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The purpose of the panel is to provide an up-to-date perspective
on the problem of the initial transient in steady state simulation.
A steady state simulation is one whose purpose is to estimate the
steady state characteristics of a model or to compare the steady
characteristics of several models. The initial transient is the
initial portion of a simulation run whose characteristics may
differ from those of the steady state. It may be desirable to
identify the extent of this initial portion and to delete the out-
puts produced during this portion when estimating steady state
characteristics. Each pane! member is active in developing me-
thods for the statistical analysis of simulation outputs. The
panel members have been asked to provide their perspectives on
the problem of the initial transient including a description of the
problem, a discussion of their approaches to handling the prob-
lem, recommendations for practitioners and recommendations for
future research. Position papers by the panel members follow
below.

George S. Fishman

Abstract

This paper presents a perspective on the initial transient problem
in steady-state simulation. In particular, it enumerates five
generally accepted facts: 1) Conditions prevailing at the begin-
ning of a simulation influence sample paths. 2) The extent of
influence is a function of the strength of autocorrelation. 3)
Some initial conditions are less detrimental than others are. 4)
Truncation reduces bias but usually increases variance. 5) So far
no complete solution exists. The remainder of the paper de-
scribes a proposal for solving the problem. It relies on the rela-
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tively weak assumption that the conditional means in a stochastic
process of interest are related linearly. An estimator of the
steady-state mean is described which has considerably less bias
than one can achieve via conventional trunction. An interval
estimator is also described which follows from standard regres-
sion theory. A test for residual bias is presented which enables a
user to judge whether or not sample data meet the minimal
requirements for the proposed technique to apply. A second test
allows a user to judge whether or not a more efficient estimation
technique can be used.

1. Perspective

As you the audience know, the chairman’s charge to the invited
speakers today is to provide an up-to-date perspective on the
problem of the initial transient in steady-state simulations. Al-
though each speaker has his own distinct view of this problem,
one hopes that all can agree on a skeletal characterization of it.
In particular, in a simulation:

1. The initial conditions that prevail at the beginning of a
run influence the sample path that each stochastic proc-
ess, represented in the simulation, follows.

2. The extent to which the initial conditions affect a sto-
chastic process at a given point in a run is a function of
the degree of autocorrelation in the process.

3. Some initial conditions influence a stochastic process at a
given point in a run to a lesser extent than other initial

conditions do.

4, Truncation of observations near the beginning of a run
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reduces the bias in the sample mean as an estimator of
the steady-state mean but genérally increases its vari-
ance.

5. No comipletely satisfactory procedure for resolving the
problem has appeared yet.

In support of Point 5, note that during the past year three of the
panelists have proposed solutions. See Adlakha and Fishman
(1980), Kelton (1980) and Schruben (1979, 1980). However, 1
doubt anyone would claim a definitive solution. ‘

Perhaps, one of the reasons that a solution has alluded us is that
while the published characterization of the underlying structures
in the stochastic processes of interest has enabled us to concep-
tualize the problem it has been too narrow to allow a satisfactory
solution for a wide range of cases. In partlcular I refer to the
first-order autoregressive representation used in Fishman (1972)
and more recently in Kelton (1980) and Schruben (1980). To
overcome this inadequacy we describe a generalization of that
model and show how it leads directly to an estimator of the
steady-state mean that is relatively free of contamination from
an initial transient. The remainder of this section provides a
concise description of the essential points of the proposal. The
Appendix which is available from the author contains a more
detailed exposition.

2, Proposal

Let I be the initial conditions that prevail in a simulation and let
X('), XU be the sample record collected on the ith of 2m’
mdependent replications. The objective is to estimate the
steady-state mean .

p= lim EX{ i=1..,m=2m

j-»oo
For convenience of exposition we take
ny_y =Ny +k

n2i=N2+k N1<N2 !

i=1,...,m

The more general case of arbitrary n,...n,, is described in the
Appendix.

We now impose a restriction on {Xw(i) j=1,2,.....} that, while
weak, has relatively profound implications for the extimation of
p. If the regression of Xj_l, Xj_z,‘.. on X]- is linear and of the
form

BCK 1 XX oD = b+ 3 X, ®
i AR
=
.then
ﬁg,)n;" k EX(') P<k<n joqm
B =X ikt

has expectation

Ai) 8k _ En;

E = 4 — *k
Bien, = B - **)

where

t—~

g=0¢ " O<y<lp<t

Here k is the truncation parameter. More importantly, the esti-

mator
'

m .
~ 2 A(2i) AQ2i—~1)
= — (N -N ) (e
kS NN Z:l 2N, +k NNk )

has expectation
Ep = p + (8n, 4k B, 4/ (Np—N})

Nj+k—

=pu+0(y P/(Ny—=N)).

