1981 Winter Simulation Conference Proceedings
T.I. Oren, C.M. Delfosse, C.M. Shub (Eds.)

79

A GPSS AUTOFLOW PROGRAMME

Robert Greer Lavery P, Eng.
Ryerson Polytechnical Institute
Toronto Ontario Canada

and

Edward R. Kungla
Programming Division
Ontario Hydro
Toronto Ontarioc Canada

ABSTRACT

This paper describes a programme which accepts a GPSS source deck as
input data and produces as output a block diagram of the contained

. GPSS model on a Calcomp plotter.
INTRODUCTION

The purposa of the project described in
this paper was to design and code a
programme which would produce a plot of
the block diagram of all segments of a
GPSS model submitted to the programme as
data. The general structure of the
programme is illustrated in Figure 1. The
programme consists of two modules, one
written in COBOL and the other in FORTRARN.

PROGRAMME STRUCTURE AND DESIGN

The COBOL module reads a GPSS source card,
checks to see if the card contains a GPSS
block instruction and then either creates
an output record (if a valid GPSS block
instruction was recognized) or prints an
appropriate message {for non-instruction
statements).

An input record is considered a valid
instruction if it is not a JCL statement
(// in columns 1 and 2} or a comment
statement (* in column 1), if it contains
an accepted operation code in a given
range on the card (only the first four
characters of all ‘operation codes are
tested) and if at least one operand exists.
Free format coding of instruction
statements is allowed for in checking each
card, i.e, all 72 columns are checked. The
programme is designed to check up to 16

label characters per instruction although
only the first five characters of each
label are reproduced in the eventual
plotted block diagram.

Auxiliary operators are only checked for
the GATE block since a different block
symbol can result from different auxiliary
operands with this instruction.

For each valid block instruction found,

an output record is created and passed to
the FORTRAN module. Yhen the end of the
GPSS source module data set is determined,
an end-of-file record containing dummy
data (99999) is created and execution of
the COBOL module is terminated.

The output records created and transferred
as data to the FORTRAN module are rigid in
format in spite of the free form coding
anticipated on the source records. The
first five characters of the record are
always the instruction label, the next four
are the block command, etc.

A flowchart giving an overview of the COBOL
module logic is shown in Figure 2.

At Ryerson Polytechnical Institute, Toronto
where the programme was developed, a
Calcomp plotter was available which could
be accessed through the "high-speed"
FORTRAN compiler routine known as WATFIVP.
Thus the portion of the programme which
defines the plotter data and issues the
appropriate calls to the plotter routines
vas written in FORTRAN,

81CH1709-5/81/0000-0079$00.75 (:) 1981 TIEEE

80 R.G. LAVERY and E.R. KUNGLA

(START) START

\}/

OPEN
FILES
GPSS
SOURCE
DECK Y
. 7
GET INPUT
RECORD
coBOL
MODULE 17,
YES .
PLOTTABLE LIST OF NON
PLOTTABLE
INSTRUCTIONS INSTRUCTION "NO
TEST
THIS
. RECORD
FORTRAN
MODULE 7
’] RESET
{VALID RECOR
FIELD
7
‘ CLOSE
Figure 1: Flowchart IT1lustrating Programme FILES
General Structure.

The main logic of the FORTRAN module
(i1lustrated in Figure 3) reads an input
record, checks the GPSS block instruction i END

on the input record and cajils the

appropriite sugrouginektnglot.a symbol d

representing that ock. e input recor s . .

is then also printed. If the input record Figure 2: ;1gw€ha{t INlustrating COBOL
is the end-of-file record the programme odule Logic.
will terminate. If not, a new input record
will be read.

No plotting is done if the input record
accessed does not contain a valid block
instruction. This should only occur for the
end-of-file record.

The programme, as designed, contains a
separate subroutine for each symbol in the
GPSS YV instruction set. Users wishing to
add additional block symbols need only -add
the appropriate plotting subroutine to the
FORTRAN module and the equivalent block
instruction to the table of acceptable
operation codes.

A GPSS AUTOFLOW PROGRAMME

(START)

INITIALIZE
PLOTTER

READ
INPUT
RECORD

CALL
SUBROUTINE
TO DRAW

BLOCK

PRINT
INSTRUCTION

TERMINATE
PLOT

Figure 3: Flowchart I1lustrating FORTRAN
Module Logic.

The instructions for which separate symbols
are provided are listed in Table 1. The
symbols plotted for the blocks are those
shown in the GPSS textbooks by Thomas J.
Schriber (GPSS /360 instruction set) and

Bobillier, Kahan and Probst(additional

GPSS V instructi .
A copy of thé’gkﬁ¥%£ code for this

programme is available to interested
parties upon written request to Professor
Greer Lavery at Ryerson Polytechnical
Institute,

A sample of the output of the described
programme is shown in Figure 4,

ADVANCE
ALTER
ASSEMBLE
ASSIGN
BUFFER
CHANGE
counT
DEPART

ENTER
EXAMINE
EXECUTE
FAVAIL
FUNAVAIL
GATE (FACILITY)
GATE (LOGIC)
GATE (MATCH)
GATE (STORAGE)
GATHER
GENERATE
HELP

INDEX

JOIN

LEAVE

LINK

LOGIC

81

Loop
MARK
MATCH
PREEMPT
PRINT
PRIORITY
QUEUE
RELEASE
REMOVE
RETURN
SAVAIL
SAVEVALUE
SCAN
SEIZE
SELECT
SPLIT
SUNAVAIL
TABULATE
TERMINATE
TEST
TRACE
TRANSFER
UNL INK
UNTRACE
WRITE

Table 1: List of GPSS Instructions Whose
Block Symbols Can be Plotted by
the Described Programme,

REFERENCES

SIMULATION USING GPSS (1974) by Thomas J.
Schriber, John Wiley and Sons, Publisher.

SIMULATION WITH GPSS AND GPSS V (1976) by

P.A. Bobillier, B.C. Kahan and A.R. Probst
Prentice Hall Inc., Publisher.

?

82 R.G. LAVERY and E.R. KUNGLA

ADVA

LABEL

’

\

—
ALTE mMax >

I

!

ASSE

HS51

Figure 4: Sample of Plotted Output.

7,80

n
oW
I

B,B.C

