1981 Winter Simulation Conference Proceedings
T.1. Oren, C.M. Delfosse, C.M. Shub (Eds.)

45

DISCRETE EVENT SIMULATION USING PL/I BASED
GENERAL AND SPECIAL PURPGSE SIMULATION LANGUAGES

Walter C. Metz
Systems Communications Division
International Business Machines Corporation
G39/B602

P.0.

Research Triangle Park,

ABSTRACT:

Box 12195

N. C. 27709

This paper describes the architecture and language features of a

simulation model which was developed using a new IBM discrete event simulation

package based on PL/I.

The package contains implementations of both the GPSS and

SIMPL/I simulation languages, and in addition provides the capability for a model
developer to create special purpose simulation languages tailored to his unique

simulation application.

both GPSS and SIMPL/I commands,
commands in each language.

The model described in this paper simulates a retail or
supermarket store point-of-sale communication system.

The model was written using

but with a limitad subset of the available
Three special purpose languages were developed so that

a model user can easily create a version of the model that simulates a particular

store system.

The model description illustrates the various language alternatives

available with this new simulation package.

1. INTRODUCTION

A new discrete event simulation package consists of
two IBM developed programs which are available as
IBM products: (1) PL/I General Purpose Simulation
System (IBM 81), and (2) PL/I lLanguage Construction
Preprocessor (IBM 79). Together, the two programs
provide versions of the GPSS and SIMPL/I simulation
languages, allowing models to be written with
simulation commands interspersed with PL/I
statements. The version of GPSS is called PL/I
GPSS, and the version of SIMPL/I is called SIMPL/I
X. The two languages are implemented using the
PL/I Language Construction Preprocessor which
accepts as input a program consisting of SIMPL/I
and GPSS commands interspersed with PL/I statements
and produces as output a standard PL/I program
acceptable to the IBM PL/I Optimizing Compiler.
Procedures have been established for installing the
programs on both tha IBM MVS and CMS operating
systems. See the conference paper by Jerrold Rubin
for a general presentation of the overall features
of PL/I GPSS and SIMPL/I X.

The new package has a number of advantages over the
earlier IBM program products, G6PSS V (IBM 77) and
SIMPL/I (IBM 71). It offers the model developer a
wider range of simulation language features and
program design alternatives. He has a chaice
between two "world views", the "transaction flow

orientation™ of GPSS or the "process orientation™
of SIMPL/I (Shannon 75). He may combina ths two
orientations, since with certain restrictions, a
simulation program may be written using both GPSS
and SIMPL/I commands, This should not be
surprising, since the two languages have sometimes
been categorized together as using the "process
interaction" approach (Fishman 78).

Bne of the most useful features of the package is
the language expansion capability provided by the
PL/I Language Construction Preprocaessor. Special
purpose commands may be added to the preprocessor
to supplement the general purpose GPSS and SIMPL/I
commands. For each special purpose command, as
with each SIMPL/I and GPSS command, the
preprocessor must contain a command expansion
routina whose function is to supply a string of
code to replace the command. The generated code,
which is conditional upon the kayword parameters in
the command, may include any SIMFL/I, GPSS, or
special purpose command, since the preprocessor
optionally rescans each command expansion for
further commands, which are expanded in turn. By
including commands in command expansions, a
hierarchy of simulation languages may be daveloped.
Fig. 1 illustrates the relationship betwean thase
language levels and how one level builds upon
another,

81CH1709-5/81/0000-0045500.75 (C) 1981 IEEE

46 Walter C. METZ

Level Language Written in terms of
4 Spacial 6PSS,SIMPL/I,PL/I,
Purpose Special Purpose
3 GPSS SIMPL/I,PL/I
2 SIMPL/I PL/I
1 PL/Y ———-
Fig. 1 Hierarchy of Language Levels

The PL/I Language Construction Preprocessor is more
efficient and versatile than the built-in
preprocassor of the PL/I compiler. Full use of the
PL/TI language is allowed in the command expansion
routines as opposed to limited use permitted by the
built-in preprocessor. Efficiency is achieved by
pre-compiling the command expansion routines and
avoiding any extra processing for an unreferenced
command. To simplify the writing of tha command
expansion routines, subroutines are provided in the
preprocessor for decoding the commands.

