1981 Winter Simulation Conference Proceedings
T.1. Oren, C.M. Delfosse, C.M. Shub (Eds.)

101

APPLICATION OF
MODERN SOFTWARE TECHNIQUES TO
MODELING AND SIMULATION

Ronald M. Huhn
Edward R. Comer
Harris Government Communicatjons Systems Division
P.0. Box 37
Melbourne, Florida 32901

It is commonly agreed that software developments tend to be high risk activities;
simulation is recognized as being even more “exciting”. Great emphasis is being
placed to develop methodologies which Tower the risk of software development.
Since a major portion of simulation activity is software oriented, it is natural
to Took to these modern software methodologies for solutions applicable to the
modeling and simulation community. The total solution to current dilemmas is
many years away. However, significant progress is being made to develop a com-
prehensive software development methodology that is readily extendable to simula-
tion activities. The major additional burden of modeling and simulation is the
handling of the system modeling part of the process. This paper introduces an
Integrated Software Methodology (ISOMET) currently 4in use which has been success-

fully applied to simulation projects. Modifications to the methodology to
accommodate specialized modeling considerations are discussed.

1. INTRODUCTION

The Tack of a formal methodology for modeling and
simulation is receiving considerable attention in
the Titerature (see Reference Section for a sam-
ple). The problems are numerous and complex, the
proposed solutions varied and sometimes conflict-
ing. This paper adds to this volume of literature
addressing the issue, while hopefuily not adding
to the present state of confusion. In fact, the
methodologies successfully applied to date would
indicate the "T1ight at the end of the tunnel" has
finally appeared.

In order to understand the origins of this method~
ology, it is important to have insight into the
environment of its birth. While modeling and
simuiation is accomplished within numerous groups
within the Harris Corporation, a single Modeling
and Simulation Group serves as the focal point for
such activities. The well established group has
experience in numerous communications and ‘informa-
tion handling applications, primarily for govern-
ment customers. As such, the Group must deal with
a rising number of strict government standards.
The Group, by practice, strives to deliver a user-
oriented simulation package, thus minimizing
future dependencies for analysis.

For years the Modeling and Simulation Group worked
as an entity of Systems Engineering, as is typical
with most such groups. However since 1979, the

Group has operated as part of the Computer Systems

Department which is primarily software oriented.
The Department for the last two years has exper-
ienced an "explosion" in growth. This growth was
manageable through a similarly drastic revolution
in software methodology. Being key in the develop-
ment of a software methodology, a similar approach
naturally was developed for simulation. What was
initially a mere reorganization alignment has re-
sulted in a natural merging of simulation and
software.

The approach presented is not purported to solve
everyone's problems, nor be universally appli-
cable. It has however been extremely successful
where applied. While personal bias would indicate
widespread potential to the community, only time
and the judgement of many will tell.

The paper is organized by first presenting an
evaluation of the current environment in both
simulation and.software, followed by a brief prob-
lem statement. The Integrated Software Method-
ology used as a basis is outlined and discussed.
Its application to modeling and simulation is
presented as related to the development 1ife
cycle. Finally, current status and assessments
are summarized in Conclusions.

2. ENVIRONMENT
Simulations have a high potential for failure.

The modeling and simulation community is in a

81CH1709-5/81/0000-0101%00.75 (:) 1981 IEEE

102 ’ R.M. HUHN, E.R. COMER

dilemma over a plethora of languages and numerous
methodologies for simulation designed to overcome
this problem. Clema (1980) concluded that "...we
have a small number of artisans with proven track
records in consulting, industry, academia, and
government who are generally successful, and a
second group of simulation practitioners, large in
number, who perhaps have not acquired the neces-
sary skills and experience to achieve the success
desired by the customer." Simulation remains a
"black magic" art form, not having yet developed
into a "science".

Major languages are currently extending their
capabilities and in effect "growing" closer in
both appearance and features. The trend is for
"richer" simulation languages. It is felt that
this new generation of languages will solve the
current problems. Yet there are numerous examples
of simulation failures which cannot be attributed
to a poor simulation language.

1t is apparent that no .one is worrying about the
total simulation methodology.

Software, likewise, has a high potential for
failure.

By contrast, the software problem is currently
being investigated by numerous agencies and con-
tracts: RADC is sponsoring enhancement of SREM
(Software Requirements Engineering Methodology)
to address the requirements definition problem;
numerous Ada projects are aiming to contribute to
implementation, test and O & M phases; the Army
CENTACS and BMDATC are pursuing methodologies
across the development spectrum. The 1list of
potential contributors is so long that the DOD
Management Steering Committee for Embedded Com-
puter Resources is tasked with tracking and co-
ordinating the numerous developments.

Software technologies frequently do not coordinate
with practiced management philosophies, resulting
in complex human interfaces, unplanned and ynbud-~
geted activities and an untrackable software
development. As a result, software produced by
organizations with established, documented and
sometimes marketed software methodologies, may
not be developed in a sound and rigorous fashion.

The difficulty in integrating a complete method-
ology from existing techniques stems from the fact
that each was developed from a different perspec-
tive. As a result, most software methodologies

do not easily Tend themselves to integration with
other techniques without modification.

