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ABSTRACT

Three methods of estimating the inverse of a continuous cumulative distribution

function for the purpose of random deviate generation are discussed.

These

methods are 1) the empirical approach, 2) the maximum likelihood approach, 3) a
newly developed regression based estimation procedure.

Analytic results are obtained which permit comparisons of the accuracles of each
of these methods under alternative assumptions about the underlying distribution.
Expressions for the variance of each estimate at any given quantile of the random

variable are provided.

A demonstration of the procedures is given using data from the outer continental

shelf oll and gas lease program.

1. Introduction

Our aim is to provide an analytic comparison among
three methods of estimating the Inverse function
of a continuous random variable.. The estimated
inverse function is intended for use in the gener-
ation of random deviates using the well known in-
verse function method [Kennedy and Gentle (1980)].
The three methods of estimation to be compared are
the maximum likelihood estimation method (MLE),
the empirical method, and a recently developed
regression method. The comparisons are made on
the basis of accuracy of the estimates rather than
on the computational efficiencies and ease of
generation of random deviates from the estimated
inverse function.

In the following section, a description of each of
the three methods is given and some of their
salient properties are discussed. Section 3 con-
tains the analytic comparisons. The variance of
the quantile estimator for each of the three
methods is derived under general conditions as the
sample size becomes infinite. These variances are
used to make comparisons on the basis of asymp-
totic relative efficiency (ARE). ' Some examples
are given. In the final section a demonstration
of the regression method is provided.

2, Description of the Methods

Let X ey Xn be an independent random sample on

1,
a continuous random variable X having the distri-
bution function F. When F is completely specified
we write F(x) for P(X £ x) and when F is known up
to a vector of parameters 0 we write F(x;0) for

P(X < x). Since F is assumed to be continous the

inverse function of F given by
F-l(p) = inf {x: F(x) = p}

exists. If ¥l is estimated by the function ¥l
then random deviate generation is easily accom—
plished by the generation of uniform random devi-
ate, U, and the subsequent evaluation of F~1(U).

The estimation of F“1 is of central concern here.
There are two basic approaches to the solution of
this problem. First we may estimate 6 with, say,

t and then use F—l(p;t) as an estimator of F—l.

The MLE procedure follows this approach. The
second basic approach is to estimate the entire
inverse function without directly estimating 8.
The empirical procedure follows this second
approach.

The advantage to the first approach, parametric
estimation, is that if the correct family of
distributions is chosen, the information in the
sample can be used efficiently. The danger exists
that the incorrect family will be chosen and thus,
no matter how large the sample, the estimate of
Fl may differ substantially from the true func-
tion.

The particular form of parametric estima-
tion examined here is MLE. In order to obtain an
MLE estimator we consider the likelihood function

n
L=1I f(Xi; 8)
i=1

where £(x3;8) = dF(x3;6)/dx is the density function
of X. Under certain assumptions concerning the
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properties of the derivatives of the logarithm of
f, L will yield a single consistent solution, say,
t. Furthermore, the limiting variance of the
estimator t is

v =|| vijll where Vm1 =l| vijll"has the elements
vl = -E(92 1og L /384 304). ‘

This result will be useful in making comparisons
of the MLE to other methods. [See Kendall and
Stuart (1967) for a full discussion of MLE.]

The empirical method avoids the problem of speci-
fying a family of distributions. Instead, the
sample or empirical distribution function defined
by

n

Fn(x) = ) u(x-%y)

i=1
where u(x) is the indicator function u(x)=1 if
x > 0, and u(x)=0 otherwise. Fn (x) is itself a

random variable. By the Glivenko theorem [Rao
(1973)] Fy, converges almost surely to F.

Therefore we may estimate F by Fn and F ¥ by‘an1

where (2.1) is used to define Fn—l. Ogawa (1962)

has shown that the limiting variance of anl (p)
is given by
-1 ~1 =2
var[F_ “(p)] = p(l-p)n [f(xp)] 2.1

where xp satisfies F(xp) = p. This last result

will be used to make comparisons of the empirical
method to the other two methods.

Last consider the regression method presented
by Hora (1981). We give without the
corresponding proofs the following results.