Observe that whereas the wuhm replication truncated sample
means (**) have bias Oy /N) tlﬁ q(ew across-replication
estimator (***) dilutes this bias to O(y '* "/ (N,~N,)), pro-
vided that N,>2N,. Moreover,

VArE = 262(N, + Np)/m(N,-N))?,

where 82 is defined in (19) in the Appendix, gives an asynk toti-
cally (N;-) unbiased estimator of var p. Provided that {,uk s

i = 1,...,m} are normal, one can treat (p.—-u)/ v v’a\\rﬁ' as t distrib-
uted with m-2 degrees of freedom.

Let us now concentrate on the plausibility of (*) as an underly-
ing characterization. Clearly, (*) hold. for autoregressive proc-
esses with normal disturbances. It also holds for a variety of
stationary sequences of nonnegative random variables with gam-
ma marginal distributions. See Lewis (1979). It also holds for
Markov chains. More generally, provided that the expectation
on the left is bounded for all j, one can treat the right side of (*)
as an approximation to the left side that either becomes exact for
some p or whose error of approximation can be restricted by
making p suitably large. If the analogy with fitting a pth-order
polynomial is kept in mind, p needs to accomodate the smooth-
ness requirements of E(lex,,..., J_,,I) forj=p+ 1, p+
24t

To assure oneself of the relative insignificance of the bias in ; a
test based on {XN,‘:-k . XNzl+k; i=1,..,m'} is provided in the

Appendix.  Briefly, it EX{ 4 ~EXy, 1,20, then gy 0.
Although it is difficult to choo‘se a k such that g =0, one would
hope to be capable of choosing Nl 4+ k so that Xi,: D the last
observation collected in each other the shorter rephcatxons, is
unbiased. If no significance is found, then ,L)L is the best linear
unbiased" estimator of p based on {p.kN ik mukN s =

1,..,m}.

Occasionally one may pick k sufficiently large so that g./Nu is
relatively incidental. In this case the estimator

SN AG=D LSRRG
. 22( ‘/‘\'l((ll\!l-l-)k'*' l‘kN +K)
i=1
5=
m(V¥ N; +V N;)

gives smaller variance than ;7 The Appendix provides a method
of computing a confidence interval for g, /Nz.

'Figure 1 shows the essential steps to follow and procedure M in

the Appendix contains all required computational expressions.
We remark that the choice of two sample sizes Ny + k and N, +
k leads to considerable convenience and simplication with regard
to estimating p
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Figure 1. Estimation of g

k] See (14) in Appendix for Ek.

11  tdistribution with m-2 degrees of freedom.
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I Introduction

In a steady-state simulation of a discrete-time stochastic process
{X;, i = 1,2,..}, one usually tries to estimate the steady-state
mean

p= lim B(X;), )

assuming that the limit exists; the continuous-time case is analo-
gous. (Alternative definitions of steady-state means are some-
times given; these are often equivalent to (1).) More generally,
a simulator’s goal is (or should be) to draw some kind of statisti-
cal inference about g, rather than merely obtaining a simple
point estimate. Furthermore, many simulation studies involve
more than a single simulated system, in which case we are faced
with a statistical inferential problem concerning steady-state
means of several different stochastic processes.

A review of the statistics literature reveals that nearly all statisti-
cal procedures designed for these various inferential problems
assume the ' ability to "sample" from an appropriate
"population,” i.e., to obtain independent and identically distrib-
uted (i.i.d.) random variables (r.v.’s) Y, Y,,... with expectation
equal to the parameter of interest. In our case, then, the ability
to obtain i.i.d. Yj’s with E(Yj) = p would allow us to tap this
large literature of “classical” statistical analysis problems and
procedures for application in steady-state simulation. (See [7]
for a survey emphasizing multiple comparison and selection
problems for simulations of alternative systems.) Thus, develop-
ing a way to obtain observations which can safely be treated as
being i.i.d. and unbiased for p would seem to be the key problem
in statistical analysis of steady-state simulations.
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Probably the simplest way of collecting i.i.d. data in simulation is’

to make independent replications of the model; éach replication
is initialized and terminated in the same way, and uses an.inde-
pendent stream of psuedo-random numbers. Assuming a proper-
1y operating random-number generator, a I.v. obtained from a
replication is an i.i.d. replicate of this r.v. obtained from any
other replication. More specifically, if X;(j) is the (simulated)
value of X; on the jth independent replication of length m, a
common way of obtaining ii.d. estimates Yy, Yp,... of p is to let
Y= Xy, (0), where .

