1981 Winter Simulation Conference Proceedings
T.I. Oren, C.M. Delfosse, C.M. Shub (Eds.)

141

AN ON-LINE SIMULATOR AND DATABASE SYSTEM FOR MANAGEMENT OF A COMMERCIAL FISH FARM

A. Neil Arnason, Carl J. Schwarz and David H. Scuse
Department of Computer Science
University of Manitoba
Winnipeg, Manitoba, R3T 2N2
Canada

ABSTRACT

We have developed an on-line system to aid in the management of enclosed,
multi~tank fish farms with water filtration, heating and recirculation, where
fish are grown from fingerling through to market size (about 250 gr.). The
manager has a high degree of control over tank loadings and fish rearing con-
ditions, but he must maintain high production rates within biological con-
straints on water quality and fish density and within system constraints

imposed by the physical plant.

exploration of management strategies,

A multi-level interactive simulator permits
with nested levels of comstraints. A

database is used for storage of both real and simulated data on management

interventions and their consequences

on fish growth and water quality.

Interaction between the simulators and the database aids model calibration
and validation and.permits storage of promising management strategies.

1. INTRODUCTION

Since April, 1980, we have been developing a sys-
tem of programs and a database designed to aid in
the management of commercial fish farms. The work
has been carried out in conjunction with the Aqua-
culture project of the Freshwater Institute,
Fisheries and Oceans Canada. This research sec-~
tion of a Canadian Federal Government ministry
operates the Rockwood Experimental Hatchery near
Winnipeg, Manitoba. One of the purposes of the
hatchery is to demonstrate the commercial feasi-
bility of enclosed, environment~-controlled fish
rearing facilities <for the production of market
size (200-250 gr.) salmonid fish reared from 5-10
gre fingerlings. '

Such facilities, of which Rockwood is a small-
scale prototype, have several tanks, each of a
given size and shape, each holding a given volume
of water in which the fish are reared. The water
temperature and quality are maintained by the
water flow system. Water from tanks is partly
discharged, but the majority passes to a filter
(usually one to each tank) where pollutants (fish
metabolites and particulate matter such as feces
and excess food) are removed by mechanical filtra-
tion and bacterial action. This action also
removes oxygen f£rom the water, beyond what has
already been removed by the fish in the tank. The
filtered water is then recirculated back into the

tank after mixing it with heated make-up water.
The make-up water, which replaces any discharge,
is heated by mixing unheated ground water with
water heated by low-grade (solar or waste) heat.
Large holding tanks of heated and unheated water
are maintained, and this can be fed in any combi-
nation to provide make-up water of different temp-
eratures to individual tanks. The combined
make~up and recirculated water is fed back into
the rearing tanks through venturies and spray
heads which partly or completely re-oxygenate the
water (depending on flow rates, fish densities,
etcd). Typically the turnover rate in a tank
(i.e. the time to input one tank volume of water)
is around a half hour but there may be considera-
ble variation in this variable among hatcheries or
hatchery configurations. The size of the filter,
in combination with the turnover (flow) rate may
place limits on the loadings of fish and food that
can be placed in the tank. In any case, filters
gradually decline in thelr efficiency of pollutant
removal and must periodically (every few weeks) be
flushed in a process called backwashing. While
this is being done, the fish in the tank are main-~
tained on straight flow-through of make-up water
with no recirculation. The process requires 15-30
minutes per tank.

Many variations on this physical system are possi-
ble: variations in numbers and volumes of tanks,
in filter sizes, in the degree of temporal and

81CH1709-5/81/0000-0141500.75 (:) 1981 IEEE

142 A.N. ARNASON, C.J. SCHWARZ, D.H. SCUSE

by-tank control of flow, temperature, £iltration,
etc., 1in the amount of water and heat available.
Cur management programs and database are designed
to 1incorporate information about this physical
configuration and to adapt their functions to
existing or hypothetical configurations, different
from, but of the same general design as that at
Rockwood .

The salient feature of the facilities that we are
considering is that the manager has a high degree
of control over the rearing conditions. Rearing
conditions are those variables which have a direct
effect on the growth and death rate of fish. They
include water temperature, feeding variables (food
type, feeding rate and method), and water quality
variables (mainly oxygen level, toxic metabolite
levels such as N-NH3, N-NO2 and pH as it affects
equilibria). Growth rates also differ among spec—
jes and among genetic strains of the same species.
At Rockwood, most of the rearing experiments. have
been done wusing various strains of raimbow trout
(Salmo gairdmeri), but work is also beginning on
arctic charr (Salvelinus alpinus). Many of the
system variables have no appreciable effect on
growth or death except at extremes of high fisgh
density or low water quality but these limits,
which we call biological constraints, depend on
fish size, growth rate, and temperature (among
other things). Biological constraints can be con~
sidered, for the moment, to be the maximum density
and minimum water quality conditions that are tol-
erable by the fish. We shall need to define this
teri more precisely when we introduce the various
levels of growth models.

In an actwal hatchery, the manager has varying
degrees of direct or indirect control over the
environmental variables which affect rearing con-
ditions and determine if biological constiaints
are exceeded. Changes to such variables, over
which tlie manager can exercise direct and indepen-—
dent control are called intexrventions. The easi~
est changes to make involve tank loadings of fish
and the feeding variables. Each tank can be
stocked with a2 given number of fish, of a given
weight or distribution of weights. A feeding reg-
imen for each tank is carried out: a -certain
amount of a specified food is distributed to each
tank in a set way daily. Amounts are specified as
a certain feeding percent, typically aimed at or
just under maximum ration which is the (size and
temperature dependent) amount just needed to
achieve maximum growth rate. Ve will also refer
to a parameter called feeding level which is the
actual feeding percent as a fraction of this maxi-
mal ration. Feeding level thus varies from star-
vation (feeding level = 0) to maximum ration
(feeding level = 1). Tanks are censused or sam—
pled on a regular basis (usually weekly) to deter-—
mine their current total weight and mean weight
per fish so that the feeding regimen can be
updated. As the fish grow, tank loadings
(kg./tank) generally increase and so the tank
loadings must be re~distributed. Some or all of
the fish in a given tank may be moved randomly
(i.e. not size selectively) or by grading (usually
larger fish are moved or 'promoted") to an empty
tank or to a tank with other fish already in it.
Three types of movements are distinguished: an ADD
of fish from outside the farm into a tank, a MOVE
of fish from one tank to another, and a REMOVE of

fish from a tank for sale or discard. All such
movements can potentially be dome at any given
time, from or to any given tank, on a numbers or
percentage by weightclass basis. In practice,
movements are usually kept as simple as possible,
since the consequences of all but the most regular
interventions are difficult to foresee and because
there is a need to keep fish sizes within tanks
fairly uniform. A typical strategy is to empty
out tanks with (mostly) market size fish every 6
to 8 weeks and to use the spare tanks to split the
fish in the remaining most heavily loaded tanks.
If any tanks remain, a new batch of fingerlings is
started.

The water variables are also subject to interven-—
tions by altering the percentage and temperature
of the make~up water, possibly on a tank-by~tank
basis. Flow rates are usually fixed by pumping
rates, but may be variable in some systems.
Changes to any of these will produce new equilib-
rium levels for the water quality varibles which
must be kept within the biological constraints for
the current tank loadings. The interventions must
also be within the range of system constraints
that are imposed by the availability of heated and
unheatéd water in the holding tanks, maximum pump-
ing rates, filter capacities etc.