Classically the software engineer and the simula-
tion analyst have had a lot in common: both
dealt with complex and frequently ambiguous prob-
lems on & daily basis; both possessed "black
magic" skills; both were frequently required to
perform miracles; both "spoke" unusual languages;
both worked in an environment of few rules;
neither were undérstood by management nor were
they manageable; both were considered somewhat
"strange” by counterparts in other fields. It is
no wonder that these two disciplines are somehow
related.

The great hope is that the fields of management,
software engineering and simulation will be able
to produce an overall methodology for simulation.

3. PROBLEM STATEMENT

The basic problem is two-fold: first, there is no
established methodology for characterizing a sys-
tem as a model; secondly, there is no single
proven methodology for reliably automating a model
as simulation software.

The problem in modeling is the inability to ade-
quately document the system model with traceabili-
ty from the customers view of the system to the
system model. A preoccupation exists in the
selection of a simulation languagé before the
system problem and its model are understood. The
classic problem is in the attempt to use a simula-
tion language to express the system model.

The production of a simulation from a system model
is a software process. The tendency is to treat
simulation Tanguage representations of a model as
mere inputs to a simulation language processor.
Even input data for a simulation language such as
GPSS is really a high level -language, and requires
the same disciplines as that for software
developments. :

Software technology in general is deficient in
that no single methodology covers the entire de-
velopment process from beginning to end. As a
result, the existing methodologies leave areas

in the development process to chance and thus
contribute to the problems encountered in software
development. A recent report by the Software
Acquisition and Development Working Group (Jones,
et. al., 1980) highlighted major problems current-
1y existing in the acquisition and development of
military embedded computer systems, as summarized
in Figure 1. Similar findings have been noted in
numerous DOD and GAO reports. The fact is that
many technically sound methodologies fail because
they are either too difficult to use, too costly
or too short lived ih a project, providing no
basis for following phases of the software 1ife
cycle.

With such problems in the modeling and sofiware
aspects, it is no wonder that simulation projects
have such difficulty.

4, TISOMET - AN INTEGRATED SOFTWARE METHODOLOGY

While a number of valuable software techniques

have been in existence for several years, only
recent work has developed the concept of an
"integrated approach". This philosophy of inte-
gration brings a large number of techniques to-
gether to be applied throughout the development
cycle in a coherent manner. Such a methodology
must not only address technical issues, but also
establish management, organizational and accounting
procedures which are best suited for the task.

To meet this need, an Integrated Software Method-
ology {ISOMET) was conceived to address the total
software problem. The basic intent of ISOMET is
to provide a collection of integrated policies,
procedures, standard practices, and guidelines
which provide increased productivity and

APPLICATION OF MODERN SOFTWARE TECHNIQUES TO MODELING AND SIMULATION 103

management visibility of the software development
process. Harris provides this integrated soft-
ware development environment by coordinating the
elements of Software Development Practices, Plan-
ning & Tracking, and Management & Controls. The
relationships to software development are shown
in Figure 2.

The Software Development Practices define the
software methodology which is the "silent leader"
of ISOMET. In addition to providing technical
guidance to the project, the methodology provides
the basis for Planning & Tracking and the develop-
ment objectives to the Management and Control
function. The following subsections provide addi-
tional details on the three facets of ISOMET.

®,,.al11 facets of the software acquisition
and development process need varying degrees
of improvement".

1. The multiplicity of government standards
causes inefficiency and confusion.

2. Projects are often started with inade-
quate planning.

3. SW development projects are being con-
ducted with a lack of good management
practices.

4, The government inadvertently impacts
cost and schedules by specifying in-
appropriate hardware.

5. Often there is a mismatch between con-
tract type and complexity.

6. Security requirements impact software
development costs.

7. Software is unique. The software in-
dustry is the only industry required
to build useable products right the
first time without prototyping.

8. No adequate means exist to estimate
Tifecycle costs.

9, Software development productivity must
be increased. One method is through
the use of automated tools.

Fig. 1
Conclusions of the Final Report of the
Software Acquisition and Development
Working Group

- 4,1 SOFTWARE DEVELOPMENT PRACTICES

The Software Development Practices provide an
environment that produces a top-down structured
design, provides a basis for Planning & Tracking,
and visibility for Management & Control of the
project for each phase of the software life
cycle. The Software Development Practices con-
sist of: Documentation, Top-Down Partitioning,
Control and Data Flow Specification, Structured
Process Description, Data Storage & Organization,
Software Verification & Validation and Design

Guidelines.

