1981 Winter Simulation Conference Proceedings 27
T.1. Uren, C.M. Delfosse, C.M. Shub (Eds.)

SOFTWARE DEVELOPMENT METHODOLOGY AND TECHNOLOGY
for the TALON COMBAT SIMULATION MODEL

Henry Kleine
10045 Wisner Avenue
Mission Hills, California 91345

The subject of this paper is a methodology and technology used for the program
development and documentation of the TALON Combat Simulation Model. TALON was
developed for the Air Force at Nellis Air Force Base, Nevada. It is a broadly
scoped model encompassing many functional elements such as Ground Operationms,
Air Operations, Reconnaissance, Intelligence, etec. Because of the size and
scope of the model, heavy emphasis was_placed on developing and using state—of-
the-art methodology for program design, coding, documentation, and configuration
management. As a result of this emphasis, many new methods and techniques were
developed and implemented in the TALON project with satisfying results. This
paper contains examples taken from the TALON model but, it should be noted that

the methods and techniques themselves can be applied generally to any software

development task.

1. INTRODUCTION

This paper deals with software development metho-
dology used to construct a large, multi~faceted
simulation model. The subject of software develop-—
ment methodology for large scale models is
important because with the great strides being
made in increasing machine capacity, software
development technology has become the constraining
force on our abilities to construct such models.

The program for which this methodology was designed
and used is the TALON simulation model. The TALON
model was developed for the purpose of studying

the effects of tactical air power on ground combat
operations. In its current configuration, TALON

is comprised of fifteen diverse functional elements
such as command-control-communications, etc. A
requirement of the program design was that each

of these functional elements had to be de-coupled
to the greatest extent possible in order to support
independent development and, where feasible, inde-—
pendent operation. The input data required to sup-
port each of these elements are large, complex and
varied. In addition to these data -the program sup-
ports user interaction during execution and graphic
display of data dnd battle scenes. The program
consists of more than twenty thousand lines of code
written in the SIMSCRIPT II.5 programming language.

Each of these characteristics of the TALON program
contributed to the difficulty of building a model
which ean continue to evolve and xemain viable
throughout every stage of its development. This

paper deals with the techniques and tools used to
meet these and other problems which had to be over—
come to meet this objective.

2. SOFTWARE DEVELOPMENT TOOLS

Two software develoernt tools, The SIMSCRIPT II.5
Programming Language™ and the,Software Design and
Documentation Language (SDDL)~ together formed the
basis for the techniques and methodology used in
the project. SIMSCRIPT is a well known simulation
programming language which has been in existence,
in various forms, since 1963. SDDL is a relatively
new general purpose software development tool. It
was initially intended to be used to express and
document program designs but its scope has since
evolved to include any subject which requires
structured organization for effective expression
and documentation. It is especially useful for
processing programming language documents (code),
enhancing the information content of these docu—
ments by adding table of contents, cross reference
tables, indented formatting to emphasize structure,
flow lines to indicate structure escape statements
(e.g. exit loop) and module invocation statements
(e.g. call). It also diagnoses incorrect struc—
tures and provides appropriate error messages.
Several of these features are now being added as
standard capabilities to programming language
compilers and more can be expected in the fuiuge7
Since the concepts of Structured Programming * °
are fundamental to SDDL, it is imperative that it
be used with a programming language which also

81CH1709-5/81/0000-0027$00.75 (:) 1981 IEEE

28

Henry KLEINE

supports these concepts. SIMSCRIPT and SDDL are
ideally suited for each other, not only for their
compatibility in this regard, but additiomally
because they both allow redefinition of key words
allowing an excellent match between the two
languages. In the case of SDDL, keyword definmi-
tion is a basic part of the language, and in the
case of SIMSCRIPT, the simple replacement macro
provided by the language is sufficient to match
the two systems with only minor alteration to the
'SIMSCRIPT standard language.

3. SOFTWARE DEVELOPMENT METHODOLOGY
3.1 Program Modularization

An effective and often used method for modularim-—
ing a program is to divide it into program

functional elements such as data declarations (and
structure), initialization, input data handling,
events (in the case of simulation models), output
processing, support routines, and low level utility
routines. This division technique was followed in
the TALON development, but in addition, a higher
level modularization was needed because of the
many distinct operational (i.e., military mission)
functions in the TALON model. To meet this re-
quirement the model was modularized with respect
to these nmissions while retaining the more common-
place subdivisions within each of these modules.
Thus the structure, as exemplified below in an
abbreviated list, Figure 1, consists of a two
level hierarchy of modules.