Two points should be evident from this brief out-—
line of hatchery-management practices. The first
is that the system .generates a large amount of
data that is dimportant both for day-to-day opera-
tions and for planning purposes. The manager must
keep track of tank censuses and the interventions
carried out. Measurements of water temperature
and quality (pH, oxygen concentration, ammonia
levels) are made regularly, possibly in any or all
of the tank-, the recirculation- and the make-up-
water. Data is also collected on the various flow
rates and on the volume and temperature of water
in the holding tanks as well as ambient air temp-
erature. These data permit monitoring for deteri-
oration of environmental conditions, checking how
close the system was run to the biological and
system constraints, resetting of feeding regimens,
and historical reporting of the consequences of
interventions on growth, deaths and environmental
conditions. In a production commercial facility,
a considerable amount of data on costs and ben-—
efits will also be required.’ The second point is
that, even with ready access to this information,
management is a complex and difficult task. While
the manager has a high degree of control, he is
also subject to complex and inter—dependent con-
straints. lMoreover, he must balance the interven-

- tions open to him now against the possible conse~

quences of each at some point down the road, and
these consequences can range from the merely sub-
optimal through to the irreversibly disastrous.
He must make a trade-off between production and
risk: at lower loadings and slower growth rates,
the fish are less stressed, there is less need to
worry about exceeding biological constraints, more
leeway for error and more time to correct mis-
takes. At high tank densities and growth rates,
he is subject to higher risk, yet it is precisely
at such levels that the facility should be run if
the higher capital and operating costs (relative
to simpler open-pond systems) are to be compen-
sated for.

AN ON-LINE SIMULATOR AND DATABASE SYSTEM FOR MANAGAEMENT OF A COMMERCIAL FISH FARM 143

Despite the higher fixed costs and greater demands
for skilled management, there are considerable
advantages, over open-pond systems, to controlled
environment systems. They provide managers with
more opportunities to optimise operations and to
maintain production at high, year-round yields,
with minimal and foreseeable risk. Moreover,
their efficiency is high because up to 90% of the
water can be recycled and because heating can be
provided by solar heat or waste heat from generat-
ing plants, refineries and compressor stations.
There is an increasing interest in Canada in using
such low-grade but non-transportable heat sources
to produce high value, easily marketed food
resources.

We have developed a database to meet the data
storage and reporting needs of management and a
set of simulator programs that permit the manager
to simulate the growth and water quality condi-
tions that would result from arbitrary interven-
tions, starting from specified initial conditionms,
within a specified physical configuration. In
Sections 3 and 4 of this paper, we will describe
the simulator capabilities and the database capa-
bilities as independent emntities. In fact, how—
ever, their dindividual usefulness is greatly
enhanced by integrating these two capabilities to
support one another. The reasons and means for
doing so are the subject of Section 5. As a pre-
liminary to these discussions, the next section
describes the software developments implemented to
support the on-line interactive simulation and
database query systems.

2. INTERACTIVE SOFTIWARE SUPPORT PROGRAMS

Most of the programs used by hatchery management
(the user) are on~line interactive programs where
the user is either prompted for specific inputs
(of names, numeric values, responses such as
yes/no, or lists of names or values) or he is
issued a command prompt. At this point the user
can enter a command directing the system to carry
out an operation from the repertoire of specific
actions that are appropriate at that point in the
simulation or database query system. Each command
type begins with a specific keyword (such as RUN,
LIST, MOVE, etc.) and is followed by a definite
syntactic structure for that command. The syntax
is designed to be simple and natural and to make a
reasonable English sentence.

The parser interface for handling this dialogue is
sufficlently general and self-contained that it
can be wused with almost no modifications in any
similar system where a powerful, user~oriented
command language must be supported. The parser
interface contains features that make both the
development of an interactive system by applica-
tion programmers and the use of the system by
inexperienced users quite simple.

The parser interface was patterned on the parser
used in the SIMSCRIPT system (Kiviat et al. 1975).
The parser accepts both iterative and recursive
specifications of grammars so that recursive lan-
guages are supported but iterative languages are
not complicated unnecessarily with recursive defi-
nitions. Also, the parser interface handles error
recovery in ways that are not possible in batch

systems such as SIMSCRIPT.

To use the parser interface, the administrator of
the parser, in consultation with the users, first
defines the language to be used in the application
system. The administrator then creates the formal
BNF (Backus~Normal Form) grammar for the language,
defining basic keywords and their operands as
primitives and grouping primitives together to
form the commands of the language. Instructions
for defining a command grammar are given by Kara-
sick (1981) in terms that can be understood by
programmers with no experience of parsers. A
notation in the BNF specification permits choices
among alternatives at any point in the command
and/or repetition factors for parsing lists or
repeating phrases within commands. Repetition
factors also control whether primitives are
optional or compulsory in the command. (The
administrator normally includes optional descrip-
tive phrases in the language that act as documen-
tation for the inexperienced user but which may be
omitted by the more sophisticated user.)

After the administrator has defined the grammar
for the language, the grammar is read and analyzed
by a batch program, the parser generator. This
program ensures that the language is valid; if no
errors are detected by the parser generator, a set
of tables that define the language is created.

The processing of user commands is performed by
the scanner and parser routines; these routines
are included with the other routines in the appli-
cation system. The scanner prompts the user for
each command line and then reads the command line
and breaks the line up dinto the component tokens.
Using the table produced by the parser generator,
the scanner determines the type of each token
(keyword, operand, etc.). Each token and its type
are then passed to the parser routine which builds
a parse tree consisting of the operands entered by
the user. The parser front—end then passes the
parse tree to an application program, referred to
as an action routine, which performs the process-
ing for that command. There is one action routine
for each command in the language; however, since
much of the processing for each command is common
to other commands, each action routine normally
consists of CALL statements to subordinate rou-
tines which perform the actual processing. If the
language is non~recursive, register variables can
be specified in the grammar as being associated
with particular keywords or operands in the parse
tree. This facility allows a "window" directly
into portions of the parse tree so that the pro-
grammer knows exactly where user-entered operands
are located without having to perform a search of
the parse tree. If a register variable is associ-
ated with an operand that can be repeated, the
register variable points to a 1list of pointers
into the parse tree.

Since both the scanner and the parser are driven
by the tables produced by the parser generator,
almost no modifications are required in order to
use the scanner and parser routines in a different
application. The scanmner should never need to be
modified, and the only change to the parser that
is required 1is the addition of a front-end that
contains a CALL statement to invoke the associated
action routine for each command in the language.

148 A.N. ARNASON, C.J. SCHWARZ, D.H. SCUSE

In order to make it as easy as possible for the
user to entér a command correctly, the parser gen-
erator automatically abbreviates keywords as much
as possible. (For example, "TANKTEMPERATURE" was
abbreviated to "TANKI".) However, the administra-
tor may oéver-ride this feature for a keyword and
specify explicitly the number of characters that
must be entered before a keyword can be recog-
nized. This feature ensures that certain major
commands (for example, the END command that termi-
nates a session) are not executed as the result of
a typing error.

As a part of the grammar, the administrator may
also define aliases for keywords and frequently
used operands. These aliases are automatically
abbreviated by the parser generator. (For exam—
ple, "FTYPE" was defined as an alias for
"FOODTYPE"; "FTYPE" was then automatically abbre-
viated to "FI" by the parser gemerator.) As part
of its processing of a grammar, the parser genera-
tor examines the abbreviations and aliases to
ensure that there are no ambiguities. If an ambi-
guity is found, the parser generator issues a
warning message and indicates how the ambiguity
will be resolved. The administrator may either
accept the parser generator’s resolution of the
ambiguity or make the appropriate change to the
grammar to remove the ambiguity. At the end of
processing, the parser generator prints a list of
the abbreviations and aliases that have been
defined fotr each keyword and operand.