Documentation as the design progresses is the key
ingredient of the methodology because the written
word provides the only interim measure of success-
ful software development. It provides good com-
munications between the customer, management and
software team members. In addition, review
materials are easily derived from the documenta-
tion,

The dinternal standard for software documentation
is the Progressive Project Document (PPD). The
PPD provides an unfolding description of the soft-
ware project, the software requirements, and the
eventual design. The PPD is highly modular due to
the technical writing approach called storyboards
(Tracy, et. al., 1965). Simply, a storyboard is

a 1 to 2 page discussion of a single thesis, and
the PPD is a collection of storyboards arranged

in a predetermined order. The arrangement is such
that the requirements and design unfold in a top-
down scenario which aids in the communication and
presentation of the software work. The organiza-
tion allows for quick and easy reference, and the
modularity facilitates document updates, changes,
and rewrites. The methodology and PPD work hand
in hand in that guidelines specified by the method-
ology affect the content of the PPD, and the PPD
reflects the design philosophy of the methodology
which is, simply, top-down.

The PPD virtually encompasses all meaningful in-
formation regarding a software development. As
such, virtually any deliverable document may be
derived from the PPD by a technical writing staff.
These documents may include requirements documents,
design documents, interface specifications, user
manuals or maintenance manuals. It also serves as
an efficient means for dealing with the variety of
government documentation standards {e.g. MIL-STD-
483/490, DOD 7935.1S, MIL-STD-1679). Use of this
approach allows the design team to become intimate-
1y familiar with a single documentation method,
ang_most importantly, a standard communication
medium.

Top-down partitioning is supported with guidelines
and graphic techniques during the Definition and
Design Phases. The Functional Partitioning Dia-
gram is used during the Definition Phase as a
graphic aid for the stepwise refinement process.
The Software Partitioning Diagram provides a
graphic aid during the Design Phase to illustrate
the software decomposition.

The Control & Data Flow Diagram provides a graphic
aid to illustrate relationships and interfaces
between functions in the Definition Phase and
modules in the Design Phase. It provides an early
checkpoint in the top-down partitioning process by
revealing a complex structure of interfaces if
partitioning is not performed correctly and it is
used in the documentation as additional supporting
information.

Harris uses a standardized version of Program
Design Language (PDL) for process specification
to insure that the benefits of structured program-
ming will occur regardless of the implementation
language. It supports successive refinement from
the highest level into code and has been found to

104

SOFTWARE
DEVELOPMENT
PRACTICES

* Documentatation

* Top-Down Partitioning

Control & Data Flow Spec

¢ Structured Process Description

* Data Storage & Organization
* Software V&V
* Design Guidelines

R.M. HUHN, E.R. COMER

DEFINES TECHNIQUES FOR

FEEDS REQUIREMENTS TO

PROVIDES
A BASIS

DEFINES
| TECHNICAL
OBJECTIVES FOR
| To
PLANNING &

TRACKING

* Project Planning
« Project Monitoring
* History Analysis

GIVES STATUS

FEEDBACK TO

< PROVIDES INPUTS TO

PROVIDES
PLANNING
GUIDELINES
TO

| | yy

"MANAGEMENT &

{ REPORTS
1STATUS TO

PROVIDES PROJECT ADMINISTRATION,

CONTROLS

« Organization
* Administrative Procedures
s Software Control

CUSTOMER
——
INTERFACE

MANAGEMENT AND REVIEW

DIRECTS TECHNICAL

QUTPUTS TO

Fig. 2

Integrated Software Methodology (ISOMET)

—4ZmZoorm<mu mMI>S—nO®

105

APPLICATION OF MODERN SOFTWARE TECHNIQUES TO MODELING AND SIMULATION

provide excellent in-Tine documentation. The
technique may be generally applied as an English
replacement for process description applicable to
both the Definition and Design Phases.

Data storage and organization details are imbedded
within the documentation. A software subsystem
verification and validation philosophy has been
adopted to progressively verify the result of each
phase of test. The testing is organized into
distinct phases, progressing from design specifi-
cation verification to requirements validation.

4.2 PLANNING AND TRACKING

The Software Development Practices provide a

basis for the Planning & Tracking of a software
project. Planning & Tracking consists of Project
Planning, Project Monitoring and History Analysis.
These three elements are essential to the success
of a software project.

Without a project plan, progress cannot be measur-
ed. The “90% complete" syndrome is avoided with
proper planning. Project planning establishes

the basis for how a project will be managed,
assesses the software development to be undertak-
en, estimates the required resources, defines what
will be delivered to the customer, and defines

the roles of software configuration and software
quality assurance.

A management plan establishes management object-
ives and defines the project organization and how
it will interface with the general organizational
structure, supporting organizations, and subcon-
tractors. Responsibilities for each organization
must be defined to minimize communication
problems.

An assessment of the software development pro-
vides a system overview to guide the project,
determines potential risks, and defines the tech-
nical activities for each phase of the software
1ife cycle. Schedules with detailed milestones
are developed from this information.

Resource planning establishes manpower, software
development facility and training requirements.
The deliverables to the customer must be defined
in terms of content and format. Guidelines must
be prepared for generating these documents in
terms of relating in-house documentation to de-
Tiverables and the procedures for preparing them.

The planning activity prepares schedule informa-
tion with man-hour estimates from the software
development team and support organizations that
provide a basis for tracking progress on the pro-
ject. Monthly project monitoring of Cost,
Schedule and Status Reporting (CSSR) with an auto-
mated system provides the data needed to control
a software project. The PPD supports project
monitoring by providing an indication of what was
accomplished during the month when a storyboard
{or set of related storyboards) is completed,

the tracking is updated and a milestone is reach-
ed. This earned value aspect of CSSR is measured
by completion of documentation expected at each
level of the Definition and Design Phases, by
code produced during the Implementation Phase and
by successful completion of phases of the Soft-

ware Test Phase.

