1981 Winter Simulation Conference Proceedings
T.I. Oren, C.M. Delfosse, C.M. Shub (Eds.)

IMBEDDING GPSS IN A GENERAL PURPOSE PROGRAMMING LANGUAGE

Jerrold Rubin
IBM Corporation

P. 0. Box 12195
Research Triangle Park, N. C. 27709

ABSTRACT

GPSS has proven to be an excellent simulation language, but was not

designed to perform the logical and computational tasks of
gramming language. Strategies for improvement can take one

paths: building adequate analytic constructs into the existing GPSS
language, or building GPSS-like constructs into an existing general

33

purpose programming language. The second choice can be made easier

by use of a language-building utility

program to translate simu-

lation constructs into the selected programming language. It is

also simplified by the fact

that

some GPSS statements (such as

input—~output and control) may be dropped, since any good programming
language will provide native facilities for these functions. Such a

fusion between the constructs
those of a good programming language,

of a

system than either alone. This paper ;
mentation of GPSS in a PL/I environment which uses PL/I variables as

transaction variables and permits use

for most GPSS statement parameters.

1. INTRODUCTION

The General Purpose Simulation Systenm
(GPSS) has become one of +the most 2.
widely used simulation languages since

its introduction in the 1960's.

Its

greatest strength is that it enables
the user to easily simulate situations

in which resources are utilized
varying periods of time.

for
Houwever,

complex simulations often require mix-
ing powerful simulation commands with
the flexible type of computational and

logical capabilities provided by
good programming language. The

a
IBM

product GPSS V {1] does have the abil-

ity to exit to PL/I or FORTRAN

in

order to gain this additional flexi-
bility, but there is 1little question
that a native capability of this type

is highly desirable.

There appear to

be two courses open to achieving this:

either additional function must

be

built into GPSS, or GPSS capabilities
must be built into a language which

already has the desired function

preferably one of the major program-

ming languages.

He describe here an

imbedding of GPSS in PL/I which is now

available as an IBM product [21.

good simulation language, and
provides a far more flexible
discusses PL/I GPSS, an imple-

of general PL/I expressions

STRUCTURE OF PL/I GPSS

In principle, each GPSS function could
have been provided as a PL/I pre-
processor macro. However, it proved
nmore efficient to wutilize a progranm
knowun as the PL/I Language Con-
struction Aid [3]. This provided a
capability for easily defining new
commands within PL/I, with the addead
advantage that command verbs (SEIZE,
ENTER, etc.) need not become reserved
symbols. Using this product, a systenm
has been built which effectively com—
bines GPSS and PL/I.

In order to develop the system
quickly, a second more primitive and
more flexible set of simulation com-
mands have been implemented, upon
which the GPSS commands are based.

This subsystem of PL/I GPSS is called
SIMPL/I X, a version of the SIMPL/I

programming language [4], and provides
certain very basic simulation facili-
ties:

81CH1709-5/81/0000-0033500.75 (:) 1981 IEEE



34

Jerrold RUBIN

a. %o define processes, each with its
own data

to a process
data associ-

b. to provide reference
by a pointer to the
ated with it

stated

c. to deélay for a

time

a process

d. +to delay a process until notified
by another process to continue

e. %o construct and manipulate lists

of processes

The more powerful GPSS commands can
then be automatically translated into
the more fundamental KSIMPL/I commands
and thence to PL/I. The Language Con-
struction Aid provides this multiple
translation facility transparently to
the user.

The simulation designer is free to use

GP5S commands, SIMPL/I commands, or
PL/I statements, freely intermixed.
Thus, he has available a three level

hierarchy of commands, each built upon
the levels belou.

GPSS |

[——\——/—
PL/1 |

Such a system provides the following

advantages:

a, efficiency of computation through
use of compiled code

b. data base access via PL/I

c. a finer degree of control over the
simulation than GPSS V provides

d. more flexible data definitions -
transaction variables are PL/I
variables, and most command param—
eters are PL/I expressions

e. extensibility - the Language Con-
struction Aid permits definition
of new application-oriented com-
mands

There are alsoc some
this approach:

disadvantages in

a. Unlike
required

GPPS V, a compilation 1is

b. it is not fully compatible wmith
GPSS V (though easy to translate)
in part due to the syntax require-
ments imposed by the Language Con-—

struction Aid, in part by
deliberate choice.