The scanner also supports a text-substitution fea-
ture (similar to SIMSCRIPT’s "DEFINE TO MEAN") and
sophisticated command retrieval and editing fea-
tures that allow the user to reduce the typing of
long inputse. The scanner performs all of the
manipulations of abbreviations, aliases, and sub-—
stitutions in order to keep the parser independent
of the grammar. As a result, abbreviations and
aliases can be changed by regenerating the parser
tables without having to modify the action rou-
tines.

Because of the latitude allowed by the parser sys—
tem in accepting abbreviations, aliases, and sub-
stitutions, the user should not have much diffi-
culty in entering commands correctly. However,
should he make a mistake in entering a command,
the parser generates a detailed error message (as
opposed to the message "ERROR, RE-ENTER INPUT"
produced by many systems) that tells him which
part of the command is invalid and the reason why
it is dnvalid. For wany errors, the user is
prompted to re—enter only the portion of the com-
mand that is invalid and the remainder of the com-
mand doeés not have to be re-entered.

The parser interface removes much of the tedious
work involved in implementing an application sys-
tem that requires a complex command language. The
parser can be installed quickly and easily because
almost no changes need be made to the source code
for the parser. Becausé of the work performed by
the parser generator in determining how each com-—
mand must be parsed, the parser routine is able to
parse .each command very efficiently.

3. THE SIMULATOR PROGRAMS

Two f£fish growth programs are available to the
user. They are referred to as the “single-fish’
program and the “multi-tank’ program.

3.1 The Single-fish Program

This simulator uses a deterministic differential
growth equation model to simulate the growth of a
single (representative) fish without density,
biological or system constraints. Specifying tank
or system information is thus wunnecessary. The
program is designed to permit the user to explore
the properties of the underlying model (which is
also the basis of the multi-tank model) in
response to various sets of initial conditions and
rearing conditions. Rearing condition variables
are: species (or strain), food type, feeding rate
(either percent or level) and temperature. Ini-
tial conditions are the initial weight and time
interval increment (DT or WITH time), reporting
interval (BY time) and elapsed time (FOR time).
Species and foodtype are generally chosen in
response to prompts and then the user will gener-
ate tables of results by using the three main com-
mands to SET rearing conditions, RUN the model,
and LIST various growth consequences. For exam-
ple:

SET INITIALWEIGHT=(.05,.1)

SET TEMPERATURE=(8,10,12) FEEDLEVEL=(.5,.75,1.0)
RUN FOR 4 WEEKS BY 1 WEEK WITH DT=1 DAY

LIST INITTALWT, FINALWT, INSTGROWTH, FEEDPERCENT

will produce a table of the variables in the LIST
command that result from the first week’s growth
using daily (but unreported) updating. The table
has 18(=3x3x2) lines, one for each possible combi-
nation of rearing conditions. Initial weight is
then automatically re-assigned the f£inal weight
and the table is regenerated for the second week’s
growth, and so on. The differential equation for
growth is based on that given by Sparre (1976).
Sparre’s model includes an explicit relatiomship
between feeding percent and feeding level so that
the user can specify ration in absolute or per-
centage amounts or by feeding level. These con-
versions are recomputed every update interval
(DT), as are oxygen consumption and ammonia pro-
duction rates as these change with increasing fish
weight. The model in fact has an analytic solu-
tion for fixed feeding level, but it is not real-
istic to wuse this as it would imply continuous
adjustment of feeding percent as the fish grow.
When feedweight or feedpercent is specified, the
updates provide a finite approximation to continu-
ously changing feeding level. The results turn
out to be fairly insemsitive to the choice of DT,
provided DT is kept failrly small, generally less
than 1 week, but possibly smaller at very high
growth rates. Auxiliary equations (currently also
from Sparre) predict oxygen consumption and ammo-
nia excretion over the growth interval, but we are
in the process of revising these equations (see
McLean 1979 and Paulson 1980 for recent reviews).
We are also revising Sparre’s model, which was
developed for open ponds at relatively low temper—
atures, to give more realistic temperature respon-—
ses. Sparre’s model gives monotone increasing
growth rates as temperature increases (for fixed
rearing conditions other than temperature), but

AN ON-LINE SIMULATOR AND DATABASE SYSTEM FOR MANAGAEMENT OF A COMMERCIAL FISH FARM 145

salmonids generally show an optimum growth rate at
around 16 degrees centigrade, dropping off steeply
above that, and more slowly below that. The
nature of the response is highly species-specific,
but most salmonids can grow at temperatures in the
range 5-20 degrees. The parameters of the growth
model are species and food-type specific; these
are provided by matching the species and food name
to labelled entries in the species file. Origi~-
nally we had also hoped to have a food-type file
that would permit the conversion of one type of
food into equivalent units of a standard food, but
fish physiologists have convinced us that this
hope may be illusory. Species file entries are
thus each specific to a particular food and
strain, and some entry must match both the user-
supplied names before simulation can proceed; that
entry then supplies the parameters for the growth
and auxiliary equations.

3.2 Model Calibration

Entries to the species file require calibration
(fitting) of the model to experimental data. The
data is generated in carefully planned experiments
.over a factorial combination of rearing condi-
tions. Variation in growth response at each level
of conditions is used for weighting the mean
response and for fitting an auxiliary equation for
variation about the mean required by the multi-
tank programs. However, calibration is largely a
process of finding those parameters that make the
predicted growth at those levels most closely cor=-
respond to the observed mean growth. Some of the
parameters can be found by using weighted multiple
linear regression on transformed growth and level
variables. Particularly useful are experiments at
maximum ration and at starvation since each of
these causes some of the growth parameters to drop
out of the model (see Sperber et al. 1976). How~
ever the remaining parameters will have to be cho~
sen by non-linear optimisation; i.e. a directed
iterative search for the parameters that minimize
the distance between the observed mean response
and the predicted responses. The single~fish pro—
gram factorial tabulations have been designed to
provide those predicted responses in the same form
as actual mean responses. We are in the process
of developing programs that will automate this
calibration process as much as possible, by
extracting data from the database, checking it for
completeness; formatting it into tables, and
invoking the single~fish routines and regression
routines to carry out the job. As we shall see,
there are many other auxiliary equations that
must also be fitted before the higher level multi-
tank models can be usged.

3.3 The Multi-tank Program

This simulator is intended to allow the user to
simulate, in a single session, every significant
action and observation that could be carried out
at a real or hypothetical production facility over
an extended period of time. Here the population is
structured by weight classes and by tanks. The
underlying model is a second-order Markovian
model: Markovian in that the current state of the
system, but not its history prior to the current
time, determines its future course; it is second-
order in that it accounts not only for average
growth but the varilability (in fact the entire

distribution) about that average. The model is
nevertheless still entirely deterministic, in that
we make no use of random numbers or variables.

