrival times can only exist in multiples of
0.1 time units. In GPSS,% = 0.1 corresponds to
representing 1 real time unit by 10 clock (or
simulation) time units. The case of continuous
time corresponds to¢ = 0.0.

(ii) W@ ,p) is the "theoretical® customer's
waiting time distribution when the utilization
factor is p and the simulation is performed at
the discreteness level of g . W@ ,p) is the corre-
sponding mean waiting time. The corresponding
sample waiting time distribution observed from a

.d

2.2 Overview :

finite sumulation run is wl ,p), anq‘@& sp) is
the corresponding sample mean of waiting time.

(i41) Bijt = W, (1.0) - wt(j,p) is the absolute

difference in the waiting time distribution at t
between the discreteness levels of 1 and j.

Similarly, ] ‘ . .
sijt = wt(1,9) - wt(a,p) = Aijt s sample est1mate:
(1\/) D'IJ = W(isp) - W(J’D) » and

.= w(i,p) - Ww(i,p) = D..'s sample estimate.
13 13 1

«

In this étudy, we are primarily interested in the :
‘effects of ‘time discreteness as reflected in the -

values oﬁ‘A and Dij' These values can be

ijt

~astimated from their. sample. values a.jt.and dij

i

using simulation, they can also be computed via
the waiting time distribution W@ ,p) obtained :
from a numerical procedure. These two procedures :
are discussed in the next section on "Methodology.
Using these procedures, values of Aijf,and Dij

are estimated for queues with different distribu- :
tion forms of interarrival/services times, the
results and an attempt to generalize them are
presented in the fourth section. Generally
speaking, the effect of time discreteness is

found to be small. Finally, the implications of
our results are briefly discussed in the concluding
section. The third section may be skipped since

an understanding of the methodologies is not neces-
sary for the later sections.

3. METHODOLOGY
3.1 Simulation
Obtaining the sampie observatidns Aijt's and

dijls by a Fortran simulation program is concep-

tually straightforward; any required discreteness
level can be obtained by rounding the ganerated
continuous random numbers to the appropriate
numbers of decimal places. However, the -actual

I , 1 P
values .of Aijy s and Djj s turn out to be very

small, whereas the variances and autocorrelations
of their sample estimates (i'é"‘sijtls and

dijls) are comparative large; moreover, the

variances and autocorrelations increase rapidly

as p increases. Therefore, without using excessive
computer time, we were only able to consider

cases of moderate p, and reliable information was
obtainable only on the signs, but not on the
magnitudes of the Dij”s. No reliable estimates

of the Aijmqs were obtainable. Fortunately, as

will be seen later, these results are aldequate
for the purpose of this study.

3.2 The Computational Procedure

Our procedure for computing wt@ ,0)} is based on
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Lindley's (1952) integral equation for waiting
time distributions. Given the density functions
of the interarrival times (a) and the service
times (s), if f(t) denotes the density function of
the random variable (s-a), Lindley has shown that
the steady-state waiting time distribution func-
tion W(t) for a single-server queue is given by

t

T W(t-x) f(x)dx  t >0
W) = (7)

0 t<0

It is known that, except when p is close to 1,
the distribution function W(t) usually increases
very rapidly towards 1 as t increases initially,
but it then converges very slowly to 1 as t
becomes larger and W(t) becomes closer to 1. For
most practical purposes, instead of considering
the entire domain (0, «) for W(t) and the domain
(-, =) for f(t), "sufficiently accurate” results
can be obtained by truncating W(t)'s domain to
(0,T) and f(t)'s domain to (-T,T), where T is
sufficiently large such that W(T) . 1. At this
value of T, if time exists in discrete units of ¢
(i.e., discreteness level =32 ), then by writing

M=TA, (8)

and by defining w(t) to be the corresponding
discrete density function of waiting time and
d{t) to be the discretized counterpart of f(t),
it can be seen that eqn. (7) transforms to the
system of equations

w(0) = w(0)d(0) + w(1)d(-1) +
1)d(0)

coe W(MA(-M), (9)
w(l) = w(0)d(1) + w( .. W

M)d(1-M},

[/ 1]
—.

it

w(M) = w(0)d(M) + w(1)d(M-1) + ...w(M)d(0),

or equivalently,

(0 1d(0) d(-1) ... d(-M) )
w(l) d(1) d(0) ... d(1-M) w(1) (10)

W] La() dn-1) ... d{0)  w(m)