‘General program system functions
System related data declarations

System initialization
System input processing

Driver and initial event schedulers
Output routines (user greeting and other start up info.)
Support routines general to all modules

System input data

Ground movement module

Summary description to ground movement functiomns
Ground movement data declarations

Initialization
Input data processing

Events related to ground movement
Support routines for ground movement functions

Ground movement input data

Artillery module

Summary description of the artillery functions

Artillery data declarations

Initialization
Input data processing

Events related to artillery functioms
Support routines for artiliery

Artillery input data

TALON MODULARIZATION EXAMPLE

Figure 1.

The modularization hierarchy shown in Figure i is
a schematic conceptualization which includes pro-
gram descriptions, data declarations, instruction
modules and initialization data. This information
was developed and organized in separate files for
each mission module. In practice, these data
require different organization for the purposes

of SIMSCRIPT compilation, SDDL processing, and
data input for rumning the modél. This was

SCHEMATIC OVERVIEW

System functions (88)
Data declarations
Initialization
Data loading
Driver
Qutput routines
Support routines

accomplished by providing an automatic mechanism
to extract the appropriate data required for each
operation and merge them into a single file for
processing. For procéssing the source code with
SDDI. the data are input as shown in the schematic,
producing a document organized by mission function.
The required extract and merge operations for the
purposes of SIMSCRIPT compilation and input data
preparation for program execution are shown in
Figure 2.

COMPTLATION LAYOUT

SIMSCRIPT PREAMBLE
(SS)Data declarations
(GM)Data declarations
{AT)Data declarations

SYSTEM ROUTINES
(sS)Initialization

SOFTWARE DEVELOPMENT METHODOLOGY AND TECHNOLOGY FOR TALONG COMBAT SIMULATION MODEL 29

System input data

Ground movement module (GM)
Function description
Data declarations
Initialization
Data loading
Events
Support routines
Input data

Artillery module (AT)
Function description
Data declarations
Initialization
Data loading
Events
Support routines
Input data

(SS)Data loading
(SS)Driver
(SS)Output routines
(SS)Support routines

GROUND MOVEMENT
(GM)Function description
(GM)Initialization
(GM)Data loading
(GM) Events
(GM) Support routines

ARTILLERY
(AT)Function description
(AT)Intialization
(AT)Data loading
(AT) Events
(AT)Support routines

PROGRAM INPUT DATA LAYOUT
(58) Input Data
(GM) Input Data
(AT) Input Data

TALON Data Extraction and Merge Schema
Figure 2

3.2 SDDL — SIMSCRIPT Interface

SDDL is a computer supported language processor
with built-in knowledge and capabilities specifi-
cally related to the software development process.
The foundation of SDDL is based on the concepts
of structure and abstraction as exemplified in
the technology of Structured Programming. Since
one of the capabilities of SDDL provides for user
definition of the keywords which dictate the
production of the indentation and flow lines
which are used to display structures, it can be
adapted to most programming languages which

support Structured Programming. In some cases this
adaptation requires some minor alteration of the
programming language in order to obtain the best
interface, and since SIMSCRIPT provides a simple
word replacement macro capability the two systems
are ideally matched. Furthermore, SIMSCRIPT and
SDDL both allow punctuation characters to be used
as part of the name of a variable. Some examples
of the TALON SIMSCRIPT code processed through SDDL
are shown below. Note that in the SIMSCRIPT source
file the program statements are all left justified
with no indentation as shown in Figure 3.

ROUTINE SS.INITIALIZE.THE.PROGRAM

"FIRST, ADDRESS GCS (FORTRAN) INTERFACE

LET SS.GRAPHICS.INDICATOR = O "OFF"

IF DIM.F(PARM.V(*,%*))) GREATER THAN O

FOR I = 1 TO DIM.F(PARM.V(*,%)

WITH PARM.V(I,1) = "GCS" AND PARM.V(I,Q) = "YES"

DO

LET SS.GRAPHICS.INDICATOR = 1 "ON"

CALL USTART

CALL USET ("HARDWARE")
CALL USET ("INCH™)
LEAVE

REPEAT "ONLY ONCE"
ALWAYS

RESERVE GX.GCS.PRINT.BUFFER(*) AS 8
"NEXT, INITIALIZE 1I/0 FILE VARIABLES

LET SS.INPUT.DATA.FILE =

1

Program Source Data File (Partial listing)

Figure 3

30

‘Examples of the formatting introduced by the SDDL
processor can be seen in Appendix A, page 18 (page
numbers in Appendix A are not numbered consecutive-
ly since most of the pages of the original docu~
ment were omitted.) Note the indentation used to
delineate the structures (IF - ALWAYS, DO -
REPEAT), the flow lines to the left for structure
escape statements (LEAVE), and the flow lines to
the right for subroutine calls. The numbers shown
in parentheses on the right margin provide the
document page number where the module being called
can be found. In addition to this formatting, the
SDDL processor automatically provides a Table of
Contents, Module Forward Reference Tree, Module
Cross Reference Table, and miscellaneous user
controlled cross reference tables. The line
numbers at the left margin correspond exactly

to the line numbers on the input file in oxder to
facilitate data base editing.