For a group of fish, all of identical initial
weight at time t, grown for a known time (dt)
under identical rearing conditions, the mean final
weight (at time t+dt) can be computed from the
single-fish model. An auxiliary equation predicts
the variance as a function of dt and mean final
weight w(t+dt). This completely specifies the
final weight distribution if one assumes a Normal
distribution, which can reasonably be assumed over
short growth intervals. However, the multi-tank
program does mnot keep track of individual fish,
nor the complete distribution of groups of fish,
but only of counts of fish per weight class. This
can be obtained by integrating the Normal distri-
bution in each weight class j, f£rom say UB(j~l1) to
UB(j) where UB is the upperbound of the j-th
weight class. This gives p(j|w), the probability
that the fish are in class j given that they began
at weight w. The numbers of fish out of n, in
each eclass are, in expectation, n(j)=n.p(jlw).
The p(jlw) are multiplied by a further auxiliary
equation to model survival, as a function of ini-
tial weight and dt, giving n(j) =p’(lw)
= n.s(w,dt).p(jlw) where s is the survival fune-
tion. The n(j) are, in fact, the expected values
of observations from a multinomial distribution
with parameters n and p“(jlw) and this implies
independence of growth and constant assignment
probabilities for all fish. There is some evidence
(Thorpe 1977) that this may not be so; it shows up
in bimodality in the distribution of fish grown
together over several months, and there is some
controversy as to whether it is due to genetic
variation, or behavioural interactions
(e.g. dominance) among the fish. It is to avoid
such problems that hatchery management tries to
keep the weights of fish within tanks fairly homo-—
geneous. This practice also keeps the growth
model accurate without the need to model depen-
dence and non-Markovian effects.

The p“(j|w) do not completely specify the growth
dynamics, because we do not record the weight w
for all fish at time t, but only have a count n(i)
of the number of fish in class i at time t. The
distribution of weights within classes also con~-
tributes to the variation in the final weight dis-
tribution. Sparre (1976) solves this problem by
assuming the n(i) fish are uniformly distributed
within their weight class and integrates out ini-
tial weight w(i) over UB(i-1) to UB(1i) in the
equation for p’(jlw(i)) to produce the transition
probabilities p(di,j), the proportional contrib-
ution per fish in class i at time t to class j at
time t+dt. The sum of the elements in row i of
this matrix can be seen to give the average sur-
vival rate of class i fish. We found Sparre’s
approach too expensive to implement, as the trans-—
ition matrix is large and must frequently be
recomputed, and both the uniform and Normal inte-
grations must be done numerically. We replaced
the uniform assumption by a two point discrete
distribution within class i at wm(i)+g and wm(i)-g
where wm(i) is the midpoint weight of class i,
(UB(1) + UB(i~1))/2, and g is chosen to give the
same within class variance as a uniform distribu-~
tion. Thus the resultant distribution, induced by
growth of the n(i) class i fish, is the mixture of

146 A.N. ARNASON. C.J. SCHWARZ, D.H. SCUSE

two equally weighted multinomial distributions.
One of the numeric integrations has been replaced
by the sum of two (vector) terms, giving a row of
the transition matrix. Multiplying the wvector of
initial counts n(t) by the transition matrix
T(p(i,3) | dt,R) for specific rearing conditions
R, gives the final expected structure n(t+dt).

This procedure works well if the class boundaries
are fairly narrow. We have implemented it using
some 50 background classes where class width is
never more than 10% of the lower class bound. It
produces growth runs, under fixed rearing condi-
tions starting with fish all in one weight class,
which are very close in expectation to the pre-
dicted mean weight from the single~fish model
using the same rearing conditions and initial
welght. This correspondence is vital if the cali-
brations of the single fish model are to have any
relevance to the multi-tank simulations. The user
does not want to see the census in every tank for
every background class however. We have therefore
allowed the user to define up to 20 foreground
classes whose cut-points align with a subset of
the background classes. Whenever a census is dis-
played, the background counts are aggregated up
and displayed rounded to integers. For accuracy,
background class counts are kept as reals. The
user can also display the background census if he
wishes. The foreground cutpoints can be RESET at
any time and all simulations are invariant to the
current foreground definitionm.

The multi~tank model permits much more than simple
growth runs under fixed rearing conditions. The
user 1is prompted to specify the level of con~
straints he wishes imposed, the number of tanks,
and his foreground class definitions. For each
tank, he specifies a label (tank name) and, if
necessary, a type which refers to tank configura-
tion parameters (volume, filter capacity, flow
capacities, re-oxygenation parameters, etc.)
stored in a tank-type file similar to the spécies
file. He is then prompted for the species, food
and initial (by weight class) vector of fish load-
ings. After the dinitial prompts, the system
issues the command prompt which is the current
period (P=) and time (T=), both initially O.
Period is a counter of the number of run itera-
tions that have been reported (BY increments in
the RUN command). The user can now SET rearing
conditions (including changes to species in empty
tanks) such as temperature and feeding regimen (by
feed weight, percent or level) for each tank. THe
can then RUN FOR a certain elapsed time, saving
results BY given intervals WITH updating every DT
time units. Results for the cen$us and conditions
in each tank are saved out to a file or to the
database at each BY period. When the RUN is done,
the updated period and time prompt is displayed
and the user can LIST census, growth and related
variables in some or all of the tanks at the cur-
rent time. He can then ADD new fish into tanks,
MOVE fish between tanks, provided he does not
attempt to mix fish of different species, and
REMOVE fish from tanks, all by numbers or percent-
ages by weightclass.
by reference to either foreground or background
classes. The rules for how a given number of fish
in foreground are distributed over background will
not be given here, but the ability to specify
foreground classes makes the movement c¢ommands

These movements can be done ,

more succinet and powerful. Now the user can
again SET rearing conditions, or use LIST to see
the effects of his movements and SETs, and then
RUN again. In this way, the user simulates an
actual or hypothetical strategy of interventions
and conditions. If the simulation ftuns into
infeasible loadings or environmental conditions,
the user can BACKUP to a previous period and try a
different strategy. One can, in fact, BACRUP and
ADVANCE freely through the saved tank structures
file, and this will re-locate the user to some
previously generated time and re-establish the
conditions, at that time. He can then try another
strategy from that point, using SET, MOVE, RUN
etc. Depending on whether hé 1is saving to a
stand-alone flat file or to the database, a RUN
may or may not obliterate all saved structures
after the current time. Detailed instructions for
using the simulators are given in Arnason et
al. (1981).

Levels of multi-tank modelling. To help the man-
ager cope with the difficulties of planning inter-
veintion strategies that will keep within biologi-
cal and system constraints, we are permitting use
of the multi-tank programs at one of 5 different
constraint levels. A sixth level, that keeps
track of the costs and benefits of interventions,
is. planned. The 5 constraint 1leveél models are
listed below in order of increasingly strict biol-
ogical constraintse. These levels are also in
decreasing order of the directness of control over
the environmental conditions provided by the
interventions which are at his disposal at this
level. (Recall that interventions are variables
which are always immediately and independently
manipulable by the manager.) Thus finding feasi-
ble strategies becomes more difficult at higher
levels. The multi-level system permits him to
find promising strategies quickly at a lower con-
straint level and then to test if they are viable
at a higher constraint level, or conversely, to
find additional or less direct-acting interven-
tions that will keep conditions within the higher
level constraints while preserving a lower level
growth strategy.

Having specific growth models and auxiliary models
for environmental effects permits a more explicit
definition of rearing conditions and biological
constraints. Rearing conditions are those vari-
ables which are needed to completely define the
growth, death and auxiliary equations for a given
level model. The biological constraints are the
range of environmental conditions within which the
rearing condition variables give valid model pre-
dictions and acceptable growth and survival rates
according to user-set limits. A variable, such as
oxygen in the tank water, may enter only into the
biological constraint equations at one level, but
at a higher level, may become a rearing condition
variable where its effect on growth must beé
explicitly modélled. The range of values over
which the model is valid remains part of the biol-
ogical constraints. When biological constraints
are exceeded, the user is warned and the RUN ter-
minated at the last feasible (BY) time.