— m
X = ¥ X0/ (m~ 1D

i=l+1

is the average of the last m-/ values of the X’s in the jth replica-
tion. The rationale for this estimtor is that by choosing / and m
"properly,” the biasing (for p) effect of the artificial initial
conditions will not induce appreciable bias in XIm(j) as an esti-
mator of g, since the fun is "warmed up" for the first / points
before observation begins. This idea of deleting the initial /
points from a simulation and then using the average of some
additional number m-/ of points has been around for some time
(see, e.g., Conway [3] or Gafarian, Ancker, and Morisaku [5]),
but its efficacy has been subject to comsiderable controversy
(see, e.g., Blomgvist [2], Fishman [4], Turnquist and Sussman
[10], or Wilson and Pritsker [11]). Furthermore, "proper"
choice of I and m has proven to be a notoriously difficult prob-
lem (see [5], [6], Schruben [9], and [11]). Nevertheless, the idea
deserves serious consideration, since identification of 7 and m
such that X _(j) -has mean near would put us in the enviable
position. described in the preceeding paragraph: that of having
i.id. observations which can be regarded as having expectation
%, With this in mind, then, a utilitarian definition of the initial
transient problem might simply be to find a practical and reliable
method of determining / and m such that E[le(j)] = p. Given
such a method, the simple approach of independent replication
would become a viable overall tactic for steady-state analysis.

Fwo comments on the above definition of the problem should be
made. First, as pointed out by Schmeiser [8], this formulation is
not entirely well-posed, since many different (/,m)_combinations
could be found which would reduce the bias in le(j) t6 the
same level. Thus, we might wish to find some sort of optimal
combination, e.g., find / and m to minimize the variance of a
final point estimator, subject to low-bias and budget constraints.
As mentioned above, however, it is hard enough to find any
reasonable (/,m) pair resulting in low bias, so that questions of
optimality probably must be left for later. The second comment
is that the above definition of the problem differs considerably
from most others, such as finding the mininal i* sach that E(X)
= pfori > i*. This latter definition of the problem is aimed at
identifying a point in time beyond which the simulation is oper-
ating "in steady state," and is more restrictive than the one
proposed in the previous. paragraph, since it is likely that i* will
be quite a bit larger than ! if E(X;) approaches p monotonically.
Again, the proposed definition is aimed at obtaining i.i.d. obser-
vations which are unbiased for .

1L An Approach to the Probleny

This section briefly describes a method developed and tested in
[6] for dealing with the initial transient problem as defined in
Section I. For a complete account, see [6].

The procedure basically forms estimates of the E(X))’s fori= 1,
2, ..., and then attempts to use thesé data to identify time indices
1 and m between which E(X,) appears to be flat, i.e., independ-
ent of i. Thus, between / and m, the data do not exhibit a
"rend” or "drift," which would be characteristic of steady-state
operation.

The estimates of the E(X;)’s are obtained by making some num-
ber k of independent replications, each of some initial length m,
and letting

- k
Xi = 2 Xi(j)/k,
j=1

the average (over replications) of the k values of X;(j). Thus,
E(X;) = E[X;(] = E(X)), but Var(X;) = Var[X;()1/k, so that
X; is an unbiased estimator of E(X;) but has variance k times
smaller than X;(j), the estimate of E(X;) from a single replica-
tion.

This averaged time series {X;} is then examined to identify, if
possible, a suitable starting index /. Starting at the end of the
X’s (i.e., with latest time indices), a simple straight line is fitted
to a segment of the X;’s by means of a time-series regression
technique (see Amemiya [1]), and the null hypothesis of zero
slope is formally tested. If rejection occurs (i.e., even the final
segment of the X;’s still exhibits a drift), then the trial value of
m is increased (additively), all k replications are extended out to
this greater length, and we try again. If, on the other hand, the
initially fitted line has slope which cannot be distinguished from
zero, we begin "backing up" toward the beginning of the X;’s
and refit straight lines until it appears that the transient drift is
being detected, as evidenced by rejection in the zero-slope hy—
pothesis test. Finally, ! is taken to be the index corresponding to
the left end of the leftmost fitted line which appeared to be flat.