The simulation package has been used at IBM to
develop a model which simulates a retail or
supermarket store point-of-sale communjcation
systam. The model, called SIMP0OS, is used to
evaluate system performance in terms of response
times and throughput capacity. It contains both
GPSS and SIMPL/I commmands, but only a limited
subset of the available GPS5S and SIMPL/I commands
are used. Three spacial purpose languages have
been developed for the model, the first to model
store traftfic, tha second to model IBM microcode,
and thae third to model IBM and customer developed
application programs. Developwent of these special
purpose languages has made the model much easier to
develop, maintain, and use.

This paper will first briefly describe the
architecture of SIMPOS and important facts about
the model such as the reasons for choosing PL/I
GPSS as the base simulation language, the GPSS and
SIMPL/I commapds usad in the model, the reasons for
develeoping the three special purpose languages, and
the model efficiency in terms of preprocessor,
compile, and execution times. Then the features of
the three special purpose languages will be
presented with examples of each.

2. SIMPOS ARCHITECTURE

An IBM retail or supermarket store communication
system contains a variable number of point-ofrsale
tarminals which are connected to a store controller
via a loop communication line. The controller with
a disk storage device handles price lookup requests
from the terminals, collects item movement data,
and maintains accounting totals. The controller
also communicates with a "host"™ computer via a

switched line. The terminal and controller
point-of-sale applications are programmable in a
language similar to 5/370 Assembler Language and
executable by an interpreter microcode program.

The architecture of SIMP0S is illustrated in Fig.
2. A user of the model modifies or writes three
simulation programs: (1) a traffic program, (2) a
terminal application program, and (3} a controller
application program. The traffic simulation
language is usad to write the traffic program, and
the application simulation language is used to
write both the terminal and controller application
programs. A traffic program typically contains
between 40 and 60 lines of code, a controller
application program befween 500 and 1000 lines of
coda, and a terminal application program beotwean 50

and 150 lines of code. These numbers include
simulation commands and PL/I statements, but

exclude comments.

The linkage between the traffic program and the two
application programs is a list of variable
declarations called the message variable list,
which is included in each program by the
preprocessor in response to a ZINCLUDE statement.
During model execution, the traffic model generates
message traffic and values for the variables in the
message variable list according to specified
probability distributions. These variables
determine the functions to be performed in the
terminal and controller application models. A
message variable list typically contains between 5
and 25 variables.

The model user must also provide an input parameter
filae, which is read at the beginning of model
execution. Its implementation permits many model
runs to be made without recompiling model
components. The input parameter file has the
format of a macro language with statements such as
NUMTERMS=12, RUNTIME=3.5, and TRACE=YES. It
contains cénfiguration, system generation, and
application program parameters. In addition, it
contains simulation parameters such as simulation
run time, requested simulation output statistics,
and indicators which specify the tracing of
particular model components.

The remaining components of the model are not
modifiad by the typical model user, but only by a
model developer and a model user evaluating
hardware and microcode daesign alternatives.
Parameters for various harduware and microcode
componaents can be set in an input parameter file.
Examples are processor ‘instruction execution rates
and microcode program priorities. As is shown in
Fig. 2, therea are ten model components simulating
microcode and hardiare. A single interface exists
between the controller interpreter model and the
remaining controller microcode models. Since the
terminals do not have multiple tasks contending for
resources, the terminals are simulated in much less
datail than the controller and require just the
single terminal interpreter model component. These
microcode and hardwarae simulation programs
typically contain between 200 and 500 lines of
coda, including simulation commands and PL/I
statements, but excluding comments. The simulation
commands are primarily microcode language comgands,
axcept in the microcode control program model
component, which contains GPSS and SIMPL/I commands
in addition to the microcode language commands.

DISCRETE EVENT SIMULATION USING PL/I BASED LANGUAGES

47

USER PROVIDES USER PROVIDES USER PROVIDES
CONTROLLER MESSAGE TERMINAL
APPLICATION | -<— VARIABLE |—! APPLICATION
LIST
A A
l USER PROVIDES
USER PROVIDES
INPUT
-«——1 PARAMETER
TRAFFIC FILE
Y Y
CONTROLLER LoopP TERMINAL
INTERPRETER |-> HARDWARE <>{ INTERPRETER
CONTROLLER MICROCODE AND HARDWARE MODEL COMPONENTS
CONTROL TRANS APPL Loop DISK TIMER HOST
PROGRAM MANAGER LOADER MICROCODE

Fig.