Of the following levels, 1 is fully implemented, 2
and 3 are partly implemented and 4 and 5 have been
allowed for in the program and command structure
but are not yet started.

1.

AN ON-LINE SIMULATOR AND DATABASE SYSTEM FOR MANAGAEMENT OF A COMMERCIAL FISH FARM 147

The Basic (unconstrained) model: This model is
analogous to the single-fish model. The user
must specify for each tank a valid species/fo-
odtype that exists on the gspecies file. Tank
names, but not types, are specified merely as
identifiers of individual tanks for use in
movement and SET commands. The rearing condi-
tions are feeding rate and temperature and
these are also the permissible interventions
(in addition to movements). Death rate is
independent of rearing conditions. This model
calculates, in response to interventions, the
new census, total weight, instantaneous growth
rate, and keeps track of total food fed, oxygen
consumed and ammonia produced on a tank by tank
basis.

The Tank Effects model: The user must now
specify a valid tank-type for each tank so that
tank volume and filter parameters are known.
He must SET recirculation and makeup rates but
temperature can be either directly set or indi-
rectly set by setting air temperature and
makeup temperature. No restrictions are placed
on flow rates. Tank levels for oxygen and
ammonia concentrations are computed and these
can be checked to see if they are within biolo-
gical constraints given the current density,
mean £ish weight, growth and feeding rate.
Warnings are issued, but the rearing conditions
are as for the Basic model and deaths, within
the constrailnts, are still independent of rear-
ing conditions.

The Tank Constraints model: The user has the
same level of intervention control as in level
2 but now oxygen and density become rearing
conditions in that they affect the death rate.
There is some evidence (M. Papst, pers. comm.)
that they should also begin to affect growth
rate long before there is an apprecilable effect
on deaths. The biological constraints are
adjusted to operate on the death rate instead
of on oxygen level directly. Ammonia levels
are still checked directly. Recirculation and
make-up rates must be within maximum tank
capacities. Declines in filter efficiency will
be modelled and backwash interventions must be
made. If temperature is specified directly, it
must be in the range that can be delivered by
the make-up water and will determine the
make-up percentage needed to achieve that temp-
erature. If any constraint is exceeded, simu-
lation stops.

The System Effects model: This model will com-
pute the total simultaneous demands made by all
the tanks on the physical plant. A system file
will specify volumes available in the holding
tanks and maximum replacement rates. Tempera-—
tures in the holding tanks will be set by the
user, and volumes and rates can be exceeded by
the fish tank settings with only a warning.

The System Constraints model: Here, demands on
the system that exceed the specifications in
the system file entry will halt simulation. In
addition, water and air temperatures and avail-
ability of heated water will not be under
direct user control, but will vary according to
seasonal averages. Simulations must therefore

begin at a user-specified absolute date

(e.g. January 1) within the year.

We are only just beginning to develop the many
auxiliary equations needed to model environmental
effects and to establish biological constraint
equations. A second year’s cycle of production
runs at the Rockwood hatchery and a set of special
calibration runs will permit us to judge the
validity and relevance, for these purposes, of the
many models and relationships that have been put
forward in the massive literature on fish growth,
physiology and tank filtration systems. Ini~
tially, we will wuse literature values and the
experience of hatchery personnel to set con-
straints very conservatively. As the data in the
database and the means to manipulate it and report
it increase, the constraints can be fine tuned to
permit movre daring strategies.

4. THE DATABASE SYSTEM

The database system programs have received as much
attention as the simulator programs. They include
programs to edit hatchery data and load it to a
structured database; batch programs to create,
structure or restructure, and preserve backups of,
the database; batch reporting programs to produce
large, time ordered, collated reports on database
contents; and an on-line QUERY program for inter-
active interrogation and display of database con-
tents. Perhaps the most interesting program fea-
ture is a database interface, which facilitates
the development of applications programs which
need to access the database.

4.1 Data Collection and Entry

Hatchery data forms have been designed in collab-
oration with hatchery management personnel. Cur-
rently, data is transcribed to these forms from
an existing paper records system, but we shortly
expect to revise the forms and develop regularised
procedures for what data is to be collected, and
when, and then switch to direct recording on the
data forms. These procedures are beneficial in
their own right as they tend to formalize the data
collection process, help to ensure data is com—
plete, correct, encoded according to uniform and
well documented standards. The very process of
designing the forms and procedures forces hatchery
managers and database analysts to clarify the pur-
poses to which the data will be put and to ensure
that all associated measurements are made so that
those purposes can be met. For example, to
assess the effect of movement and flow interven-
tions on environmental variables it is vital that
the latter variables be recorded just before the
intervention and just after equilibrium conditions
are re-established (usually within the time taken
for one tank turn-over of water). In general, the
proper time sequencing of all records is crucial,
but this can be difficult to ensure with irregular
procedures. The following data forms are currently
used.

l. Group form: this identifies a given production
cycle at a specific hatchery. It is not necessary
to identify system configurations and comstraints,
but simply to identify a system (hatchery) name
that exists on the system file (like the species

148

A.N. ARNASON, C.J. SCHWARZ, D.H. SCUSE

and tank-~type files, whose entries are created by
the system developers). .

2. Tank forms: didentifying each of the tanks by
name and tank type (which must exist on the tank-
type file).

3. Species in tank form: identifies the date,
tank, and species name whenever a new species is
placed into an (empty) tank. The database will
not permit mixing of different strains or species
in a tank. '

4. Intervention forms: records the time, tank and
new séttings whenever feeding regimen (foodtype,
method or amount), flow rates (recirculation or
makeup), or backwash frequency are altered.

5. Envirommental Variables Forms: record oxygen
levels, pH, temperature, and metabolite levels
(ammonia, nitrate, nitrites) in tank, £ilter out-
flow, and recirculation inflow water. Air temper-
ature is also recorded.

6. Census forms: these are the most complicated as
they may specify varying amounts of detail about
the number and size distribution of fish in a tank
at a given time. It may give only a total count,
or an estimated count and mean weight per <£fish
based on a small (25-100 fish) random subsample,
and may include length data omn individual fish in
the subsample. The latter data provide the only
means by which an actual weight distribution can
be inferred (after transforming to weights using a
log~linear weight-length relationship). Census
data rarely contains a complete census, except
when an empty tank is dinitially loaded with fin-
gerlings. It should be mnoted that real census
data is by no means as complete or as conveniently
summarized as a multi~tank simulation census.
With some care to ensure data completeness, and a
good deal of "massaging", the weightclass distri-
bution can be estimated from the census data in
the database.

7. Movement forms: are a census form for the fish
being moved with the time, from-tank, and to-tank
specified as well. (ADDs: are from special tanks
called BUY or NEW and REMOVEs are to SELL or
DESTROY) . A special null census is recorded
for the from-tank if the move has emptied out the
tank. In other cases, it can be difficult to
infer if a random or a size selective sample was
taken from the from-tank, but movement forms
always report, at least, the total count and total
weight of fish moved.

8. Death forms: record the tank, fish length, and
removal time of individual dead fish.

The differences between real and simulated data,
mentioned here, are relevant to the discussion of
the simulator/database interaction discussed din
Section 5.