This procedure was empirically tested by applying it repeatedly
to stochastic models with known p. For each of thirteen models,
100 (in some cases 150) independent experiments were carried
out (using k = 5 replications in each experiment), to determine
values for / and m. Performance measures included estimates of
absolute values of point estimator bias, and estimated coverage
probabilities of nominal 90%_confidence intervals (c.i.’s) for p
formed by treating the five X (i)’s as ii.d. normal r.v.’s with
expectation p. Results were encouraging; the average absolute
bias (as a percentage of p) over the thirteen models was less
than 29%, and the average c.i. coverage was 84%. Application
of the procedure to a sequential c.i. formation problem (with a
prespecified smallness condition) also yielded good results. Fi-
nally, the procedure was successfully used in the context of a
multiple selection problem involving three alternative systems to
be compared on the basis of steady-state means. Thus, at least
for the models considered, this method would appear to yield
X;m(i)’s which can be regarded as i.i.d. and unbiased for p.

Presently, the procedure has at least two drawbacks. First, it
appears to perform well only if the transient is monotone, ie., if
E(X;) converges to p monotonically. While this exclusion of
oscillatory approach to p does restrict the current range of appli-
cability, it still admits a broad class of models, such as many
queueing systems initialized in the empty-and-idle state. Sec-
ondly, the procedure’s. operation requires the ability to restart
several replicatioris which were all terminated earlier. This might
be accomplished, for example, by saving a "snapshot" of all
necessary state variables at the end of each replication. The

difficulty of programming this capability depends on model

structure and complexity, and on the language used.

1I1. Recommendations and Future Prospects

The initial transient problem will probably never be "solved" to
the satisfaction of everyone, and for all models and all purposes.
At present, it might be possible to summarize the situation from
the standpoint of practitioners and researchers, as follows:

The most important question for the practitioner to answer with
regard to questions of steady-state analysis is whether a steady-
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state simulation is really what is desired. If the goal of the study
can be rephrased such that the simulation is of the terminating
type (relative to specific starting and stopping conditions), then
simple replication leads to the desired i.i.d. unbiased data. Thus,
with a mere restating of a study’s goals, difficult problems of
steady-state analysis can simpley be avoided altogether.

Provided that the practitioner really does wish to carry out a
steady-state simulation, the procedure described in Section II
could be applied if it is felt that the transient is monotone, and if
it is possible to restart the replications. (FORTRAN programs
to carry out the method are given in [6].) The prudent simulator
should augment this with inspection of graphics displays of the
output (e.g., plots of X; vs. i), as well as with any special knowl-
edge of or experience with the model.

If one accepts the definition of the problem given in Section I,
then future research should be aimed at developing or improving
methods for obtaining observations which can be safely regarded
as being i.i.d. and unbiased for p. Several more specific areas
for research might be:

A. Improved ways of determining starting (/) and stopping
(m) values for data collection in individual replications.

B. Determining "optimal" values for / and m.

C. Finding ways of specifying starting conditions which are
"“better," i.e., more representative of steady-state behav-
ior.

D. Improved batch means procedures. (Since one "long"

run is made, the initial transient problem is less severe;
the problem lies in obtaining uncorrelated "batch
means." Possible approaches would include separating
the batches, or using weighted batch means with greater
weights near the center of a batch.)

E. Studies of the effect of not eliminating the startup bias in
comparative simulations of several similar, alternative
systems. (If the individual transients are monotone in
the same direction, the problem might not be as severe
as in the single-system case.) :

In general, the prospects for more reliable and complete steady-
state analyses would appear to be bright (as for simulation in
general), if the cost of computing continues to fall.
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The initial conditions specified for a computer simulation can
influence the results in a variety of ways. The mean of a system
performance measure might be affected by the starting state.
The variance and serial correlation structure of the output might
change as the initial conditions are altered (Duket, 1974; Fish-
man, 1973). Also, dependencies between different performance
measures in multiple response simulation studies might be influ-
enced by the start-up strategy (Schruben; 1980A).

Proposition 1:

Of the potential problems due to simulation initialization,
dependence of output sample means on the starting state
is the most important.