The programs in the model are separately compiled.
Communication betuween the programs is with PL/I
external variables which are included in each
program by the preprocessor.

3.

SIMPOS DEVELOPMENT

3.1 Choice of the Base Simulation Language

The IBM group which developed SIMPOS has
traditionally used GPSS V to modal point-of-sale

systems,

However, PL/I GPSS was chosen as the base

language for SIMP0OS because it has numerous

advantages over GPSS V.

These include the

capabilities provided by incorporating GPSS in a
Tull programming language:

Data base access for input parameter files,
Better computational facilities,

Better editing facilities for writing output
reports.,

Structured control statements such as
IF-THEN-ELSE, DO-UNTIL, DO-WHILE, and
SELECT-WHEN-OTHERWISE, and

2 SIMPOS Architecture

* Better documentation resulting from longer
identifier names (up to 31 characters for local
and 7 for global identifier names, compared to 5
for all GPSS V identifiers).

In addition to providing the full spectrum of PL/I
language facilities, PL/I GPSS has other
advantages:

* Models can be divided into separately compiled
sections, making it easier for saeveral model
developers to simultaneously write, compile, and
execute different versions of the model. 1In
contrast to GPSS V, where all entities are
global, separately compiled PL/I GPSS sections
result in most variables being local.

¢ SIMPL/I commands can be mixed with GPSS commands
since the GPSS transaction is essentially a
SIMPL/I process.

¢ The preprocessor permits the incorporation of

additional simulation commands.

¢ PL/I GPSS has an extensive library of functions
for generating random variates from the common
discrete and continuous probability
distributions.

48 Walter C. METZ

These advantages were thought to far outweigh the
disadvantage of PL/I GPSS of requiring
preprocaessing and compilation. The preprocessor
and compile times for SIMPOS will be quantified
later in the paper.

A few small models with known analvtic sclutions,
such as a preemptive~resume M/M/1 queue with five
priorities, were written in both PL/I GPSS and GPSS
V to compare the results and the execution time.
The two results were statistically equivalent and
in agreement with the analytic results, and their
"execution times were roughly edquivalent. It was
anticipated that on a larde simulation modal with
logic written in PL/I structured control
statements, & PL/I GPSS model would execute
considarably faster than the same model written in
GPSS V. This proved to be the case and will bae
quantified later in the papér.

The basic time unit in the model was chosen to be
one microsecond, which is in the same order of
magnitude as the execution time of one microcode
instruction. Since the PL/I GPSS clock is
maintained as a 31-bit integer, the maximum time
for a model run is approximately 36 minutes. This
run time maximum is sufficient since the typical
model run time is between 5 and 10 minutes.

3.2 SIMPL/I and GPSS Commands Used in the Model

Initially, the model was designed to be written
with only GPSS simulation commands since tha model
developers had exparience using GPSS V. Exclusive
use of GPSS requires only a limited krouledge of
PL/I and does not require the use of PL/I pointer
variables. By contrast, SIMPL/I, a more primitive
language than GPSS, gives the model developer more
control over the simulation, but it requires a more
detailed knouledae of PL/I and an extensive use of
PL/I pointer variables. PL/I pointer variables,
when used impropérly, can lead to arrors which
cannot be detacted at compile time but can be
detected and corrécted with difficulty at model
execution time. (In PL/I flexibility has been
achieved at the expense of limited compile-time
error detection. The advantages of “atrong
typing™, which insures better compile-time error
detection, has been emphasized by proponents of
Pascal based simulation languages (Bryant 80)).

Although a GPSS program can be written without
pointer variables, the use of a pointer variable to
reference a GPSS transaction permits a GPSS
transaction to reference or update another GPSS
transaction. This inter-transaction communication,
a feature not provided in GPSS V, provides
additional flexibility in model desion.

In the development of SIMP0S, the choice was made
to decrease execution time and to simplify the
model design by using pointer variables and by
converting several functions initially written in
GPSS into SIMPL/I. In many situations, the GPSS
commands contajnaed more function than was required.
For example, the GPSS ADVANCE command was replaced
with the SIMPL/I TAKE command whenever time was not
being taken on a resource., Alsc, GPSS LINK and
UNLINK commands were sometimes replaced with
SIMPL/I HOLD and NOTIFY commands, and other times
with SIMPL/I INSERT and REMOVE commands, The
result is that the model uses only a small subset

of the available GPSS commands and a likewise a
small subset of the available SIMPL/I commands.