Since one of the above M+l equations is redundant,
the system can be solved by replacing the first
equation with the probability relationship

w(0) + (w(1) + ... + w(M) = 1, giving

1 1 1 .1 w(0)
w(  [dn) deoy Ll aem) w(l)
S T B ) : (11)
W) A Fe1) Lodg0) Wi
or
1] [ 1 e 1 w(0)
0 [d(1) d(0)-1 ... d(1-M) w(1)
=l ) : 1)
o] M) dM-1) ... d(0)-1 w(m)

Eqn. (12) is in the form [K] = [D]1[wl, hence
w1 = [01711KI. (13)

Observing the elements in matrix [D] of egn. (12)
reveals that the matrix is diagonally dominant
except for the first row, therefore, the waiting
time density function [w] can be easily obtained

by solving eqn. (13) using the standard Gauss-
Seidel method. The elements d(k)'s required in
matrix D can be obtained in two ways. First, if

a convenient theoretical function of f(x) in egn.
(7) is available (e.g., when the service and
interarrival times are both normally distributed,
and hence f(x) is normal), then d(k) can be

simply computed as the area under f(x) in the

time interval (ke + 0.52), wheree is the dis-
creteness level. Second, if f(x)'s function cannot
be conveniently obtained, d(k) can be conputed by a
"numerical convolution” procedure:

L
% s(i) a{i-k) for k >0
i=k
d(k) = (14)
L+k
%z s(i) a{i-k) for k < 0,
i=0

-where s(k) and a(k) are respectively the probabi-

lTities of the service and interarrival times
being in the interval (ke + 0.5¢ ), and L is a
suitably Targe value greater than 2M.

For modelling the discrete-time queueing system,
the only approximations made in eqn. (13) are the
truncation of W(t)'s domain from (0, =) to (C,T)
in egn. (8) and (9), and the truncation of the
range of s and a from (0, =) to (0,L% ) in eqn.
(14). To achieve the accuracies needed in this
study, the computations were programmed in “triple
precision,” and the truncation levels are set to
be high enough such that a(L) and s(L) are Tess
than 10E-15 and w(M) is less than 10E-20 in each
case. We found that this computational method
performs adequately for low p and high discrete-
ness level 2 . When p is high, the long tail of
W(t) necessitates a high truncation level T, and
hence a larger M-value according to eqn. (8).
Whens is low, both M and L have to be large for
the same truncation levels T and Lg . In either
case, the computations required to perform egn.
(14) and (13) become excessive.

4. EXPERIMENTAL RESULTS
4.1 Exponentially Distributed Times

The computational method is first used to
compute [w] for discreteness levels of J.2 and
0.1; having [w], the values of W{& ,p) and Aijt

can_be easily computed. Table 1 gives the values
of Wk ,p) for discreteness levels of 0.2, 0.1, 0
and p-values of 0.1, 0.2, and 0.3. W@ ,p) fors
= 0 is known to be p/1-p.

The effect of time discreteness on the nean
waiting time appears to be very small, but there
1s a consistent pattern: "a higher discreteness
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level leads to a siightly higher mean waiting

TABLE 1
Mean Waiting Times for
Exponential ly Distributed Times

g ! . .3
) 0.1 0.2 0
0.2 0.111333 0. 250581 0.429710
0.1 0.111167 0. 250146 0.428866
0 0.111111 0. 250000 0.428571

time." Our computed values of A1Jt s are all
very small {< 0.1%), and no meanﬂngful pattern
can be detected.

The computational method becomes inadequate for
p > 0.3 or forg < 0.1, and simulation was used
to study the cases of p —0 4 to 0.6. While
reliable estimates of D "s magnitudes weére not
obtainable, the smmulated vaTues of dii's do
indicate the same consistent pattern: g higher
discreteness level Teads to a slightly higher
~mean waiting time."

For higher p-values, the sample observations
from simulation become too erratic.

4:;2 Normally Distributed Times

Assuming normally distributed service and inter-
arrival times, the computational procedure was
used to determine values of W@ ,p) for the cases
tabulated in Table II. The effect of time dis-
creteness on the mean waiting time is again very
small. For the cases below the Tine AA in Table
11, the consistent direction of the time discrete-
ness effect is: "a higherg Teads to a slightly
higher mean waiting time," which agrees with the
earlier observation. However, for cases above the
Tine AA in Table II, the consistent direction of
the time discreteness effect is in the opposite
direction, i.e., "a highers .leads to a slightly
LOWER mean waiting time." The computed values of
Aijtls are again very small and no meaningful

pattern can be observed.

patterns in Tables I and II.