The history gained from previous projects is used
to give credibility to the estimation process for
a new project. Therefore, data gathering is an
essential part of each project.

4.3 MANAGEMENT AND CONTROLS

Management in the context of the personnel insur-
ing that control of the software is achieved
includes general management and technical manage-
ment. The Software Development Practices provide
a set of directions for software development to
produce a consistent technical package for manage-
ment review. Planning & Tracking helps management
understand the ground rules for the project and
provides monthly status report information for
control.

Overall software control is achieved through a
reporting system that tracks progress informally
on a weekly basis and on a formal CSSR basis
monthly. The monthly CSSR meetings address cost,
schedule and technical status based on information
generated during the planning process. Normally
the basis for cost and schedule determined during
the planning phase is not updated unless changes
of scope modify the work to be performed. The
weekly meetings are brief status reviews which
concentrate primarily on any problem areas that
should receive management attention.

The technical integrity of the software product
is controlled through a series of design reviews
during each phase of the 1ife cycle. The design
review process is progressive, consisting of re-
views within the software organization, reviews
with interfacing organizations, formal project
reviews and special customer reviews. The re-
views during both the Definition and Design Phases
start out with Tevel by level reviews for the
higher level design and culminate in structured
watkthroughs for specific areas of detail. Code
walkthroughs are utilized in the implementation
phase prior to release for test. Test results
are reviewed for each phase of testing.

5. SIMULATION LIFECYCLE

While the end product of a simulation task is
software, it is by no means a simple software de-
velopment. Simulation development has the import-
ant difference of requiring the production and
maintenance of a model of the system being
studied.

A model is merely a representation of a system as
understood at the time. As the systems engineer-
ing process progresses, the model is refined. The
technique for managing this refinement while pre-
serving traceability is termed hierarchical model-
ing. (Rose, 1981; Kumar and Davidson, 1980;
Browne, 1975; and others.) It is important to
realize that the primary requirement of the simu-
lation software is to automate the model. Hence
the software development must accommodate a re-
quirement (i.e. the model) which will change
throughout the 1ifecycle!

Successful modeling and simulation requires a co-
hesive and highly controlled progression from

106 R.M. HUHN, E.R. COMER

model -conceptualization to simylation operational
test and evaluation. Figure 3 illustrates the
simulation lifecycle. The close ties to the soft-
ware lifecycle are driven by two key points:

1. Digital simulations, in any language,
are software, and should be treated
as such.

2. For lack of a better alternative, the
government imposes software controls
and deliverables on its simulation
contractors.

A successful modeling and simulation methodology
must integrate system modeling techniques with
those software technologies which have been suc-
cessfully applied in the industry, As with soft-
ware, the backbone of the approach is the "docu-
ment-as-you-go" philosophy, using the Progressive
Project Document (PPD). This concept defines an
organized modeling and simulation software devel-
opment notebook which grows as the project pro-
gresses. The PPD provides the vehicle in which
to document and to manage a model which is in a
constant state of refinement. The software PPD
is a "Viving document which has been modified
for simulation purpoeses consisting of the follow-
ing volumes:

System Overview

Project Management
System Model

Simulation Operation
Simulation Requirements
Simulation Design
Simulation Imp1ementat1on
Interfaces

Test/V&V

« e

W0~ OVOT W N
. .

While maintaining the basic structure of the soft-
ware PPD, the modeling aspect molds the documenta-
tion to suit the purpose. Since the PPD is ad-
Justed to suit the modeling activity, government
CDRL's Tikewise will take on new perspectives.

Planning the simulation project must occur early
in the project and completely detail the acti-
vities to follow. Not only is the project plan
based on key deliverable milestones but usually
upon a parallel system concept and design acti-
vity. The two efforts are highly dependent, tak-
ing on a symbiotic relationship. The modeling
and simulation act1v1ty derives it's information
from the systems engineering efforts. This sys-
tems engineering however requires analytic infor-
mation from the modeling and simulation task in
order to evaluate tradeoffs key to determ1n1ng a
baseline designh.

This close relationship must be carefully planned
with numerous intermediate mijlestones. Informa-
tion must be incrementally documented and released
to the modeling team. Analytic feedback points
must be clearly defined as to scope and Tevel of
detail. Care must be taken to insure that infor-
mation necessary for Tater feedback is obtained

on a timely basis. If this process becomes overly
complex, PERT analysis is suggested.

The engineering methodology is likewise integrated
with a management structure customized for model

developments. Here the concepts of the systems
engineering team, the simulation work package
and the software chief programmer team are inter-
twined.

The model definition and simulation requirements
are conducted by a single multi-disciplined team.
This team contains expertise in the application
system, miodeling, mathematical analysis, software
and simulation languages. As such, the team for
a large project may include personnel from three
organizations: systems engineering, modeling and
simulation and software development.