A GPSS transaction is used to represent each task
in the system. Each active task contains a PL/I
pointar to a OGPSS transaction which repredents an
operator entered message. These message
transactions contain the message variables which
determine the execution path in the terminal and
controller application programs.

With minor exceptions the GPSS commands apd SIMPL/I
commands are used primarily in the microcode
control program model. The SIMPL/I HOLD and NOTIFY
commands are used to deactivate and activate the
tasks respectively. Thae SIMPL/I INSERT and REMOVE
commands are usead to enqueue and dequeue tasks to
the priority level quecues. The GPSS PREEMPT,
RETURN, and PRIORITY commands are used to model the
presmptive-raesunie quaueing discipline which is
required for simulating the contention for
controller processor cvcles. The GPSS LOGIC
command is used to override normal executioh
priorities in the control program.

3.3 Development of Special Purpose Languages

The three special purpose simulation languages were
developed for several reasons:

e Their implementation reduces the source code and
provides for good documentation in the model
components, making the model easier to develop,
maintain, and use.

e The model developer who writes microcode modal
components and the model user who writes
application model components are concerned only
with the system being modeled and relieved of
simulation details such as gathering simulation
statistics.

s Since much of the model structure is imbedded in
these special purpose languages, improvements in
model design can be made by changing only the
command expansion routines. In these cases, the
modal components remain unchanged and require
only a preprocessor and compile step.

e Each language can be made consistent with a
particular modeling philosophy. Because of the
static nature of the microcoda, the microcode
language was designed so that the microcode could
be modeled in an abstract manner. THhis improves
execution efficienhcy. By contrast, application
programs may be frequently modified or rawritten.
Thus, the application language was designed so
that the applications could be modeled in an
emulative manner, making changes to the model
very easy.

¢ The effort required to develop the special
purpose languages is small in comparison to the

benefits derived by their use.

To illustrate the language construction process,
consider the special purpose command

MCINSTR(10);

which simulates the execution of 10 microcode
instructions. This comimand is expanded by the

DISCRETE EVENT SIMULATION USING PL/I BASED LANGUAGES 49

MCINSTR command expansion routine inte a GPSS
ADVANCE command and PL/I code for

e Calculating the execution time based upon an
average instruction time,

s Accumulating the execution time for determining
the processor utilization attributed to the
microcode program,

e Optionally calling a trace routine, and

e Accumulating the time attributed to the execution
of the current application program macro.

This command, if it occurred in the controller disk
access method routine, would be expanded as
follows:

DO

XTIME = (CONTROLLER.MC.AITSF%10+50)/100;

FEXEC_TIME.#DISK_AM(MPTR->PROFILE#) =
$EXEC_TIME. #DISK_AM(MPTR->PROFILE#) + XTIME;

IF TRACE.ON & TRACE.CONTROLLER THEN DO;

IF (TRACE.MC.SELECT_MC_PROGRAMS &
TRACE.SELECT_MC.PROGRAM.DISK_AM) |
TRACE_MC_FUNCTION THEN
CALL TRMGINS(CLOCK,MPTR-~>TERM_N,DISK_AM,XTIME);
IF IPTR -= NULL & TRACE.SPPS.MACROS THEN

IPTR->MC_ACCUM_EX_TIME =
IPTR->MC_ACCUM_EX_TIME + XTIME;
END;
ADVANCE(¥XTIME);
END;

The preprocessor further expands the GPSS ADVANGE
command into more PL/I code and a SIMPL/I TAKE
command, and likewise expands the SIMPL/I TAKE
command into PL/I code.

3.4 Model Efficiency

The model simulates in detail interrupts from the
loop, the host, the disk, and the interval timer.
For a traffic load in which the controller handles
7 item lookup requests per second and byte
interrupts from a 4800 bps loop, tha model
execution requires one unit of S/370 168 processing
time to simulate one unit of simulated time. This
is three times more efficient than a similar model
written in GPSS V which was devalaped earlier. The
execution efficiency of SIMPOS is expected to be
aven greater when the OPTIMIZE(TIME) option of the
PL/I Optimizing Compiler is specified. During
model development the NOOPTIMIZE option was used to
minimize compile time.