Once data forms are key punched, they are run
against a batch. program that does range and type
checks on all fields. When this program runs
without error, the data cards are sorted so that
group forms and tank forms precede all other
forms. These <database segments must be created
first as the database load program rejects forms

that refer to tanks for which database segments do
not exist. The load program is run against the
sorted input data and writes out an error log for
any forms that néed corrections. The level of
consistency checks on the data is still fairly
rudimentary. We do not check for correct time
ordering and associations among segments
(e.g. that a census is present for each interven-—
tion), nor that census or movement data are con-
gistent with past census, death and movement
records for that tank (e.g. that a movement seg-—
ment does not remove more fish than are actually
in the tank). Many of these checks will be possi-—
ble when an interactive UPDATE database loading
program is developed.

4.2 Database Structure and Interface

The fish farm database is manipulated using IBM's
Information Management System (IMS) database sys—
tem. The IMS database is quite complex, involving
logical relationships and special indicators in
the segments. All of the information £rom the
input forms is stored in IMS segments, with each
segment containing the information about a partic-
ular entity (for example, a tank, a temperature
change, etc.). The organisation of the segments
in the database is shown in Fig. 1.

GROUP
SYSINFO TANK
I I
§. SYSCONST TANKINFO
SPECIES | MOVES CENSUS EVENTS
10 segment
types for
02 TEMP pH
NO2 NO3 NH3
SPCINFO ADD REM CENDAT | BACKWASH
FLOWS DEATH
and FEEDING
FIGURE 1

The GROUP. segment contains the description of an
experiment at a hatchery, including the date on
which the experiment was started, and any con-
straints that apply to the hatchery. Subordinadte
to each GROUP segment is one TANK segment for each
tank being used in the experiment. The TANK seg-
ment identifies the tank and contains any con-
straints that apply to that tank. Subordinate to
each TANK segment are the segments that describe
the contents of the tank and the events that have
occurred during the experiment. The database rou-
tines automatically insert the BUY, SELL, NEW, and
DESTROY tank segments. A SPECIES segment defines
the type of £fish in the tank and the major

AN ON-LINE SIMULATOR AND DATABASE SYSTEM FOR MANAGAEMENT OF A COMMERCIAL FISH FARM 149

characteristics of that species. The remaining
segments store information directly off the corre~
sponding input forms. All of the segments subor-
dinate to the TANK segment (except TANKINFO) are
stored in date-time order so that accessing the
segments provides a picture of what happened in
the tank as the experiment progressed. The
MOVEMENT (MOVES in Fig. 1), ADD, and REMOVE (REM)
segments require extra processing by IMS because
they participate in an IMS logical relationship.
Whenever fish are removed from (or added to) a
tank, the corresponding number of fish must be
added to (or removed from) another tank in the
group. This processing is required in order to
keep the database consistent and to simplify the
processing in the application programs.

The complexity of the IMS database used to store
the fish farm information necessitated the inclu-
sion in the system of a routine that would sim~
plify access to the database. This routine,
called the database interface, controls all access
to the database: any application program that
requires information stored in the database issues
a request to the database interface and the inter-
face then issues the appropriate command to IMS.
The interface was used not only to make it easier
to extract information from the database but also
to provide data management facilities that are not
provided by IMS.

All information that 1is required to issue a
request to the interface is included in a data
structure that the application programmer copies
into the application program from a system
library. This data structure defines the format
of the segments that can be accessed and also con-
tains command and key fields that are set in the
application program, and status fields that are
interrogated by the applicatinn program. The
application programmer sets the command field for
each type of segment to be processed (more than
one segment type can be processed with each
request), and, 1if a particular segment is to be
retrieved randomly, sets the key field of the seg-
ment. Special commands were defined to permit the
application programmer to retrieve the first seg-
ment with a key greater than or the first segment
with a key less than the specified key since much
of the processing is in date-time order and the
application programmer may not know the exact time
(field) of the desired segment. This is particu-
larly important for the QUERY programs described
in the next sectiom.

The system, tank and species information segments
indicated in Fig. 1 are not, in fact, stored in
the IMS database, but in the flat (random access)
files which we have been calling the system
configuration, tank-type and species files. This
permits easier modification of the information,
and reduces the complexity of the IMS database
since the information in the files could not have
been stored there without significant redundancy.
Nevertheless, the programmers® view of the data-
base is as if it were structured as in Fig. 1.
The interface handles the access to these files
and the programmer does not need to be concerned
with how they are structured or where they are
stored, even if these should change.

The use of the database interface has made the

development of the fish farm system much easier
because the application programmers have been able
to concentrate on the high~level manipulation of
the information in the database instead of having
to be concerned with the low-level details of how
the information had to be accessed using IMS or
the flat files. Some additional ways in which the
interface simplified the writing of application
programs are given in Sections 4.3 and 5. The
database interface reduces the time and coding
required to implement the database functions of
the fish farm system and to emnsure that they are
operating correctly. A more detailed discussion
of database interfaces is given by Scuse (1981).

4.3 Database Reports

Information from the database can be generated
using batch programs for large printed reports or
using an on-line QUERY program for selectively
exploring the database and producing short compar—
ative reports.

There are 2 main batch programs written using
EASYTRIEVE/IMS (Pansophic Systems Inc.). The
first is a dump of the complete database in stor-
age order that is convenient for checking the
information fields against the original records.
Thus the information fields are listed, in the
following nested order (slowest changing variable
first): for every group, for every tank, for
every segment type, from first to last time. The
second, and most useful report, is the within~tank
merged information report, which produces a list—
ing of the following form, for each tank and with
times in increasing order:

TIME SPECIES MOVE CENSUS EVENT ETYPE

date data data (removes to)
date data (empty tank)
date data (new species)
date data data (added)

date data FEED
date data 02
date data

date data FEED

Now, for the first time, the manager can see a log
of everything that happened in a tank, in the
order it happened or was reported. He can see how
water quality variables change in response to tank
loadings and other interventions (feeding, £flow,
temperature). He can easily identify “growth-
sets": time intervals when a group of fish are
subject to given rearing conditions during which
no fish are added to or removed from the tank,
apart from deaths. With adjustments for any
deaths, the census and feeding data within such
intervals can be used to compute actual growth
rates and conversiom ratios (kg. food fed/kg.
growth produced). The merged reports also facili-
tate comparisons between tanks or groups and will
be altered to permit comparisons of SAVEd simula—
tion results within a group (see Section 5).

The on-line QUERY program has a DISPLAY command
that produces a succinct table of contents of the
database (group and tank names and descriptive
comments) . A very powerful LIST command then

150 A.N. ARNASON, C.J. SCHWARZ, D.H. SCUSE

permits the user to specify a group or set of
groups, a tank or set of tanks (which must be com-
mon to the groups if more than one group is speci-
fied) and a time or range of times, and finally a
list of variable names. Currently, all the vari-
able names identify various segment information
fields. A table of these variable values is then
given for all groups, tanks, and times. However,
QUERY also remembers your "position" (group, tank,
time) in the database, and this allows the user to
use LIST sequentially, in an exploratory way, by
specifying the TIME keyword withim the LIST com-
mand as NEXT, PREVIOUS, FIRST, LAST, etc. Fea-
tures in the database interface support the multi-
positioning (if more than one tank is specified),
the backwards and forward searches within seg-
ments, and merges among segments required to do
this. Presently, we will also add variable names
for derived variables (e.g. growth rate and con~
version ratio), and the action routines to compute
them from database entries at 2 or more times,
checking that these times are within a "growth
set". The LIST command within QUERY will then
produce information in every way comparable to the
LIST command within the multi-tank simulator, but
with allowance for the additional complications of
real data. It will then be a powerful investiga-
tive tool for monitoring growth performance, and
extracting the data needed to fit and validate the
various auxiliary equations of the models.