This team will remain as the single organized
entity through preliminary design. At this time,
software work packages will be created which par-
allel the software partitioning. The initial team
remains to continue the model refinement. This
structure, as shown in Figure 4, will remain
through ver1f1cat1on of the s1mu1at1on. Addition-
al functional groups are added as needed. ATl
teams throughout the Tife cycle are supported by
the necessary secretary, librarian, administration,
analysis and programming functions,

It should be noted that while the organization
above is oriented toward large program management,
it can be used intact for smaller ones: the dif-
ference being simply in the number of personnel
for each function. A small project may not re-
quire a fully staffed management team, but partici-
pating rolés should remain intact. In fact, it is
not the organ1zat1ona1 structure which is 1mport—
ant, it is the clear definition of the various
roles which must be performed which leads to
project success.

Rigorous controls are enforced throughout the T1ife
cycle. Documented procedures for everyday opera-
tions are augmented by numerous team reviews at
the various levels of model, functional and soft-
ware decomposition and refinement. Internal
systems engineering and external customer reviews
add further controls, while ensuring concurrence
on the model throughout the development.

Project cost and schedule are tracked with the
CSSR system which not only reports on actual ex-
penditures versus plan but also on earned value.
The system provides the complete visibility
necessary to keep the simulation development on
track. The problem of a large number of small
impacts, frequently detected late in the project,
may be flagged early using this system. This is
particuTarly important to the control of model
changes, where the problem. frequently occurs.

5,1 MODEL DEFINITION AND SIMULATION
REQUIREMENTS PHASE

The initial definition phase for typical software
deveTopments accomplishes two primary functions:
to plan in detail the management and engineering
activities of the project and to determine the
functional requirements for the software. For
simulation software, the functional requirements
may be summarized as to:

1. Accept the required u§er inputs
2. Automate the system model
3. Output the desired statistics

APPLICATION OF MODERN SOFTWARE TECHNIQUES TO MODELING AND SIMULATION 107

MODEL
DEFINITION
AND
SIMULATION
REQUIREMENTS| MODEL
. EFINEMENT
: AND
SIMULATION
DESIGN -
SIMULATION
IMPLE-
MENTATION
__ISIMULATION
TEST AND
VERIFICATION
MODEL
VALIDATION
Fig. 3
Modeling and Simulation Lifecycle
SIMULATION
TASK
MANAGER
SYSTEMS
MODELING
| |
PACKAGE | | PACKAGE DOCUMENTATION
CONFIGURATION QUALITY TEST AND
MANAGEMENT ASSURANCE VERIFICATION
Fig. 4

Simulation Project Organization

108 R.M. HUHN, E.R. COMER

The functional requirements for simulation soft-
ware may therefore be specified by detailing
required inputs and outputs and by defining the
system model. This emphasis to the model specifi-
cation is frequently lost in the production of
government standard software requirements docu-
ments (e.g. B-5) for simulations.

Model specifications must serve as the media of
communication between the systems engineers and
the simulation team. Unless this specification is
easily understood by all, important details may
remain erroneous. Typically model specifications
are heavily dependent on the simulation language.
While this is a natural means for unambiguous
specification for the simulation analyst, it is
frequently beyond the level of total comprehen=
sion for the customer and the systems engineers.

The solution to this problem may be derived from
software technology where the concepts of itera-
tive decomposition (or partitioning) and a Pro-
gram Design Language (PDL) are utilized to both
structure the design process and to make it under-
standable to others. The partitioning process
has an added benefit for modeling in that it pro-
vides a means for coping with varying and evolv-
ing levels of detail. This important concept is
termed hierarchical modeling.

The modeling methodology is structured to first
partition the model in a level-wise fashion until
the desired level of detail is reached. Each
Tevel has traceability to the inputs, outputs and
control flow of the higher Tevel component. In-
formal réeviews at each level provide an efficient
means for checking the model definition. At the
lowest level a "structured English" specification
of the model element is provided. This specifi-
cation is a derivative of the software PDL which
has been augmented with keywords meaningful to
both the application and the analytic structures,
By doing so, a Model Specification Language (MSL)
which is both unambiguous and readily understand-
able may be taylored for the application.

This method of structured model specification
integrated with the software methodology results
in this initial phase being highly organized and
manageable. More importantly a documented model
baseline is set and agreed upon as the basis for
future phases. ‘

This phase also typically resutts in the select-
ion of a simulation language. With the model
specification essentially being language indepen-
dent, moré careful consideration can be directed
to the language choice. Issues such as flexibil-
jty, host-ability, cost effectiveness and appli-
cability can now overcome personal prejudices in
the selection process. It should be noted that
in general, this methodology tends to de-
emphasize the simulation language.