3.3 TALON Coding Conventions

Comment Structure. A typical program subroutine
performs several major functional steps in succes-
sion. These major function blocks require a
special comment to set them off from the rest of
the program structure and thus clearly display to
the reader the important, high level functions
performed by the subroutine. This requirement was
implemented in the TALON model by means of the
FIRST ~ NEXT Comment Construct. The first of
these comments begins with the SDDL defined key-
word FIRST and subsequent comment lines begin with
the keyword NEXT. These comment lines are designed
to be ignored by the SIMSCRIPT compiler while
being recognized in an important way by the SDDL
processor. SDDL recognizes the keywords FIRST

and NEXT and provides block indentation for the
included lines just as in the case of the IF -
AIWAYS, and DO —~ REPEAT block constructs. This
comment structure is superior to ordinary comment
lines because the indentation clearly delineates
the scope of the comment. An example of the
comment structure can be seen in Appendix A, pages
18 (lines 648, 663, 672), and 423 (lines 651, 661,
665). Note how the comment lines describe the
high-level actions being performed and how the
indentation delineates the scope of the comment.

Section Titles and Program Description Paragraphs.
The SDDL processor can be directed to enclose
lines of text within a box formed by a specified
punctuation character in order to provide title
pages and highlighted comment paragraphs. This
capability has been used in the TALON program
to place titles at the beginning of both levels
of program modules (Appendix A, page 10). These
titles are automatically entered in the table of
contents with indentation provided to show the
subordinate relationship (Appendix A, table of
contents). Other boxed in text segments (i.e.,
not title pages) are used for the description
and explanation at the top of each routine or
function (Appendix A, page 423, lines 632-637).

Prefix Notation for Variable Names. A program the
size of the TALON model requires a very large
number of variable names, many of which refer to
similar physical data. To improve the readability
of the program the names of all global parameters
were prefixed with a two letter abbreviation of the
mission function to which they were related. This

Henry KLEINE

prefix is very useful for assuring the uniqueness
of variable names, and providing clarifying infor-
mation for the reader. With very little practice
the reader becomes accustomed to ignoring the
prefix except when needed. Examples can been seen
on several pages and in the cross reference tables
of Appendix A.

SDDL Cross Referencing Capability. SDDL provides
a user controlled cross referencing capability
based on the use of selected punctuation charac-
ters within the text of the document. SIMSCRIPT
allows the period (.) to be used in a similar
manner to form a single identifier out of several
words joined by periods. E.g., THIS.IS.A.SINGLE.
IDENTIFIER and HERE.IS.ANOTHER. The combination
of these capabilities provides a means for obtain~
ing a cross reference listing of all identifiers
which include a period in their name. Note that
since the cross reference tables are alphabetized,
the variables associated with a particular system
mission will be grouped together since they will
all have the same prefix.

In addition to this cross reference table, others
can be produced by means of using other punctua-
tion characters within SIMSCRIPT comments. This
will result in the identifiers being ignored by
SIMSCRIPT and caught for cross referencing by
SDDL. Examples of this usage include revision
notation, program portability considerations,

and debug statements. SDDL also provide$ a means
for causing portions of a line to be shifted to
the right margin. This is especially useful to
prominently display the revision marks mentioned
above. See Appendix A for examples.

3.4 Data Base Preparation

Generation of the voluminous, varied and complex
TALON program data base requires the skill and
knowledge of experts in several mission function
areas, such as, ground, air, artillery, intelli-
gence, command and control, air defense, recon—
naissance, etc. Since the data have to be
presented in a large variety of formats and
organizations in accordance with the requirements
of the simulation model, methodology was developed
to make the task more manageable for the data
preparers. This methodology is comprised of (1)
an Input Format Specification Document (IFSD)
which presents the rules for data preparation, (2)
a means for inserting commentary directly into the
data base, (3) a procedure which automatically
retrieves that data from separate files and merges
them into a single file for input to the program,
and (4) conventions for identification and
selective input of each data set. Appendix B
provides an example of this data base preparation
concept. It is comprised of a few selected pages
taken from the TALON IFSD and a test data base.
The first part of the document contains excerpts
from the IFSD and the second has excerpts from
the sample data base. Note the automatically
supplied page references between the two sections
on pages 35 and 72.