5. TINTERACTION BETWEEN DATABASE AND SIMULATORS

Despite the already proven value of the database
and simulation systems as independent entities,
neither system is adequate, by itself, .for devel-
oping optimal management procedures for fish
farms. No amount of actual -data, or generated
reports, can predict the effect of untried strat-
egies, while the simulators’ predictions are of
little value unless the growth models and auxil-
iary equations are fitted to, and validated
against, real data. There are two main applica-
tions where the simulators must access the data-
base. First, it is desireable to SAVE simulated
interventions and results (censuses, etc.) to the
database; and secondly, one would like to be able
to extract real initial census and rearing condi~
tions from the database, and then use subsequent
real interventions to drive the simulators. We
will describe what can be achieved by these appli-
cations,
them. As a preliminary, it should be pointed out
that such applications would be very much easier
to implement if simulated and real data were iden-
_tical in form and quality. They are not, and this
creates formidable difficulties ‘that must be
resolved by compromises from both ends: by alter-
ing the applications programs to make them cope
with less ‘than complete (real) data, and by devel-
oping more stringent protocols on the way actual
data is collected to ensure it is more complete.

5.1 Saving Simulation Results to the Database

There are considerable advantages to saving a com~
plete record of the results of a simulation run to
the database, above and beyond what can be saved
without using the database. Even without the
database, a session can be saved and/or regener-
ated. This is because the multi-tank programs

and how we are going about achieving -

maintain an echo and a prompts file. The echo
file lists every user input and system response
and can be directed to the printer at the end of a
session to preserve a hardcopy of the complete
session at the terminal. The prompts file con-
tains a list of every prompt response and command
entered by the user. It can be used to regenerate
the session automatically until the end-of-file is
hit, at which point input is sought from theée ter-
minal. The user can then resume the session
where he left off in the earlier session when the
prompts file was saved. (This is particularly
useful when the session terminates abnormally; the
user simply eédits out the last few lines of the
prompts file and then uses it to regenerate the
session up to the point where the error occured.)
Variations on a past strategy can be explored by
resuming the session in this way and using BACKUP
to locate to a past period and re-RUNning from
that point. As we pointed out in Section 3.3,
this obliterates the previous simulation from that
point on and no direct comparisons can be made
between the variations. Saves to the database do
not have this consequence (within limits) so that
one can bring to bear the full power of the data-
base reporting system to produce comparative
reports, although this must be done in a separate
batch report or QUERY session. Second, saves to
the database are not in the form of a sequence of
prompts, commands and system responses (as are the
echo and prompts files), but are formatted into
structures, passed to the database interface, and
stored as database segments whose structure and
organisation are (virtually) indistinguishable
from real data. Thus comparisons between real and
simulated data are also possible. Some of the
database and interface design features that make
this possible will now be discussed.

One of the design objectives of the database was
to achieve non-redundant storage of real and simu-
lated data, where these might share common move-
ment and event segments (i.e., for interventions)
but possibly different census segments and event
segments for environmental variables (i.e., system
responses) « This has obvious applications for
validating simulated runs against equivalent real
runse. Similarly one might wish to store varia-
tions on a basic simulation strategy, where these
might share common intervention and response ség-

ments up to some period and then diverge. Two

features help to achieve this. The first is that
the simulators share with the database, the spec-
ies, tank-type and system configuration files.
This ensures that whenever two or more real and/or
simulated segments refer to the same entry in any
one of these files, they are guaranteed to provide
the same information. The database interface han-
dles these references automatically without the
applications programmer needing to know anything
about how they are stored. Secondly, each segment
(except the GROUP and TANK segments - see Fig. 1)
contains a 4-byte simulation mask enabling the
interface to determine which simulations the seg-
ments belong to. This mask field has 32 bits, the
rightmost indicating whether or not the segment
represents real data, the remaining 31 bits repre-
senting simulations (variations) 1 to 31.

Now, when in response to a prompt, the user indi-~
cates he wishes to SAVE to the database, he is
asked if he wishes to . create a new GROUP segment.

AN ON-LINE SIMULATOR AND DATABASE SYSTEM FOR MANAGAEMENT OF A COMMERCIAL FISH FARM 151

If he does, he supplies the group and tank infor-
mation and the simulation number dis set to 1.
Multi-tank simulation now proceeds exactly as
described in Section 3.3, but all interventions
and results are stored out to the database as seg—
ments. We also allow full wuse of BACKUP and
ADVANCE. If at any point, however, he does a RUN
from a period other than the last, the simulation
number is incremented by 1. The past history seg-
ments shared with the previous simulation number
are indicated by simply flipping to ON the simula-
tion bit corresponding to the new simulation num-
ber for all segments of the old simulation up teo
that period. This is handled automatically by the
interface. From this period on, the two simula-
tions will have distinct segments, even if some of
these happen to coincide. Groups created in this
way have no real data, except possibly £for real
species, tank-types and system configurations.

A FETCH command permits the user to locate to an
existing group in the database, automatically
positioning him to the last period of the highest
simulation number. Comparison reports of simula-
tion variations and reversion to lower simulation
numbers canmot be done from the simulate programs.
Implementation of the features described to this
point are near completion. Those that follow are
just being begun.

5.2 Using Real Data to Drive the Simulator.

The structure of the database and the properties
of the interface make this a fairly straightfor-
ward application, but problems arise from inade-
quacies in the real data. In principal the proce~
dure will work as follows. The user is prompted
for the name of an existing group contalning real
data. If it exists and has real data in it (the
group segment contains a single bit flag for indi-
cating this without the need to check for segments
with the simulation bit 0 turned on), the user is
prompted with the time of the first and last cen-
sus and asked to choose a starting time between
the two. The system must then search back from
that time to find the preceding census, and the
relevant conditions and system settings that per-
tain at those times, depending on the simulation
level in force. For example, 1if the Basic model
is in use, only the species-in-~tank, tank-tempera-
ture, feeding regimen, and census segments are
needed to establish initial conditions. The tank
segments are needed only to inform the user of the
number of tanks and their names. If the simula-
tion is at the Tank Effects or Tank Constraints
level, the oxygen and metabolite concentrationms,
and flow rate conditions must be determined, as
well as each tank~type. The database interface is
now set up to handle this backward search, even
though IMS, which is used to structure the data-
base, does not support backward processing. The
structuring of the database, by date-time order
within tanks for every segment type also facili-
tates this, and the extraction of interventions.

Having established initial conditions, the system
then determines which segments are relevant inter-—
ventions at this level of modelling (e.g., feed-
ing, temperature and movements for the Basic
model) and gets the next segment of each of these
for every tank. The interface is set up to handle
this with very little coding on the part of the

applications programmer. The first of these
interventions is presented to the user and he has
the chance to modify it before implementing it.
Implementation involves doing a RUN up to the time
of the next intervention (if this time is not neg-
ligible), carrying out the intervention (e.g., a
MOVE or SET), and storing out the relevant simu-
lated response variable segments (e.g., CENSUS,
EVENT segments of Fig. 1). This process is then
repeated for the next intervention. Real tank
censuses would also be considered as interventions
for this purpose so that omne could compare each
one with the corresponding simulated census as one
went along. However, more complete comparisons
would be done using the reporting features of the
database system (Section 4.3). "When the user ter-
minates this process, or comes to the end of the
group segment data, he can either continue simu-
lating (to plan future strategies or alternative
strategies after the termination point), or use
BACRUP to relocate back to an earlier time, and
then explore (as described in the previous subsec—
tion) for alternatives that might have improved on
the real strategye. This provides a local optimi-
sation feature by means of gaming.