Model Definition and Simulation Requirements
Phase Summary:

Project Planning

Project Management

Requirements Assessment and Risk Analysis
Project Schedule

Phase Activities

CO0OQ O

Review and Reporting
Manpower/Training

Development Facilities

Contract Data Requirements List (CDRL)
Software CM/QA Procedures

Computer Resource Estimates

Simulation Language Choice

0O00000O0

Model Definition

Model Component Partitioning
Model Element Specification - MSL
Workload Model

Parameter Estimates

System Cross-Reference

ococooQo

Simulation Requirements

o Input Definition
Output Requirements
Functional Decomposition
Interface Specification
Operational Scenarios
Information Storage Requirements
Performance Requirements

(ol =N elo ool

5.2 MODEL REFINEMENT AND SIMULATION DESIGN PHASE

Establishing a baseline model definition is key to
managing a simulation effort. When the simuTation
is being used as a design tool, two complicating
factors typically surface:

1. The model baseline will change and
require further refinement in detail.

2. The systems engineers will require
preliminary simulation results prior
to completion of the end software
package.

Unless strictly managed, such a situation can
literally run out of control. The tendency
frequently is to concentrate on the design changes
and output requests, while losing sight of the
overall simulation development.

Here again the solution to this problem may be
derived from software engineering. Surviving an
environment of rapidly changing requirements (in
this case, the model) is achieved through a
strictly configuration managed baseline. This
approach, aside from providing stability, allows
two important "thought processes" to occur:

1. On whether one really wants to include
this. change in the baseline, or is it
still only a consideration.

2. Is this change in the scope of this
development, or is it a new area not
previously considered.

It should be noted that the earlier introduced
project organization which is formed during this
phase is well suited to handle this case. The
Systems Modeling team maintains the model base-
Tine, filtering only approved changes to the rest
of the group.

The problem of producing interim results while
proceeding with the development may be coped with
through the science of software prototyping.
Under the rules of prototyping, this interim

APPLICATION OF MODERN SOFTWARE TECHNIQUES TO MODELING AND SIMULATION

software must not be utilized in the end product.
It may however be used to investigate techniques

and approaches which may be incorporated into the
design. By producing interim results from soft-

ware prototypes the software development process

may proceed in parallel while aliso benefitting

in the Tong run from the process.

The actual software design process proceeds along
the Tines of standard developments. The software
is successively partitioned with informal reviews
at each level, A Program Design Language (PDL)
is utilized to specify processing details at the
lowest level. Data bases are designed with heavy
emphasis on data typing using a data dictionary
approach. The user interface is completely de-
signed. Test and integration plans are carefully
formulated for future phases.

Model Refinement and Simulation Design Phase
Summary:

Model Refinement

o Baseline Maintenance .

0 Refinement via Hierarchical Modeling
o Simulation Prototyping

Simulation Design

o Software Component Partitioning

o Program Design Language Specifications
0 Level-by-level Reviews and Structured
Walkthroughs

Data Base Specification

Usér Manual

Test and Verification Plan

Resource Estimation

Model/Requirements Traceability

5.3 SIMULATION IMPLEMENTATION PHASE

Qo0oo

The two factors of a changing model baseline and
interim result requirements usually continue for
the remainder of the project. Hopefully however,
model changes will decrease in frequency and im-
pact as the system design becomes firm. It is
usually possible to anticipate Implementation
Phase refinements during Design by appropriate
parameterization of the simulation. In any case,
model changes must be managed stricter than ever
in order to prevent wide spread design changes.

Prototyping for interim analysis may indeed pro-
ceed into this phase. However careful planning
of the implementation may make subsets of the
software available for early use. To accomplish
this, unit testing is replaced by top-down test-
ing which results in an integrated subset being
assembled early in the phase. Organization of
this combined test and integration into well
defined "builds" allows early production of core
simulation software while producing polished man-
machine software concurrent with any interim
analysis. The phase is marked by completion of
this low Tevel testing and the assembly of the
integrated software subsystems.

The point should be made that even specialized
simulation language "code" must be treated as
other software. Good programming practices may
be followed regardless of language. Any “code"
may be structured and highly modularized. If no
direct support is provided for this by the

109

language, the intent may be satisfied through
standardized conventions. These conventions must
be developed and documented prior to entry into
this phase. Any prototyping should be used to
verify these conventions.

Simulation Implementation Phase Summary:

Model Refinement
o Baseline Maintenance
o Refinement via Parameterized Inputs

Simulation Implementation

Top-down Implementation and Testing
Build Scheduling

Structured Programming Practices
Code Walkthroughs

Code Configuration Management
In-Line UDF (Unit Development Folder)
Acceptance Test and Verification
Procedures

Validation Plan

Product Baseline Established

5.4 SIMULATION TEST AND VERIFICATION PHASE

0000000

[« a)

As implied by the organizational structure, this
phase may be conducted by a separate team within
the group. Using the model specification and
simulation requirements as input, test procedures
may be formulated. Experience in the software
industry has in fact shown that best results are
obtained when testing is accomplished by a team
independent from the development group.

This approach lends additional formality to the
procedure. Interfacing between test and develop-
ment groups is accomplished via Software Trouble
Reports (STR's) and configuration managed test
Tibraries. Simulations are in fact more complex
than most application software and as such re-
quire more thorough and formal testing. Verifi-
cation of the simulation to the model is an added
burden placed upon the testing team. Here too,
an easily understood model definition is key.