For a typical microcode model component, the number
of PL/I statements in the preprocessor output is
about & times the number of lines of source code in
the preprocessor input. On a S/370 168, typical
preprocessor execution time for a microcode model
component is between 6 and 10 seconds, and typical
compile time using the NOOPTIMIZE option is between
20 and 40 seconds.

For a typical application program model, the number
of PL/I statements in the preprocessor output is
about 10 times the number of lines of source code
in the preprocessor input. Thus, a 1000 line
controller application model would be translataed by
the preprocessor into a 10,000 line PL/I program.

For a program this siza, typical preprocessor and
compile times on a S/370 168 using the NOOPTIMIZE
option are 30 seconds and 130 seconds respectively.

The preprocessor redquires a 2 megabyte virtual
machine. This large memory requirement is due to
the loading of all command expansion routines, for
GPSS, SIMPL/I and special purpose commands.

A simulation execution of a large point-of-sale
system configuration also requires-a 2 megabyte
virtual machine.

3.5 Model Diagnostics and Debugging Aids

Preprocessor and model execution error messages for
GPSS and SIMPL/I commands are contained in a
diagnostic file. When a special purpose command
expansion routine is correctly written, it should
diagnose all possible errors in coding the command
and the error messages should be added to the
diagnostic file. This is the primary challenge in
writing command expansion routines. Good
diagnostics enhance the productivity of the modeler
using the special purpose language.

It is also important to diagnose as many model
execution errors as possible and put their
corresponding error message in the diagnostic file.
Errors not detected by the GPSS and SIMPL/I
execution routines or by the routines generated as
command expansions, result in PL/I diagnostic
messages indicating the PL/I statement in error.
The source statement in error can be determined
from the compiler output listing. This is a
disadvantage of PL/I GPSS when compared to GPSS V,
where a source statement is indicated for all
detected errors.

During the early development of the model, the
standard GPSS trace facility was used to trace the
GPSS transactions through the GPSS blocks. During
model development, an elaborate trace facility was
added which permits a model user to trace either
microcode programs or application programs or both.
All terminals may be selected, or only one
particular terminal. The controller only, the
terminals only, or the controller and terminals may
be selectad. When tracing microcode programs,
particular microcode components may be selected.
Also, GPSS block counts in the standard GPSS output
have been very useful in debugging the model.

3.6 Model Output Statistics

During the early development of the model, the
standard GPSS output was used as the model output.
Subsequently, routines were incorporated directly
into the various model components and into the
generated output of the special purpose commands to
gather much more detailed statistics than those
provided by GPSS. Programs were written in PL/I to
print these statistics. Additional statistical
gathering routines and reports are planned.

3.7 Model Development Effort

SIMPOS was developed on an IBM S$/370 168 under the
VM/CMS operating system. The preprocessor,
compile, and execution steps can be run
interactively at a terminal or submitted to a batch
machina.

50 Walter (. MFTZ

The model, at its current level of development,
required 2.5 man years of effort. The lines of
code estimates below include simulation commands
and PL/I statements, but excdlude program comments.
The davelopment effort includes the following:

¢ Designing and writing the command expansion
routines for 13 traffic commands, 12 microcode
commands, and 46 application commands (4500 lines
of code),

* Designing and writing 10 macros for the input
parameter file (700 lines of code),

¢ Writing the 10 microcode and hardware model
components (3500 lines of code},

¢ Writing programs for printing simulation output
statistics (800 lines of code),

s Writing 3 sets of traffic, terminal application,
and controller application model components (2500
linas of codel,

* Writing a model user's guide, and

+ Validating the model using hardware measurement
data.

4. THE MICROCODE LANGUAGE

A microcode simulation language was developed and
added to the preprocessor for use in the components
of SIMPOS which simulate microcode and harduare.
The MCINSTR command simulates the execution of a
specified number of microcode instructions, and the
MCTIME command simulates the execution of microcode
for a specified amount of time. A set of commands
simulate macros which request services from the
control program. These include the POST and WAIT
commands for task teo task communication, the GETR
and PUTR commands to "geat" and “put" buffer
resources, and CALL and EXIT ¢ommands for calling
resident or transient microcode modules. The
generated code for these commands consists of a
PL/I~GPSS SWITCH command for transferring control
to the control program model, a SIMPL/I-X TAG
command denoting the return entry peaint, and PL/IT
statements for assigning parameters unique to the
control program saervice request. For example, the
POST command generates a PL/I statement which
assigns to the transaction pointer variable
TARGET_TASK the address of the GPS5S transaction
representing the task baing posted.