Input Format Specification Document. The IFSD is
a collection of data preparation algorithms,
(i.e., a "program") which provide step by step
descriptions for preparation of the TALON data
base. These algorithms were developed using the

SOFTWARE DEVELOPMENT METHODOLOGY AND TECHNOLOGY FOR TALONG COMBAT SIMULATION MODEL 31

same techniques used to produce a computer program
design. The algorithms are presented in a top-
down, hierarchical structure. At each level the
step by step instructlons are given in terms of
sequences, iterations, and conditional branches.

In addition to these data sequencing and formatting
rules, the IFSD provides data attribute information
such as, mode, units, range, and allowable values.
The SDDL processor provides a means to set off this
data attribute information by automatically right
shifting so as to line it up at the right margin

of the document. A special mark, ($$), is also
placed in this position to emphasize and differen-—
tiate between rules explaining how to layout and
organize the data and actual data input require-
ments.

Data Base Commentary. To enhance the readability
of the actual data,a means to insert comments in
the data base was provided. This was accomplished
by adopting the SIMSCRIPT comment delimiter
convention of two consecutive primes ("), and
writing a small editing program to prescan the
data and remove these comments. Data commenting
techniques were developed to take advantage of

the SDDL formatting capability, so that by process-—
ing the data base through SDDL it could be dis-—
played in a well structured, formatted manner
including table of contents and cross reference
tables. Finally, additional comment lines were
added so as to reference information from IFSD to
data base and vice-versa. With this last step it
was possible to process the IFSD and the data
base through SDDL together thereby merging them
into a single coherent document.

Data Retrieval and Merging. The task of prescann-—
ing the data base to delete comments and merging
the remaining data into a single file was accom-
plished by a simple computer job control and
system editor macro.

Mission Data Set Identification. The TALON data
base is composed of several (currently fifteen)
distinct, independent data bases which must be
merged for input to the program. Furthermore,

the program design permits the user to select or
deselect entire mission functions which are not
needed for a particular study. To £ill this
requirement a separate banner or label was supplied
for each mission data set for the TALON program to
key on while reading data.

4. SUMMARY

The software development methodology described
above 1s aimed at reducing the difficulties of
producing large scale simulation models. These
methods were enabled by the combined use of the
Software Design and Documentation Language and
the SIMSCRIPT II.5 Programming Language. SDDL
can be used effectively with other programming
languages which support structured programming
concepts (e.g., PLI, PASCAL) but it works best
with SIMSCRIPT. SIMSCRIPT is an excellent
simulation language and blends well with SDDL.
Together they form a symbiotic relationship which
provides a basis for the methodology described
above and for future expansion as well.

ACKNOWLEDGEMENTS

Mr. Richard G. Ransom was responsible for the
implementation of these techniques and methods.
His suggestions and critique plus his devotion to
the successful completion of the project were
significant comtributions.

Major John C. Callahan also deserves recognition
for perceiving the need for this work, initiating
the action, and providing the necessary support.

APPENDIX A: EXCERPTS FROM THE TALON SIMULATION
MODEL
Note: The attached document is an excerpt taken

directly from the TALON program document which
contains more than six hundred pages, therefore,
the pages are not numbered consecutively but
instead correspond directly to the pagination of
the original document.

APPENDIX B: [EXCERPTS FROM THE TALON INPUT FORMAT
SPECIFICATION DOCUMENT & TEST DATA BASE

Noete: The attached document is an excerpt taken
directly from the TALON program's combined IFSD
and data base document which contains more than
seventy five pages, therefore, the pages are not
numbered consecutively but instead correspond
directly to the pagination of the original
document.

REFERENCES

Dijkstra, E.W., "Notes on Structured Programming,”
in Structured Programming, Academic Press,
NY, 1972.

Kiviat, P.J., et.al., "The SIMSCRIPT II.5 Pro-
gramming Language," CACI,Inc.-Federal,
Arlington, Va.

Kleine, H., "Software Design and Documentation
Language," JPL Publication 77-24, Revision
1., National Aeronautics and Space Admin-
istration, Jet Propulsion Laboratory, 4800
Oak Grove Dr., Pasadena, Ca. 91103, August
1977.

Kleine, H., "A Vehicle for Developing Standards
for Simulation Programming,' Proceedings of
the Winter Simulation Conference, Highland,
Sargent, and Schmidt, eds., 731-741.

Kleine, H., and Morris, R.V., "Modern Programming:
A Definition," SIGPLAN Notices, Vol. 9, No. 9,
Sept. 1974, pp.l4-77.

Mills, H.D., "Top~Down Programming in Large
Systems," in Debugging Techniques in Large
Systems, Edited by R. Rustin, Printice-Hall,
Inc., Englewood Cliffs, NJ., 1971, pp. 33-45.

Mills, H.D., Mathematical Foundations of Structured
Programming, IBM Doc. FSC 72-6012, IBM Federal
Systems Division, Gaithersburg, Md., Feb.
1972,