PL/I G6PSS Syntax

The discussion belou assumes soune

knowledge .of the semantics of GPSS
commands and keywords. A PL/I-BPSS
command normally consists of a command
name, wWith some parameters in paren-—
theses, folloued by oane or mgore
keyviwords, each with optional parame-
ters, and finally a semicolon -

i.e.» GENERATE(10) PRIORITY(P);

positional parameters are
utilized for the most commonly used
parameters, to minimize writing, and
kevuords for the more rarely used
parameters, as an aid to memory.

Benerally,

Value Macros

There are alss certain "value™ macros
which return a value. Distribution
functions and GPSS run statistics fall
into this category.

X = S$NORM(l,mean);

will sample from a normal distribution
using random number stream 1.




IMBEDDING GPSS IN A GENERAL PURPOSE PROGRAMMING LANGUAGE 35

Interspersina PL/T

PL/I statements may be inter-

mixed with GPSS commands:

freely
X = X+13
IF X>LINIT THEN SEIZE(F)s;

In addition, most macro parameters may
be PL/I expressions:

GENERATE(GENFCN, ...};

GENFCN:PROC RETURNS(DEC FLOAT);

Symbols for GPSS Entities

GPSS entity symbols (representing sto-—
rages, facilities, etc.) may be
assigned values by the system, or the

user may choose to control the assign-
ment. In the latter case, an % pre-
cedes the symbol:

System assignment:
no declaration needed
ENTER(S);

User assignment:
DCL N FIXED BIN INIT(10);

ENTER(%*N);

The PL/I-GPSS system uill generate any

needed declarations for system con-
trolled entity symkols. System con-
trolled entity symbols are assigned
values starting with one higher than

the maximum number of user controlled
symbols. These maximums (50 each by
detault) may be specified on the SIMU-
LATE statement (up to 16383 each).

GPSS Transactions and Transaction Data

A PL/I GPSS transaction type is
defined by a TRANSACTION statement,
followed by a PL/I substructure con-

taining the variables associated with
each transaction of that type.

TRANSACTION(T),
2 VARI(10) FIXED BIN,
2 (VAR2,VAR3} DEC FLOAT,
2 VARG BIT(5);

The above describes a transaction type
named T with ten fixed point
variables, tuwo floating point vari-
ables, and one five bit string.

ORGANIZATION OF A PL/T-GPSS _SIMULATION

AND TRANSACTION FLON

A PL/I GPSS program is organized into
separately compatible sections, each
headed by a SIMULATE or SECTION state-
ment and ended by a GPSSEND statement.
The initial section, a2t which the sim—
uvlation is entered, is the only one
headed by a SIMULATE statement. Nor-
mally, it contains control statements
like START, RESET, etc., but may also
contain portions of the simulation
proper. Unlike GPSS V, control state-
ments are executable. In fact, a
control transaction is c¢reated by the
system to execute the control section.

SIMULATE;
ACTIVATE(SECTI1,SECT2,SECT3);
START(10);

GPSSEND;

The control transaction must eventual-
ly enter either a TERMINATE or a
GPSSEND command, either of which will
automatically terminate it.

EXAMPLE OF A Pl/T GPSS SIMULATION

The XYZ company manufactures two
items: widgets and wodgets. Widgets
can be procduced on any of three

machines,
of these.
is used.

but wodgets only on the last
The first available machine
Out of a total of five
employeas, it takes three individuals
to supervise the manufacture of a
widget, only one for a wodget. Once a

machine is assigned to a widget or a
wodget, it is reserved until enough
men become available.

Twenty percent of widgets take 10 to
20 minutes, 40 percent take 15 to 25

minutes, and 40 percent take 30 to 40
minutes (uniformly distributed), and
every wodget takes just 15 minutes to
manufacture. Orders for widgets and
wodgets arrive on the average every
ten minutes (exponentially
distributed}.

By varying the number of men or
machines, we could arrive at an opti-
mum capital investment and labor situ-—
ation which avoids untoward production
delay.