Upon completion of this phase, the software simu-
lation should be reliable and entirely useable.
The final step - validation, must however be
completed prior to final release of the package.

Simulation Test and Verification Phase Summary:

o Software Functional Test to the
Requirements Document

o Verification of the Simulation to

the Model Specification

Formal Trouble Reporting and Resolution

Configuration Management

Functional Configuration Audit (FCA)

Software Quality Assurance

Preliminary Qualification Testing (PQT)

5.5 MODEL VALIDATION PHASE

Q0000

Division of verification and validation into
separate phases is based upon their difference in
both methods and organization. While verification
may be done by an independent group, validation
should be conducted by the Systems Modeling team.
It is in this group that the in-depth systems
knowledge lies. It is also from this group that

110 . . R.M. HUHN, E.R. COMER

eariier system and/or field studies were conduct-
ed. These studies are typically used to validate
the simulation model.

The methods and extent of validation are deeply
dependent on the circumstances of the individual
development. More heuristic approaches must be
used if neither the system nor a representative
environment are available. If on the other hand,
such are available, system and environment
studies may be extensive. It is for this reason
that complete planning of the Validation Phase
must be done at the start of the project.

While differing in methods, the control of the
validation process must follow along the Tines
used in earlier testing. Upon completion, a
physical configuration audit verifies the con-
sistency of the delivered software and its docu-
mentation.

Model Validation Phase Summary:

o Validation of the Simulation Model

to the System

Formal Trouble Reporting and Resolution
Configuration Management

Physical ‘Configuration Audit (PCA)
Formal Qualification Testing (FQA)

o000

6. CONCLUSIONS

Modern software methodologies applied to modeling
and simulation have proven to be effective in our
environment.

Harris' unique approach to a comprehensive soft-
ware development environment integrating Software
Development Practices, Planning & Tracking, and
Management & Controls in conjunction with the
Progressive Project Document (PPD) has increased
productivity and Towered the risk for software
development.

Simulation projects applying the methodology have
been successful, resulting in:

Increased productivity on the order
of 2:1

A highly visible development process
Superior documentation

High quality code

A well-received product

(=]

o0 o0Q

While the methodology has definitely shown its
potential, it is neither perfect nor complete.
Benefits to date have been achieved in three
short years. While the key techniques and tools
are already in place, further refinement and
additional automation are planned for the next
five years.

Modeling and simulation will remain a special
skill which advanced software methodologies will
enhance.

ACKNOWLEDGEMENTS

The authors wish to acknowledge Cas Mendez-Vigo,
Director, Computer Systems Department for his
continued guidance and support. Additional re-
cognition is due to the numerous other individuals

who, with patience and hard work, have helped us
achieve the level of success currently enjoyed.

REFERENCES

Annino, J.S. and Russell, E.C. (1979),
The Ten Most Frequent Causes of
Simulation Analysis Failure -
and How to Avoid Them,

In: Simulation, June, pp 137-140

Automated Data Systems Documentation

Standards, 7935.1S (1977)
Department of Defense, 128 p

Beauchamp, J.N. and Field, R.C. (1979),
Simulation Modelling by Stepwise
Refinement, In: 'Proceedings of
the Winter Simulation Conferénce,
TEEE

Brooks, F.P., Jr. (1975)
The Mythical Man-Month,
Addison-HWesley

Browne, J.C., et. al. (1975), Hierarchical
Techniques for the Development of
Realistic Models of Complex Computer
Systems, In: Proceedings of the IEEE,
Vol. 63, June, pp 966-975

Clema, J.K. {1980), Managing Simulation
Projects, In: Simulation With
Discrete Models: A State-of-the-
Art View, T. I. Oren, C. M. Shub,
P. F. Roth (eds.), IEEE, pp 235-241

Computer Software Life Cycle Management

Guide (1979), NALEXINST 5200.23,
Naval Electronic Systems Command

Cutler, M.M. {1979), Proving Properties of
Simulation Program for System Verifi-
cation and Validation, In: Proceed-
ings of the Summer Computer
Simulation, pp 610-616

Dahl, 0.J., Dijkstra, E.W. and Hoare,
C.A.R (1972}, Structured
Programming, Academic Press, 220 p

Davies, N.R. (1976), A Modular Interactive
System for Discrete Event Simulation
Modelling, In: Proceedings of the
9th Hawaii International Conference
on Systems Science, pp 296

Jones, V.E., et. al. (1980), Final Report
of the Software Acquisition an
Development Working Group, ’
Department of Defense

Kay, I.M. (1972), An Over-the-Shoulder Look
at Discrete Simulation Languages, In:
Proceedings of the Spring Joint
Computer Conference, IEEE, pp 791-798

Kiviat, P.J., Villanveva, R. and Markowitz, H.M.
(1973), Simscript 11.5 Programming
Language, CACI, Inc.