The difficulties in doing this are not inherent in
the mechanics of accessing the database or driving
the simulator, but in the inadequacies and ambigu-
ities of the real data. Extensive checks must be
done to ensure that the real data are complete
enough to provide all the initial conditions and
interventions required at the desired level of
simulation. As we mentioned in Section 4.1, not
all census and movement segments give reasonably
complete weight distribution information. Those
that don’t will have to be handled differently
from those that do; the former by additional
prompting or extrapolation, the latter by massag-
ing to recomstruct a distribution over the stan-
dard background weightclasses of the simulator.
To prevent having to do this repeatedly, the cen-
sus segment has been given a flag to indicate this
has been done and a child segment (CENDAT in
Fig. 1) for storing the count vector. Derivation
of the vector requires the use of (length-weight
relationship) parameters which are currently
stored in the speciles file. However, these param-
eters are not really dinvariant even within
strains, and may have to be refitted from the cen-
sus’' data within each group. There are also incon-
sistencies between real and simulated time that
will have to be resolved. Simulated interventions
can be carried out imnstantaneously, but real
interventions are spaced out in time. Often the
recorded time intervals are more notional than
real, dintended to preserve the actual ordering of
events rather than their actual time of occur-
rance. This creates problems in determining
whether, for example, given census and rearing
condition segments for the same tank are close
enough in time to be considered contemporaneous.
Such problems can only be resolved by refining the
data gathering and encoding protocols.

6. CONCLUSIONS

The validity of this system as a management tool
depends stromgly on the accuracy with which the
growth equations and the auxiliary equations (for
environmental effects and biological constraints)

152 A.N. ARNASON, C.J. SCHWARZ, D.H. SCUSE

reflect reality. TFor that reason wé have put con-
siderable facilities at the disposal of the man-
ager for examining his real data and making com-
parisons between comparable simulated and real
outcomes. With use, the manager will soon get a
feel for the reliability of the models” pre-
dictions. We have only just put.in place most of
the database and database/similator interaction
facilities, so it is a bit too soon to report on
the adequacy of our models and calibrations. This
will be the main focus of our work over the next
year, and can proceed more quickly given this sys-
tem supporte. Nevertheless, the system becomes
useable even at this stage because of the imple-
mentation of successively higher levels. The man-
ager can use his éxperience, and the feedback from
the database, to confine his simulations to sub-
sets of the rearing conditions or to lower levels
of models (which use fewer auxiliary equations)
that appear to produce valid results. For exam-
ple, before the growth model was modified to
reflect optimal temperature, simulations at above
14 or'15 degrees gave unrealistically high growth
rates. The Basic model was still useable and use-
ful, but only for lower temperature simulatioms:
Similarly, 1f the Tank Constraints model seems to
give unrealistic or restrictive biological con~
straints, one can revert to the Tank Effects model
until one’s experience with the model, and the
refinement of the model itself, increases.

One serious and unresolved limitation in the use
of this system for managing real commercial hatch-
eries 1is the possible need to recalibrate for
every different food type. The varilation between
and within commercially available foods is the
subject of current research at Rockwood. The
degree to which differences might affect growth
rate and fish physiology (e.g. ammonia excretion
rates) 1is being evaluated: Should it be neces-
sary, our system makes it very much easier to
recalibrate, but there is still a considerable
cost in time and effort to do so.

Finally, the 'system has potential for a number of
applications not yet discussed in this paper.
Once a cost level model is implemented, and the
database is modified to record costs (and benefits
from sales), one can begin to think about forming
an objective function and using dynamic program-
ming methods for formal. optimisation. Sparre
(1976) has shown that while global optimisation is
not feasible, local optimisation about a promising
initial strategy can lead to significantly
improved production strategies. Our system 1is
structured in a way that would easily permit
extension to include such optimising capabilities.

ACKNOWLEDGMENTS

This work has been supported for two years by a
subvention grant from the Canada Department of
Fisheries and Oceans. Algas Resources Ltd. has
provided reseach funds for the biological research
associated with system development. The Natural
Sciences and Engineering Research Council has pro-
vided operating grants to A.N.A. and D.H.S.

We wish to acknowledge the considerable contrib-—

'

ution to the system development madée by some unus—
ually bright and productive students: Robert Day
for work on the calibration and tank effects pro-—
grams, Bruce Jones for general project co-ordina-
tion and development of the database QUERY system,
Mike Karasick for the parser/scanner system, Gary
Karasiuk for developing the database creation,
interface and batch reporting programs, Norm
Kozusko for the SAVE/FEICH routines integrating
simulators and database, and Gerard Meszaros for
extensions to the simulator progrdms.

This system could not have been developed without
the constant help and guidance of the people in
the TFWL Aquaculturé project and the Rockwood
Hatchery. 0f these, special thanks are due to
Burton Ayles who initiated and guided the project,
and most of all, to Michael Papst, who gave gener-—
ously of his time and extensive knowledge of fish
and hatchery behaviour. We thank Irmgard Wiebe
for help with text entry of this paper.

REFERENCES

Arnason A.N., C.J. Schwarz and G.G. Meszaros
(1981), FISHDAMS: A database management
system and growth simulator for optimal
planning of a commercial~type fish rearing
facility, Version 2, Technical Report, Com—
puter Science Department, University of Man-—
itoba, Winnipeg, Canada, September, 70 p.

Karasick, M. (1981), EASYPARSE: A generalized,
easy-to-use parser interface for user-ori-
ented systems, Technical Report, Computer
Science Department, University of Manitoba,
Winnipeg, Canada, in prep.

Kiviat, P.J., R. Villanueva and H.M. Markowitz
(1975), SIMSCRIPT II.5 Programming Language,
C.A.C.I., Los Angeles, 384 p.

McLean, W.E. (1979), A Rearing Model for Salmon-
ids, Ph.D. Thesis, University of British
Columbia, Vancouver, 134 p.

Paulson L.J. (1980), Models of Ammonia Excretion
for Brook Trout (Salvelinus fontinalis) and
Rainbow Trout(Salmo gairdneri), Can.J. Fish.
Aquat. Sci., Vol. 37, pp. 1421-1425.

Scuse, D.H. (198l), Database Interfaces, submit—

ted to: Australian Computer Journal.

Sparre, P. (1976), A Markovian Decision Process
Applied to Optimization of Production Plan~
ning in Fish Farming, Medd. Damnm. Fisk-og
Havunders., Vol. 7, pp. 111-197.

Sperber, O., J. From and P. Sparre (1976), A
Method to Estimate the Growth Rate of Fishes
‘as a Function of Temperature and Feeding
Level Applied to Rainbow Trout, Medd. Danm.
Fisk-og Havunders., Vol. 7, pp. 275-317.

‘Thorpe, J.E. (1977), Bimodal Distribution of
Length of Juvenile Atlantic Salmon (Salmo
salar) wunder Artificial Rearing Conditioms,
Je. Fish Biol., Vol. 11, pp: 175-184.