An implication of this proposition is that bias in the mean is the
most important statistical criterion for judging the effectiveness
of a particular run initialization strategy. Bias by itself does not
measure the efficiency of a technique; however, the mean
squared error criterion is perhaps not appropriate. The estimator
mean squared error should not be the only criterion (Fishman,
1973). Explicit recognition of the trade-off between bias and
estimator variance should be made; both measures need to be
included separately. Some interesting criteria are presented in
(Gafarian, et al.; 1978), (Kelton, 1980), and (Adlakha and
Fishman; 1979). Some of these criteria are difficult to compute
for complex systems and are perhaps redundant. A few reasona-
ble and easy to evaluate criteria are needed.

Proposition 2:

The statistical effectiveness of a particular simulation
utilization technique should be evaluated based on a few
established criteria.

It is proposed here that the sample bias and the sample
(generalized) variance be used; however, agreement on meaning-
ful and widely applicable (not requiring extensive analytical
results) criteria is the goal.

Related to proposition 2 is
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Proposition 3:

A set of inexpensive widely available simulation models
needs to be identified for testing procedures.

Again agreement is sought. To initiate discussion, it is proposed
that the M/M/1 queue and the inventory model in (Law, 1977),
along with the Computer Time Sharing model in (Adiri, Avi-

Ttzak, 1969), and some non-normal stationary time series®

(Lewis, 1980) be used in the evaluation of new methods for
controlling initialization bias.

The most popular method for controlling initialization bias is to
allow the simulation to "warm-up" before output data are re-
tained for analysis (Wilson and Pritsker, 1978), (equivalent to
truncation of the output record). The more information that is
available on which to base a truncation decision the more likely
that the decision will be satisfactory.

Proposition 4

The entire output record should be saved and used in
selecting a truncation point.

Final decisions on truncating output should be based on all the
information available. In most simulation studies the cost of
generating data is high enough to off-set temporary storage
costs. Procedures that prospectively determine a data collection
starting time may be useful but these truncation points should be
preliminary. While some procedures based on partial output
records .may in the main be effective there appear to be occa-
sional severe aborations that in retrospect might have been
avoided. Using the entire output record (or at least not just the
output up to the trurication decision point) was suggested some
time ago. The success of this strategy is demonstrated in
(Kelton, 1980.)

Another criterion for procedure -evaluation must therefore be
included: data storage requirements. Storage requirements and
computational overhead (CPU Time?) reflect the cost added by
a particular procedure.

The wide variety of simulation models make a fifth proposition
appealing.

Propostion 5:

A run initialization procedure should be applicable to a
variety of situations.

Unfortunately, it will most likely 'be impossible to develop an
effective procedure that is not based on some restrictive assump-
tions concerning the process being simulated or-on the behavior
of the initial transients.

Many initialization strategies are based on a test for the presence
of significant initial transient effects. Gafarian et al. (1978)
have performed studies of many such proposals. Several new
ideas have been offered since these studies. Three that are
probably most interesting to the panel ate in (Adlakha and
Fishman, 1979; Kelton, 1980; Schruben 1980B; and Schruben,
Singh and Tierney; 1980): Briefly the proposals are as follows:

Method 1

(Adlakha and Fishman): Significant transient effects
have dissipated once p, the estimated traffic intensity in

. a queueing simulation, is representative of the true traf-
fic intensity.

Stephen S. LAVENBERG

Meéthod 2

(Kelton): Transient effects have dissipated once the
slope of the output record regressed on time is not sig-
nificantly (at the .5 level) diffefent from zero.

Method 3

(Schruben, Singh, and Tierney): Transient effécts have
dissipated if partial sums of deviations about the sample
mean exhibit behavior consistent with the limiting sto-
chastic procéss (a Brownian bridge).

Of these three proposed techniques, the third, based on weak
convergence theory, is most generally applicable. None of the
methods apparently require an excessive computational over-
head. It is reasonable to presume that one of these approaches.
may provide a solution to the long standing problem of initializa-
tion bias. Compdrative studies are in order.
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Suppose a simulation generates a sequence of output
random variables X, X,,... which converge to a steady state
random variable X. Specifically, we let F(x) be the distribution
function of X, and assume

lim F,(x) = F(x)

n-»oo

where F(x) is the distribution function of X. Suppose further
that we are interested in estimating some characteristic of this
limiting random variable.

In this situation, one generally applies a statistical proce-
dure which assumes a sequence of random variables Y,,Y,,...
from the steady state portion of the output sequence. This is
approximately achieved in practice by dropping some number n,
from the initial portion of {X} and letting {Y. } = {X| +no}.
The question then becomes how to pick n,,.