The following is a simplified example of the SIMPOS
program which simulates the timer access method
imicrocode. Note the wmixture of PL/I statements
SELECT, WHEN, OTHERWISE, with special purpose
commands WAIT, POST, and the SIMPL/I INSERT
command.

TIMER_WAIT:
WAIT;
COMMAND = SOURCE_TASK->POST_COMMAND;
SELECT(COMMARD) ;
WHEN ¢1) /% TIMEOUT REQUEST %/
DO;
MCINSTR(21); /% EXECUTE 21 INSTR. X%/
INSERT(SOURCE_TASK) FIRST IN TIMEOQUT_LIST;
END;

WHEN (2) /% GET DATE %/

DO;
MCINSTR(47); /% EXECUTE 47 INSTR. %/
POST RETURN; '
END;
WHEN (3) /% GET TIME - EBCDIC %/
DO;

MCINSTR(60); /% EXECUTE 60 INSTR. %/
POST RETURN;
END;
WHEN €4) /% GET TIME - BINARY %/
DO;
MCINSTR(116);
POST RETURN;
END;
OTHERWISE;
END;
GO TO TIMER_WAIT;

/% EXECUTE 116 INSTR. %/

5. THE TRAFFIC LANGUAGE

The following example illustrates the use of the
traffic language to simulate the point-of-sale
traffic genérated by a particular store
environment. Consider a typical mass merchandiser
store which has one point-of-sale terminal located
at each of several "area stations"™ in the store and
a group of point-of-sale terminals located at the
front of the store in a Ycheckout" mode of
operation. Area station transactions have the
following profile parameters:

The average number of items per transaction is 2.
60% of the transactions have cash tendered.

40% of th& transactions have check tendered.

The clerk enters a price for 90% of the jtems.
The clerk enters an item code for a price lookup
request for 10% of the itemd.

*® ¢ 9 o o

Front-end checkout transactions have the following
profile parameters:

¢ The average nhumber of items per transaction is
10.

e 100% of the transactions have cash tendered.

+ The clerk enters a price for 65% of the items.

¢ The clerk enters an item code for a price lookup
request for 354 of the items.

Both profiles have the following additional
parameterss

e A department number uniformly distributed betueen
1 and 12 is entered whenever price is entered.

e For item code entered items, 10% are coupon
items, 5% are deposit itams, and 5% are deposit
return jtems, all of which are mutually
exclusive.

* An item movement flag is set for all jtem code
entered items except for deposit return items.

Alsc, both profiles have the following probability
distributions:

¢ The number of items per transaction has a
negative binomial distribution with a coefficient
of variation of 0.75.

DISCRETE EVENT SIMULATION USING PL/I BASED LANGUAGES 51

* Price entered items have intararrival times from
a probability distribution which has a minimum of
1.5 seconds, an expected value of 4 seconds, and
a coefficient of variation of .5. The
distribution is a modified gamma distribution
obtained by adding the minimum value, 1.5
seconds, to a gamma random variate with an
expected value of (4-1.5)=2.5 seconds and a shape
parameter of 1/(.5%.5)=4,

¢ Item code entared items have intaerarrival times
from a modified gamma distribution which has a
minimum of 1.5 seconds, an oxpected value of 2.5
seconds, and a coefficient of variation of .5.

* Cash tender messages have interarrival times from
a modified gamma distribution which has a minimum
of 5 seconds, an expected value of 20 seconds,
and a coefficient of variation of 1.

* Check tender messages have interarrival times
from a modified gamma distribution which has a
minimum of 20 seconds, an expected value of 40
seconds, and a coefficient of variation of 1.

This example is codaed below with the traffic
commands. The commands are almost
self-explanatory. HNote that a PROFILE command
references DIALOGUE commands and an ENTER command
references a MSG command. The MSGVAR command
establishes the name and attribute of a variable
which can be assigned a value in the MSG/MSGEND
command group. The SNDLEN and RCVLEN keyword
parameters of the MSG command specify the message
send and receive lengths in bytes, respectively.