The model might be coded as follows:



36

SIMULATE STATS(FW,SH);

STQRAGE(ﬁEN:S);
ACTIVATE(WIDGET,HODGET);

START(100) NP3
RESET;
STARTC1000);
GPSSEND;

¥ PROCESS;

.SECTIONC(HIDGET);
TRANSACTION(WIDGET),
2 MACHINE FIXED BIN;
MIXCTIME,
.2»$RANDFS(1,10,20),
.4 $RAMDFS(1,15,25),
.G, SRANDFS(1,30,403);
GENERATE(SNEGEXP(1,10)};
GATEANY(BEGINY;
CONDIT(SCS(MACHL),A)S
CONDIT(SCS(MACH2),B);
COMDIT(SCS(MACH3),C);
GATEANY(ENDJ;
A:MACHINE=MACHL;

60 TO D3
B:MACHINE=MACH2;

60 TO D3
C:HACHINE=MACH3;
D:SEIZEC(XMACHINE);
ENTER(MEN, 323
ADVANCE(TINE);

LEAVE(HEN,3);
RELEASE(%MACHINE);
TERHINATE(1);
GPSSEND;

¥ PROCESS;

SECTIONC(WODGET);
GENERATE(S$HNEGEXP(1,10));
SEIZE(KACH3);
EHTER(MEN,1);
ADVANCE(15);,
LEAVE(HEN, 1);
RELEASE(MACH3);
TERMINATE(1);

GPSSEND;

The above could have
into one section, but
illustration they
three sections,
rately.

been combined
for purposes of

have been coded as
to be compiled sepa-—

It is possible to avoid using any PL/I
code, but ‘the example, as coded,
illustrates the three most common uses
of PL/T caode: PL/T labels,
assignment, and alteration of flow.

Jerrold RUBIN

POINTS OF NOTE

/%EXECUTABLE CONTROL SECTION *®/
/¥AUTOMATICALLY CALCULATE ®/
s WAITING QUEUE STATISTICS %/,
/%STORAGE DYNAMICALLY DEFINED *x/
/*%PREPARE THE GENERATES FOR %/
/% THESE SECTIONS %/
/%*TRANSACTION TYPE DEFINITION x/
/XDEFINE MIXTURE OF %/
/% DISTRIBUTION USING */
/% RANDOM NUMBER STREAM 1 X/
/%NEW STATEMENT — GATEANY X/
/%TEST IF ANY MACHINE %/
% CAN BE SEIZED %/
/% "MACHINE' IS USER CONTROLLED %/
/%MACHL, MACH2, MACH3, MEN *x/
/%  ARE SYSTEM CONTROLLED */
/%NOTE PL/I ASSIGNMENT,BRANCHING,LABELS%/
 /%NO QUEUE STATEMENT NEEDED %/
/%USE MIX OF DISTRIBUTIONS *®/

/%USE OF '%' FOR USER CONTROLLED SYMBOL*/

/%NQ DCL NEEDED FOR SYSTEM %/
¥ CONTROLLED SYWBOLS, EVEN */
Ve THOUGH USED IN SEPARATE SECTIONS x/

GEMERATING TRANSACTIONS

The ACTIVATE command will cause GENER-
ATE commands in referenced sections to
start generating transactions. Trans-
actions flow ¥hrough GPSS commands and
interspersed SIMPL/I or PL/I code
until a branch or a TERMINATE state-
ment is encountered. Branching within
a section s effected by the PL/L GOTO
statement. A transaction may ba
switched to & position within another
section by a SWITCH command.



IMBEDDING GPSS IN A GENERAL PURPOSE PROGRAMMING LANGUAGE 37

SECTIONCA);
SEIZE
Go to L;

SECTION(B);

SWITCH(B); ——mrmed

The sectionalizing
program is useful if a model grows too
large for «quick completion, or if
several individuals work on different
components. The scope of any PL/I
variables used can be kept internal to
a section in order to minimize con-
flicts betuween sections. Once a
section 1is activated, each GENERATE

statement in it will produce trans-
actions at specified intervals until

one of three conditions is satisfied:

of a PL/I, GPSS

a. the number of
fied on the
been reached

terminations speci-
START statement has

b. the control transaction has termi-
nated (which always ends the
modell

c. a condition of {he GENERATE state-
ment is satisfied:

GENERATE(...} UNTIL(condition);
Sections can be reactivated after they
have stopped generating transactions
or even while they are still generat-

ing then. In either case a new stream
of transactions will start.

Using SIMPL/IX it is
create & transaction
which will flow
section:

alse possible to
in one section
through a different

STARTUP(T);

where, using the default options, a
transaction of type T will flow
through the section named T.