APPLICATION OF MODERN SOFTWARE TECHNIQUES TO MODELING AND SIMULATION m

Kumar, B. and Davidson, E.S. (1980),
Computer Systems Design Using a
Hierarchical Approach to
Performance Evaluation, In:
Communications of the ACM,
September, pp 511-521

Management of Computer Resources in Systems
(1975), AF 800-14,
Department of the Air Force

Mathewson, S.C. and Allen, J.A. {1978),
A Commentary on the Proposal for a
Simulation Model Specification and
Documentation Language, In:
Proceedings of the UKSC Conference
on Computer Simulation, April,
pp 158-167

McLeod, J. (1978), Ways to Improve
Management of Computerized
Models: Theme and Variations, In:
Simulation, November, pp vii-x

Metzger, P.W. (1981), Managing a Programming

Oren, T.I. (1980), Concepts and Criteria
to Assess Acceptability of
Simulation Studies: A Frame of
Reference, TR 80.03,

University of Ottawa, 46 p

Oren, T.I. and Zeigler, B.P. (1979),
Concepts for Advanced Simulation
Methodologies, In:

Simulation, March, pp 69-82

Pritsker, A.B. and Pegden, C.D. (1979),
Introduction to Simulation and
SLAM, John WiTey & Sons, 588 p

Program Design Language Standard (1979),

Harris Corporation

Progressive Project Document (1979),

Project, 2nd ed., Prentice-Hall, 244 p

Military Standard Configuration Management
Practices for Systéms, Equipment,
Munitions, and Computér Programs,
MIL-STD-483 (1970), Department of
Defense, 119 p

Military Standard Specification Practices,
MIL-STD-490 (1968), Department of
Defense, 77 p

Military Standard Technical Reviews and
Audits for Systéems, Equipments and
Computer Programs, MIL-STD-1521A
(1976), Department of Defense, 105 p

Military Standard Weapon System Software
Devélopment, MIL-STD-1679 (1978),
Department of Defense, 28 p

Montgomery, J.D. {1981), Integrated
Software Methodology: ISOMET,
Harris Corporation, 10 p

Newton, 0.L. and Weatherbee, J.E. (1980),
Guidelines for Documenting Simulation
Models: A Review and Procedures, In:
Simylation with Discrete Models: A
State-of-the-Art View, T.I1. Oren,
C.M. Shub, P.F. Roth (eds.), IEEE,
pp 243-258

Oren, T.I. (1978), A Personal View on the
Future of Simulation Languages, In:
Proceedings of the 1978 UKSC
Conferencé on Computér Simulation,
IPC Science and Technology Press,
pp 294-306

Oren, T.I. (1979), Concepts for Advanced
Computer Assisted Modelling, In:
Methodology in Systems Modelling and
Simulation, B.P. Ziegler, et. al.
{eds.y, pp 29-54

Harris Corporation, 58 p

Rose, L.L. {(1981), Hierarchical Modeling
in GASP, In: Record of Proceedings
of the 14th Annual Simulation
Symposium, R.M. Huhn, E.R. Comer,
F.0. Simons, Jr. (eds.), Annual
Simulation Symposium, pp 199-213

Roth, P.F., Gass, S.I. and Lemaine, A.d.
(1978), Some Considerations for
Improving Federal Modeling, In:
Proceedings of the Winter Simulation
Lonference

Ryan, K.T. {1979}, Software Engineering and
Simulation, In: Proceedings
of the Winter SimiTation Conference

Schriber, T.Jd. (1974), Simulation Using
GPSS, John Wiley & Sons, 533 p

Shannon, R.E. (1975), Systems Simulation:
The Art and Science,
Prentice-Hall, Inc., 387 p

Software Design Guide (1979),

Harris Corporation, 74 p

Spiegel, M.G. (1980), Prototyping: An
Approach to Information and
Communication System Design, In:
Simulation with Discrete Models:

A State-of-the-Art View, T.I. Oren,
C.M. Shub, P.F. Roth (eds.), IEEF,
pp 219-232

Tausworthe, R.C. (1977), Standardized
Development of Computer Software,
Part'l: "Methods,

Prentice-Hall, 379 p

Top Down Design and Structured Programming

(1974), MiTitary AirTitTt Command

Tracey, J.R., Rugh, D.E. and Starkey, W.S.
(1965), Sequential Thematic
Organization of Publications (STOP),
Hughes Aircraft Company, 40 p

Wagner, H.M. (1970), Principles of
Management Science,
Prentice-Hall, pp 541-565

112

Wider Use of Better Computer Software
“Technology Can’ Improve Management
Control and Reduce Costs {1980),
Report FGMSD-80-38 to the Congress
of the United States, 57 p

Yourdon, E.N. (ed.) {1979a},
Classics in Software Engineering,
Yourdon Press, 424 p

Yourdori, E.N. (1979b),
Managing the Structured Techniques,
Prentice~Hall, 266 p

Zeigler, B.P. (1976), Theory of
Modelling and Simulation,
John Wiley, 435 p

Zeigler, B. P. (1980), Concepts and
- Software for Advanced Simulation
Methodologies, In: Simulation
with Discrete Models: A State-
of-the-Art View, T1.l. Oren,
C.M. shu , P.F. Roth (eds.),
1EEE, pp 25-44

R.M. HUHN, E.R. COMER