1., Define
yIF(x)] = d log[Fo(x)]/d log{F(x)]
vwhere Fo(x) is a continuous distribution function

having the same support as F(x). Assume that

Y(P)’8°+81P+82P2+-N+Brpr

Then the inverse of F can be expressed in terms
of the Inverse of Fo as’

F_l(p)=F°-1[k exp(8_log P+BIP+82P2/2+ seotp " /]
where k=exp (—61-82/2-,r..,-8r/r).
2, Let Xl,..., Xn be the ascending order
statistics in a sample of size n on X and let
Wj-j [log F° (Xj+1) - log Fo (Xj)}
where Fo(xn+l) = 1. Then as n + « the Wj

converge In probability to independent exponen—
tial random variables such that

E(Wj) = v(p)

where j >+ np as n + o,

3. From 2 and the polynomial represen-—
tation of y(p) we have

5 1
E(W,) = ] 8; [i/(atD)]
1=0

as n * o,

From the third result we see that the vector
of coefficients B' = (so,...,sr) can be estimated

using welghted least squares. We construct the
matrix of fixed regressors given by

a=llagy |l vhere aj, = [3/G+1)1t

and obtain preliminary estimates of B by

3* = (ara) laww
where W' = (Wl,..., Wn). The preliminary esti-

mates are asymptotically unbiased for B but,
noting the second result, not necessarlly effi-
cient. If B has some nonzero elements, other
than Bo’ the varifances of the Wi will not be con—~

stant and the efficlency of the estimator can be
improved by using generalized (here weighted)

Let Wj be the jth element of W

least squares.
where

W o= AGA'A) 1AW,

-2

Define D =|| diJI so that d, = Wj and

i3

dyy = 0 4f i#4.

The improved estimator is then given by

8 = arpa) la'ow.
The variance of B is asymptotically given by

var(g) = (A'AA)-1

were 4 116,J1 - [/ 1Y

%33
and 61j = 0 1if i#j.

Now, backtracking somewhat, remember that the
estimate of B was calculated using a reference
distribution, F,. We use our estimate of B, F,,
and the first result to estimate the inverse func—
tion F-l. The selection of F, and r, the order of
the polynomial that connects F and F,, should be
made in such a manner that F, is conducive to ran-
dom deviate generation and r is as small as
possible. When F, is chosen to be close to F, the
polynomial is required to do less work in bringing
the inverse function into conformance with the
data. A wise cholce of both F, and r can produce
an estimated inverse function having substantially
better efficlency (in statistical sense) than the
empirical method without having to specify a
family of distributions with a usable inverse as
is required in parametric estimation.
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3. Comparisons

Since it is our intention to provide comparisons
of the accuracies and statistical efficiencies of
the three competing methods of estimation, it is
necessary that expressions similar to (2.1) be
developed for the maximum likelihood approach and
the regression approach. We begin with the MLE
estimator.

Let xp be an estimate of the pth quantile of the

inverse function. Then for the MLE estimator t of

0 we have as n + «

~ -1 ~1
L F “(pst) - F "(p;0)
and . -1
= 4t
var(xp) dz v dz + o(n ) (3.1)
where V = var(t) and dz =3 F'l(p;e)/ae evaluated
at the true value of 8,

Similarly for the regression method we have

~ ~1 ~ -1
- F le(p,B)] - F "lg(p,8)]
shere g(p, )=k exp(s,log PHB PHB,D /2 + veunit
g /).

T

By imposing certain mild conditions on the beha-

vior of y(p) it can be shown that B converges in
distribution to a normal random vector and,
further, that

var(xp) = [£o(xp)172d'x (A'A A)"ldy + o(n™1) (3.2)

where d, = 3g(p,B)/3B evaluated at the true
value of 8.

Through equations (2.1), (3.1), and (3.2) com-
parisons of asymptotic relative efficiency (ARE)
can be made. First let us compare the empirical
with the regression method. The ratio of (3.2) to
(2.1) gives the ARE of the regression method to
the empirical method as

ARE(R,E)=p(1-p)n~1 [£(xp)/£(xp)12
[dptcaran)~1 g1}

Evaluation of the ARE(R,E) then depends upon p,r,
the choice of f, and the true density f. 1In order
to simplify the comparison we have chosen the case
where f=f, and we have evaluated the ARE at
P=el,.2,444,+9 and r=0, 1,..., 5. These results
are presented in the table.