INTER TRANSACTION COMMUNICATION

In the SIMPL/IX sublanguage, upon
which PL/I GPSS is tonstructed, a pro-

cess (including a GPSS transaction) is
identified by a PL/I pointer to its
data structure. The process currently

active is
CURRENT. A
lize this,

identified by the

GPSS programmer
and save CURRENT,
on a list, with the effect
transaction can reference or update
the data structures of another. Such
communication between transactions
provides a considerable expansion in
basic simulation capability.

pointer
may uti-
perhaps
that one

In addition SIMPLI/X
ability to control the
specific transactions.

provides the
behavior of
For example:

HOLD P;

Will cause transaction P to wait (the
waiting time not to be counted against

the interval specified in an ADVANCE
block) and

NOTIFY P;
will release the HOLD , and permit P

to continue (possibly to continue tak-
ing time).

There are a variety
ments which permit
affect one another.

of other state-
transactions to

OTHER USES OF NATIVE P1/I and SIMPL/T

In addition to the uses i{llustrated
above, native PL/I can be used for
input-output. In particular, by uti-
lizing system functions which return
statistics for the run, the user may
provide his own formatting Tfor the
output of a run, if he does not wish

to use the default printout (uwhich is
similar to that provided by GPSS V3.

A list processing capability 1is pro-
vided by the SIMPL/IX subsystem. This
includes the ability to dynamically
create lists, insert and delete trans-
actions, and automatically maintain
list statistics. The 1list processing
facility replaces the GPSS V "group"”
facility, including such statements as
JOIN, ALTER, SCAN, etc. Since the
pointers to transaction data are
accessible, one transaction may scan a
SIMPL/IX list of others, and alter its
behavior according to the state of any
of the scanned transactions.

SIMPL/IX includes a variety of primi-
tive simulation functions. In addi-
tion to the HOLD and NOTIFY statements
already menticoned, transactions can be
started and termninated (STARTUP, TER-
MIN), be made to take time (TAKE3}, or
scheduled for a particular time (SCHE-
DULE). These commands are
individually less powerful than the



38

Jerrold RUBIN

more complex GPSS commands, but
because they represent primitive sinu-
iation functions, they can be combined
with a greater degree of flexibility.
To tzke one instance, there is no very
simple way in GPSS V to control trans-
actions entering a storage, if the
logic of the entry test differs from
that assumed ky GPSS V. For example,

‘if the remaining storage capacity is
55 and %ransaction A tries to enter
with 7 units, it will wait. If trans-

action B tries to enter with 3 units,
it will succeed. If this continues to
happen; transaction A can be indefi-
nitely frozen out. This may or may
not represent the real—-world
situation.

By using an explicit SIMPL/I 1list to
enqueue transactions +to the storage,
and a manager of this list, one can

easily tailor the logical requirements
for entry intoc a storage.

STARTUP MANAGER SET(MANAGER_PTR);

UNITS = ...
INSERT CURRENT INTO SLIST;
HOTIFY MANAGER_PTR;

HOLD;

LEAVE(S,UNITS);
NOTIFY STORAGE_HGR;

SECTION(MANAGER);
M:D0 HHILE (-ENPTY(SLIST)&
FIRST(SLIST)—>UNITS<=3$R(S))};

ENTER(S, FIRST(SLISTI->UNITS);
NOTIFY FIRST(SLIST);
REMOVE FIRST FROM SLIST:

END;

HOLD;

GO 70 M;

GPSSEND;
The above logic would assure +that
transactions enter storages in the
order in which they attempted to do
50.
Khile it i5 more work to build this
function in SIMPL/IX, more precision
can be obtained. One need not make
assumptions about the way resocurces
are to be utilized, which are sonme-

times implicit in GPSS V commands.

9., RANDDOM NUMBER GENERATORS AND DISTRIB-—
UTION FUNCTIQNS
System functions are included to gen-
erate random numbers and to sample
from a variety of distributions. The
following distributions are Included:
Beta Negative Binomial
Binonmial Negative Exponential
Erlang Naormal
Gamnma Poisson
Geometric Uniform

Hypergeonetric
Lognormal

10.

User Defined (continuous)
User Defined {discrete)
Heibull

These generally provide more accuracy
than tabular approximations, although
tabular distributions can also be
used. Twenty random number streams
are available with tuelve unique
seeds. (The seeds can be changed by
the user.) Rerunning with different
randem number streams can Jllustrate
the variability of the results of a
simulation.

A histogram output capability, as well

as a tuwo dimensional plot rountine are
also provided.

EXTENSIONS TO THE GPRSS LANGUAGE

Although the main advantage of
PL/I-GPSS is the ability to wuse PL/I
directly within the simulation, cer-
tain language extensions to GPSS have
baen implemented. Some of these are
listed below:
GATEANY hold the transaction
until any one of a
set of specified
conditions has been
satisfied.