H. LAU, A. ZAKI

4.3 Generalization

Other distributions were also used to represent
the interarrival and service times, and investiga-
tions similar to the ones described in sections
4.1 and 4.2 were conducted. These results (many
of them not presented here) clearly sugjésts the
following generalization on the effect of time
discreteness:

When o and the coefficient of variation of the
interarrival/service times are both small, a
highers Tleads to a lower mean waiting time.
When the combination of p and the coefficient of
variation are "sufficiently large" (as indicated
by the region to the right of AA in Table II), a
higher ¢ ‘leads to a higher mean waiting time.

This generalization explains very well the observed
For exponentially
distributed times (see Table 1}, a highers

always Teads to a higher mean waiting tine because
an experimental distribution always has a high
coefficient of variation of 1.

5. DISCUSSION AND CONCLUSION

Investigations similar to the ones presented

above were also conducted for queues with other
distribution forms of interarrival/service times.
The data reveal the same pattern of behavior
depicted above, .and are not presented. Ore would
expect the effect of time discreteness to be

small, since this probably has been the implicit
justification for the lack of formal investigations
on this issue. However, it is probably surprising
to see how small the effect actually is. For
example, considering situations in which the mean
waiting times are sufficient1y large (say, moye
than 10% of the mean service times) to be of
practical interest, Table IT indicates that very
accurate estimates of H(Q,p) can be obtained with
#(0.2,p), i.e., using discrete time units as
large as 20% of the mean interarrival tine.
leads to very useful answers to the questions
raised in the first section of this paper:
Perhaps the most promising implication is the
suggestion of developing discrete-time queueing
models that can be more easily solved than their

This

. TABLE II
Mean Waiting Times‘for Normally Distributed Times
Coeff. of | Discrete. Load Factor o
Variation Level 0.1 0.3 0.5 0.7 0.8 0.9

g2 = 0.2 0. 0.275 E-12 0.874 E-7 0.255 E-3 0.363 E-2 0.364 E-1
c.V 2 = 0.1 0. 0.428 E-12 1.148 ‘E-7 0.362 E-3 0.444 E-2 0.375 E-1
=0.1 & = 0.005 {0, 0.482 E-12 1.696 E-7 0.395 E-3 0.466 E-2 0.382 E-1
& =0.2 0. 0.692 E-4 0.192 E-2 0.236 E-1 0.722 E-1 0.258 E-O
c.v 2 =0.1 0.15525 £-3 0,717 E-4 0.201 E-2 0.242 E-I 0.727 E-1  0.255 E-0
=0.2 % = 0.05 |0.15553 E-3 0.724 E-4 0.203 E-2 0.243 E-1 0.729 E-1 0.254 E-0
2 =0.2 0.12173 E-2 0.473 E-2 0.235 E-1 0.1067 E-0 0.2391 E-0 0.677 E-0
c.v. g =0.1 0.12193 E-2 0.477 E-2 0.238 E-1 0.1071 E-0 0.2387 E-0 0.672 E-O
=0.3 % = 0.05 {0.12197 E-2 0.478 E-2 0.238 E-1 0.1072 E-0 0.2386 E-0 0.671 E-0
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continuous-time counterparts but are nearly as
accurate. One example is the solution of Lindley's
equation (eqn. 7) by the computation procedure
presented in this paper. Analytical solution of
eqn. (7) is known to be difficult for most practi-
cal interarrival/service-time distributions.
However, if the discreteness level ¢ can be set
at a large value, M will be small according to
eqn. (8), and the discrete waiting time distribu-
tion can be easily obtained through eqn. (14) and.
.(13), using very Tittle computer time; moreover,
this computational procedure is applicable to-all
‘distribution forms of interarrival/service.

‘The consistent effect of ¢ on the mean waiting .
time as generalized at the end of the preceding
section is perhaps interesting academically, but
we have no theoretical explanation for the ob-
served behavior. Given the smallness of the
effect, further investigations do not seem worth-
while. o

Besides observing the mean waiting time, we have
‘also observed in these investigations the effects
‘of time discreteness on the waiting time distribu--
tion itself and the standard deviation of waiting
.times, the effects are all negligible for practi-
cal purposes, and are therefore not presented.
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