TABLE
ARE of Regression to Empirical Method
r»p| .1 .2 3 4 .5 .6 .7 .8 .9

"of £, and By

0 1.700 1.54 1.6 1.79 2.0§ 2.53 3.37 5.02 10.01

1 1.49 1.54 1.49 1.39 1.31 1.30 1.40 1.74 2.93

2 1.47 1.30 1.22 1.23 1.28 1.29 1.2 1.27] 1.67

3 1.3 1.19 1.2) 1.19 1.1§ 1.1§ 1.23 1.23 1.31

4 1,21 1.19 1.15 1.13 1.15 1.14 1.14 1.2) 1.27

5 1.170 1.1 1.12 1.13 1.1 1.13 1.13 1.1y 1.21

Examination of the table shows that the ARE(R,E)
is always greater than unity. We conjecture that
this is true whenever f=f, and that as r + = the
ARE(R,E) > 1. Remembering that ARE is to be
interpreted as the ratio of sample sizes required
to obtain the same level of precision, we see that
the regression method can produce substantial
reductions in sample size requirements. The gain
is most striking in the upper tail of the inverse
function.

Comparisons made between the regression and MLE
procedures are more difficult. The difficulty
arises from the difference between the set of
alternative distributions considered by each of
the procedures. The MLE procedure treats sets of
parametric families while the regression procedure’
treats a particular parametric family formed
through F, and B.

It is possible, however, to compare the two proce~
dures by estimating the vector of coefficients, B,
using the alternative methods. When r=0 the MLE
and regression estimates are identical regardless
Thus the ARE(R,MLE)=1 whenever the
true distribution function is equal to F, raised
to an arbitrary power. When r is greater than
zero it becomes difficult to express £ in terms of
F, and B and thus the MLE procedure is not easily
applied. Work is being conducted in this
direction, however, since the MLE estimates will
most likely have the minimum obtainable variance
and therefore make an excellent standard for
comparison.

4, Demonstration

The regression procedures presented in this paper
were developed during the study of bidding acti-
vity in the oil and gas lease program on the outer
continental shelf. As part of this study a simu~
lation model was developed that facilitates com-—
parisons of bids tendered by a single firm (solo
bids) and bids tendered jointly by several firms
(joint bids).

The purpose of the simulation model was to gener-
ate a randomly drawn solo bid for each of several
companies participating in joint bid. Repeating
this process many times allowed one to estimate
the distribution of the largest of the several
generated solo bids. The distribution of the
largest solo bid was then to be compared to actual
joint bid to determine if the policy that has
disallowed major oil firms bidding together has
resulted in an increase in revenues from the oll
and gas lease program.

The model of individual bidding behavior for each
firm was assumed to be of the form
log (bij/ej)=aj+8jei+81j (4.1)
Where b4 is the bid of the jth firm on the ith
lease, 0; is a value measure for the ith lease,
@j and Bj are parameters to be estimated, and

€1j is an error term with an unspecified distribu-
tion except for the condition E (ej4)=0.

The model given in (4.1) was estimated by a two
step process for each of many firms. The first

step entailed the estimation of the parameters

a and B using ordinary least squares. The resi-~
duals from the model were then used to estimate

the probability distribution of €44 —~ Or more
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precisely the inverse of the distribution of the
eije

The interest here is on the estimates of the in-
verse functions obtained using the procedures of
the preceding section. One such estimate is pre-
sented in the figure. The inverse function was
estimated using a fifth degree polynomial and nor-
mal distribution for Fy(x). The normal distribu-
tion was chosen because of the suggestion inm
previous studies that the logs. of bids follow a
normal distribution function.
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In the figure the empirical inverse function and

normal inverse function are plotted with the in-

verse function obtained using the new procedure.

The new procedure produces a smooth estimate that
is closer to the émpirical estimate than the nor-
mal estimate.

The ability-to estimate the .inverse of nearly any
continuous distribution function and the ease of
random deviate generation using the estimated
inverse function make this procedure a useful tool
for the building of discrete simulation models.
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