TRAFFIC;

MSGVAR(DEPT, NUM);
MSGVAR(COUPON, SI) ;
MSGYAR(DEPQSIT,SW);
MSGVAR(CDEPOSRTN, Sl ;
MSGVARCITEMMOV, SW);

PROFILE(CKOUT) DIALOGUES(CASH_CKOUT,100%);
PROFILE(AREA)
DIALOGUES(CASH_AREA, 60%,CHECK_AREA, 40%);

DIALOGUE(CASH_CKOUT);
MSGPROUP NUMBER(NEGBIN,10,.75);
ENTER MSG(PRICE,65%) IAT(GAMMA,1.5,4,.5);
MSGRP MSG(CODE,35%) IAT(GAMMA,1.5,2.5,.5);
GRPEND;
ENTER(CASH_TDR) IAT(GAMMA,5,20,1);
DIALEND;

DIALOGUE(CASH_AREA);
MSGPROUP NUMBER(NEGBIN,2,.75);
ENTER MSG(PRICE,90%) IAT(GAMMA,1.5,4,.5);
MSGRP MSG(CODE,10%) IAT(GAMMA,1.5,2.5,.5);
GRPEND;
ENTER(CASH_TDR) IAT(GAMMA,5,20,1);
DIALEND;

DIALOGUE(CHECK_AREA);
MSGPROUP NUMBER(NEGBIN,2,.75);
ENTER MSG(PRICE,90%) IAT(GAMMA,1.5,4,.5);
ENTER MSG(CODE,10%) IAT(GAMMA,1.5,2.5,.5);
GRPEND;
ENTER(CHECK_TDR) TAT(GAMMA,20,40,1);
DIALEND;

MSG(PRICE) SNDLEN(15);
ASSIGN MSGVAR(DEPT) VALUECUNIFORMI,1,12);
MSGEND;

MSGCCODE) SNDLENC12) RCVLEN(26);
SETON MSGVAR(COUPON, 16%, DEPOSIT, 5%, DEPQSRTN, 5%);
SETON MSGVARCITEMMOV) IF(DEPOSRTN=OFF);

MSGEND;

MSG(CASH_TDR) SNDLEN(10);
MSGEND;

MSG(CHECK_TDR) SNDLEN(12);
MSGEND;

TRAFEND;

6. THE APPLICATION LANGUAGE

The IBM application proyramming language, called
"SPPS™, has an instruction sot similar to 57370
Assembler Language. It also contains a set of
macros for common point-of~sale functions. The
applicationh simulation language was designed to
correspond closely to SPPS, because application
pPrograms are frequently modified and it is much
easier to change the model if the modaling language
emulates the system being modeled. The EXEC
command was designed to simulate the time required
to execute the SPPS instructions. The command

EXEC SPPS(10);

simulates the execution of ten SPPS instructions
with an average execution time specified in the
input parameter file. The more explicit command

EXEC SPPS(MVI, (2)MVC(3));

simulates the execution of an MVI instruction and
two MVC instructions both with a length of three
bytes.

SPPS contains the structured programming macros IF,
ELSE, and EIF, and also macros for reading and
writing to the disk (READ and WRITE), enqueueing
and dequeteing on system resources (ENQ and DEQ},
calling a subroutine (CALL), scanning a table
(SCAN), and many more. To simulate these macros,
corresponding simulation commands were written and
added to the preprocessor.

An example of a program to simulate a controller
application is presented below to illustrate use of
the application simulation commands. This example
is a department totals update routine, which has
the following logic:

* If the message is not an item sale or if there
are no department totals memory buffers, then a
routine is called for directly updating the
department total on file. Otherwise, the
department totals memory buffers are scanned for
a matching department. If the department is not
found, a routine is called to directly update the
department total on file. If the department is
found, then the department total is updated in
the mamory buffer.

The corresponding application simulation program
for this routine follows:

52 Walter C. METZ

DCLRCITEMSALE, SK) MSGVAR;
DCLRC(DEPT_TOT_BUF,SW} INPUTPARM;
DCLR{N_DEPT_MEM,NUM) INPUTPARM;
DCLR(PC_DEPT_TOT_MEM,NUM) EINPUTPARM;
-
*
/% PUT TOTAL TC FILE IF NOT ITEM SALE OR NO %/
s% DEPARTMENT MEMORY BUFFER %/
TF(IF0320,ITEMSALE, OFF) OR(DEPT_TOT_BUF,O0FF) THEN;
EXEC SPPS(LA);
ACALL CCDDUDSK PARMS(4); /¥ CALL DISK UPDATE X/
ELSE(IF0320); .
EXEC SPPS(MVC(2),MVC(3));
ENQ ID(43; /% ENQUEUE DEPT TOT BUFFERS %/
/% SCAN TABLE OF BUFFERS FOR 'GIVEN DEPT %/
SCAN TABLEN(N_DEPT_MEM) KEYLEN(5)
RECLEM(8) HITPCT(PC_DEPT_TOT_MEM);
IF(IF0340,CONDCODE,NE,0) THEN;
/% IF NO BUFFER PUT TOTAL DIRECTLY TO FILE %/
DEQ ID(4); /% DEQUEUE DEPT TOT BUFFERS ¥/
ACALL CCDDUDSK PARMS(43); /% CALL DISK UPDATE %/
ELSE(IF0340);
/% UPDATE TOTAL IN MEMORY BUFFER ¥/
EXEC SPPS{(2)AB(3));
DEQ ID(4); /% DEQUEUE DEPT TOT BUFFERS %/
EIF(IF340);
EIFCIF0320);

In this example, all of the statements are special
purpose simulation commands that have been added to
the preprocessor. The IF, ELSE, and EIF commands
simulate the application language structured
programming macros. They generate PL/I
IF-THEN-ELSE statements for simulating program
logic and generate EXEC commands which account for
the execution of TM, CLC, CLI, and BC instructions.
The ACALL, SCAN, ENQ, and DEQ commands generate

PL/I-GPSé SWITCH and SIMPL/I-X TAG commands for
transferring control to and from the interpreter
model which controls their exccution.

7. CONCLUSIONS

The new IBM discrete event simulation package
offers the model developer a wide range of
simulation language features. This flexibility
derives Trom the imbedding of two general purpose
simulation lahguages, GPSS and SIMPL/I, in a full
programming language. The package also contains a
PL/I preprocessor which permits the development of
special purpose simulation languages. The use of
special purpose languages reduces model source
code, provides for good model documentation, and
makes a model easier to davelop, maintain, and use.

ACKNOWLEDGEMENTS

I would like to acknowledge the assistance provided
by my colleagues at IBM. The idea of daveloping
the special purpose simulation languages was first
proposed by Mr. M. R. Dyer of IBM United Kingdom,
who implemented traffic and application languages
and wrote a preprocessor for a 6PSS V point-of-sale
model using the $/370 Assembler Macro language.

Mr. W. J. Probeck, Dr. N, $§. Strole, and Mr. J. L.
Thrall developed varkrious parts of SIMPOS. Dr. J.
S. Whitlock provided very useful ideas on the
organization of PL/I data structures in the model.
Mr. J. Rubin has been quite helpful in ahswering
questions concerning PL/I GPSS, SIMPL/I X, and the
PL/I praeprocessor.

References

Bryaht, R. M. (1980),"Discrete Event Simulation Languages™, Proceedings of 1980 Winter Simulation
Conference, Orlando, Fla., Dec. 1980, pp. 25-40.

Fjshman, 6. (1978), Principles of Discrete Event Simulation, John Wiley and Sons, New York.

IBM Conoration €1972), SIMPL/I (Simulation Language

Publication SH19-5060-0, Data Processing Division, White Plains, Neuw York.

IBM Corporation (1977), General Purpose Simulation System

Processing Division, White Plains, Neuw York.

IBM Corporation (1979), PL/I Language Construction
(Program Number: 5796~PiLL), Publication SH20-2164-0, Data Processing Division, White Plains, New

York.

IBM Corporation (19813, PL/i ‘General Purpose Simulation Svstem Program Description/Operations Manual
(Program Number: 5796-PNN), Publication SH20-6181-8, Data Processing Division, White

York.

Rubin, J. (1981),"Imbedding GPSS in a General Purpose Programming Language",

Simulation Conference, Atlanta, Ga., Dec 1981.

Shannon, R. E. (1975), Systems Simulation, JThe Art and Science, Prentice Hall Publishing -Company,

Englewood Cliffs, New Jersey.

Shub, €. M. (€1980),"Discrete Event Simulation Languages", Proceedings of 1980 Winter Simulation

Preprocessor Program Descripiion/ﬂperations Manual

Based on PL/ZL): Proaram Reference Manual,

¥V User's Manual, Publication SH20-0851-2, Data

Conference Volume 2, Orlando, Fla., Dec. 1980, pp. 107-124.

Plains, New

Proceedings of 1981 Winter