GATEALL hold the transaction
until all of a set
of specified
conditions have

been satisfied.
GENERATE UNTIL the UNTIL condition
limits the genera-=
tion, which can be
reactivated by an
ACTIVATE statement.
PRINT provides broad control
over output.




IMBEDDING GPSS IN A GENERAL PURPOSE PROGRAMMING LANGUAGE 39

Assembly all transactions start
Groups in assembly group zero,
s0 that transactions
may be assembled
without having gone
through a SPLIT
block.
Dynamic permits easy modeling
Storage of replenishible

11.

12.

Definition resources.

DEFINING NEW LANGUAGE STATEMENTS

By utilizing the Language Construction
Aid, it is possible to define new com-
mands, either general purpose simu-
lation commands or commands tailored
to a particular application. This is
done by providing a "macro expansion"
routine coded in PL/I. The string
returned by this routine may include
PLs/I statements as well as GPSS or
SIMPL/IX statements.

In another paper at this
[51, Metz describes the use of this
facility for creating a simulation
package for a point-of-sale systenm,
including an application-oriented
input language.

conference

CALENDAR MANAGEMENT

GPSS V manages transactions by utiliz~
ing a current events list for trans-
actions which, if not blocked, could
in principle execute at the current
instant of time, and a future events
list for transactions at ADVANCE
blocks. By contrast, in PL/I GPSS all
transactions are either on a calendar
(scheduled to be inveoked at a known
clock value) or held on lists, to be
scheduled onto the c¢alendar when par-—
ticular conditions are satisfied. The
calendar itself 1is kept sorted, in
order of clock time and transaction
priority. It is maintained as tuwo
lists, cne short and o©ne long.
Insertions into the calendar are
always made into the short list. Whe-
never the size of the short 1ligt!
exceeds the sgquare root of the size of

the long 1list, the short list is
merged into the long list. To deter-—
mine the next transaction to be

activated, the first item of each list
is examined and the earlier scheduled
transaction chosen.

Actually, for optimality, the merge
test is on a function of the square
roat of size, depending on inner loop
path lengths for merge and insert.

MERGE MWHEN

1
TOO LARGE i |
1
| I - 1
| -
| I - 1
1 I =1
| ] I -
| | -
| ! |
[ | |
I - 1 | !
l I ! |
A
SORTED |

INSERT ——!

INSERT TIME = SQRT(CALENDAR SIZE)

For this method, bookkeeping time for
a single transaction can be shoun to
be proportional to the square root of
the average number of entries on the
calendar. Its simplicity recommends
it as an alternative to a binary tree
method, for example. It is capable of
handling <thousands of transactions
simultaneously on a calendar (and
thousands more held on lists) without
undue bookkeeping time. O0f course,
for most typical simulations, perhaps
a few dozen transactions will exist
simultaneously, and the benefits of
any calendar management scheme over
any other become marginal. Neverthe-
less, the capability for managing

massive numbers of_siyultaneous_trang—
actions without risking thrashing is

useful for certain types of applica-
tions.



40 Jerrold RUBIN

REFERENCES

{1] IBM Corperation (1973), Seneral Pur-
pose Simulation System V - 0S Oper-—
ations Manual (Proaram Number
5734-X523, Publication SH20-0867-3,
Data Processing Division., thite

Plains, New York.

[2] IBY Corporation (19813, PL/I General
Purpose Simulation Svstem Program
Description/ Operations Manual (Pro-
aram Number: 5796—PNN), Publication
S420-6181-6, Data Processing
Division, Hhite Plains, New York.

[3] IBM Corporation (1980), PL/1 languade
Construction Preprocessor
Description/ Operations tanual (Pro-—
aram Number: 5796—-PLL) s Publication
SH20-2164-0, Data Processing
Bivision, White Plains, New York.

[4]1 IBHM Corporation (1972), SIMPL/1 (Simu-—
lation lLanguage Based gon PL/ZI): Pro-
gram -‘Reference Manual, Publication
SH19-5060-0, Data Processing
Division, White Plains, New York.

{51 Metz, W. (1981) T"Discrete Event Simu-
lation Using PL/I Based General and
Special Purpese Simulation
Languages;™ Proceedings of 1981 Hin-
ter Simulation Conference, Atlanta,
Georgia, December 1581.