We propose a very straight-forward and conservative
approach to the selection of n,. We propose an independent
statistical study of the transient phase aided by simple graphics.
This requires repeated short runs of the simulation. The most
direct approach would be to estimate F (x) as a function of n
and x over a range of n sufficient to observe the convergence of
F,(x). In practice, however, such an investigation would require
more computing time than is reasonable. Hence, we propose the
investigation of the transient behavior of the parficular charac-
teristic of interest. As an example suppose we are interested in
estimating the steady state mean, E[X]. In this case we estimate
the point n, at which the transient mean

u, = E[X]

is approximately equal to the steady state mean. We assume
that the resulting sequence {Y } = {X .. } will be adequate for
the statistical procedures to be applied; ef’g., adequate to gener-
ate a valid confidence interval for E[X].

As an example consider the simulation of the queueing
network of Figure 1. This is a model of a simple terminal driven
computer system. Suppose there are 25 customers in the net-
work. These customers represent 25 users at terminals. There is
no queueing at the terminals but there is a random think time.
At the queues indicated, service is on a first come, first served
basis. We assume a central processing facility with 2 maximum
multiprogramming level of 5. This is represented in Figure 1 by
the dashed enclosure. Hence, the number of customers in this
dashed enclosure cannot exceed 5. Customers wait in Queune 2
for entry into the mulitiprogramming set. Queue 3 is in front of
the processor and Queues 4 through 7 are in front of backing
store devices. When customers depart from the processor,
Queue 3, they choose a route according to the branching proba-
bilities indicated. We will consider the sequence of waiting times
Wy pin=1,2,... of successively departing customers from Queue
2. W, ,»W, and we assume we are interested in estimating
E[W,]

Notice first that a "reasonable” estimate of n, cannor in
general be drawn from a single realization. In Figure 2 we have
plotted five independent realizations of {Wz,n:n=l,...,300} for a
particular model of the type described by Figure 1. By looking
at any one of these sequences alone, one would draw quite
different conclusions as to the end of the transient phase. How-
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Figure 1
A Closed Queueing Mode! with Blocking
ever, if we let {Xm’n:n=1, ..... ,300%} be the m’th realization and

estimate p,n=E[W2,n] by the average of these five sequences, i.e.,
by

5
By = (1/5) > Xn

m=1

a reasonable estimate of n, can be made. This is illustrated in
Figure 3. In this case, a reasonable estimate of n, would be 50
waiting times. Of course the larger the number of realizations
M, the more stable is the sequence {ﬁn} and hence, the more
reliable the judgement as to the point of convergence. We illus-
trate this in Figure 4 where we have averaged over M=25 and
M=100 output sequences.
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Figure 2
Five Sample Realizations of the Sequence {W; ;;}
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Figure 3
A Realization of {ﬁn}

Obtained from the Five Sequences of Figure 2
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Figure 4
Realizations of {ﬁn} Obtained from 25 and 100

Independent Realizations of {W , .}

Some notion as to the significance of the convergence
features of the sequence {ﬁn} can be obtained by plotting confi-
dence ‘intervals for a selected set of the p,. These confidence
intervals can be obtainéd via the t-distribution. A set of 90%
confidence intervals were calculated and are plotted in Figures 3
and 4. They were done for pys, itsg, 1o and pogg- - It is impor-
tant to realize that these individual confidence intervals can only
be used as a rough guideline for the sequence {g.}. From the
Bonferroni :nequality the confidence level for all four jointly is
greater than or equal to .6. i

Finally, sometimes these judgenients about the long term
trends in {p,} are easier to make if an explicit attempt is made
to smooth out the. short terim (high frequency) fluctuations in
fi,3. The simplest way to do this is to take a moving average
over an interval long enough to remove short term fluctuations
but not so long as to distort the long term trend. A moving
average of length 2K+1 is defined as

K
A 1 A .
By = —L— S i, ifn2K+1
2K+1k=_Kn

1

n-1
A s
= SRal S dpgx  fn<K+ 1

k=(n—- l)‘

A
In Figure 5 we plot ﬁ(n,lO) for the {u,} of Figures 3 and 4.
Since the moving average of the average is also the average of
the moving averages confidence intervals could also be placed on
these plots.
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Figure §

Moving Averages of ﬁ'n for M =5, 25 and 100

If the experimentor was interested in some other charac-
teristic such as the 90% point of F(x) or the variance of X he
would estimate the transient behavior of that quantity in an
analogous fashion. These would in general result in different
values of n, than obtained for E{X}.



