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ABSTRACT: This paper and the tutorial sessilon with which it is associated treat
the fundamental concepts of digital simulation. The topics discussed include
system modeling, simulation models and their advantages and disadvantages relative
to mathematical models, the development of simulation and current applications,
the role of simulation modeling in systems analysis and simulation languages. The
paper and the tutorial are presented at a level which requires no previous expo-
sure to digital simulation. However, familiarity with the fundamentals of proba-
bility, probability distributions and inferential statistics will facilitate the
participant's understanding of the material presented.

1. INTRODUCTION

Since World War II organizational systems have grown in complexity to the degree that managers, indi-
vidually and collectively, now find it difficult to control and in many cases to understand the organi-
zations they have created. At the same time rampant inflation, pervasive government regulations and ag-
gresive competition dictate increasing control of organizational behavior. The quantitative techniques
loosely embodied in the discipline of operations research®* are often employed in an attempt to better
understand, predict and control system behavior.

The analysis of any system is generally the result of the need to better understand the behavior of the
system. The analyst may wish to know how the system will function under a variety of conditioms,
whether the system should be modified to more efficiently achieve its intended function or simply to
petter understand the current operational characteristics of the system. Given sufficient time and
financial resources each of these goals could be achieved through manupulation of the physical system
itself. TFor example, one could implement successive modifications of the system in an attempt to achieve
more efficient performance, or simply wait for certain conditions to arise and observe the behavior of
the system under those conditionms.

Manipulation of the physical system may be economically infeasible since it may seriously disrupt the
overall operation of the organization of which it is a part. Simply waiting for those conditions under
investigation to arise may be selfdefeating in that failure to predict the effect of- those conditions
may lead to disastrous results with respect to the performance of the system. Thus, experimentation
with the physical system 1s usually to be discouraged, although it is occasionally employed with satis-
factory results.

2. MODELS

At the heart of most operations research studies is a system model which acts as an experimental subs-~
titute for the system itself. Models have long been used by scientists to explain physical phenomena.
The acceleration of a particle under the force of gravity, the position of a planet in space and the
flow of current across a conductor are simple examples. Engineers, social scientists and management
scientists have extended the principles of modeling to the analysis of systems created and controlled by
man.

*The terms operations research, management science, systems analysis and systems engineering are often
used synonymously.
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In a broad sense a model may be thought of as any representation of reality which is not reality itself.
For example, a painting of a ship at sea is a model of the visual characteristics of the vessel and its
immediate enviromment. However, it captures neither the sounds of the sea nor the forces acting on the
ship. A set of equations may be used to describe the flight path of a manned satallite in space but con—
veys no information concerning the visual characteristics of the satallite or the physical and emotional
state of the crew. An architect's scale model of .a medical complex is a three dimensional representation
in miniature describing the relative location, shape and size of buildings, parking areas and walkways
and may even include ‘the details of the layout of each floor of each building. However, as detailed as
such a model may be it communicates little information relative to the cost of operation, staffing re-
quirements or patient schedulirng. The purpose of a profit and loss statement is to describe the finan-
cial position of a company; not to depict the building housing its corporate offices. An equation
relating the variables of a quality control system to the total cost of quality control is mnot intended
to provide a picture of a defective unit of product. Thus the objective of a model is to capture only
certain aspects of reality. Even with this limited purpose in mind, the modeler can at best achieve an
approximation to that part of reality with which he/she is concerned.

The models used by operations reseaichers are almost always mathematical in form and attempt to relate
the variables and constants of the system to a measure or measures of system performance such as cost,
profit or level of service. If the model approximates the behavior of the system with reasonable
fidelity then the analyst may experiment with the values of the variables of the system and observe the
resulting effect on the measures of system performance in an attempt to inferentially understand the
behavior of the system, predict the behavior of the system under specified conditions or specify values
of those variables under management control such that the system will perform in the optimum or at least
an acceptable fashion. .

2.1 Simulation Models

Although simulation models fall in the general class of mathematical models, a distinction is usually
drawn between simulation models and mathematical models which comsist solely of an equation or series of
equations. A simulation model attempts to mimic the behavior of the system modeled by explicitly cap-
‘turing the time seriés of events which determine the behavior of the system, the interaction of those
events and their impact upon the components of the systein. Usually the model defines each event and its
time of occurrence, appropriately altering the values of those variables which define the status of the
system as events occur. Because the simulation model traces the behavior of the system over time, out-
put drawn from the model at a sequence of points in time would be similar in form to that derived from
observation of the physical system.

If a simulation model faithfully describes the behavior of the physical system, then the activity de-=
scribed by the model ovér a given time period may be treated as though it were drawvn from direct obser-
vation of the system. In this sense a simulation model synthetically samples the activity of the system
it describes, each time period simulated representing a possible sample of activity from the physical
system.

While simulation models may be either deterministic or stochastic, simulation modeling is usually ap-
plied to the analysis of stochastic systems where random variation in the time of occurrence of events
and their effect on the state of the system is significant. Because a stochastic simulation model
incorporates the random variability found in the physical system, two independent samples of system ac-
tivity generated by the model for the same period of time are likely to yield different results in sys-
tem behavior. However, each sample of activity represents a possible outcome for that period of time.

Since the simulation process revolves around synthetic sampling, the output of a stochastic simulation
model is comprised of values of one or more random variables. This characteristic is one of the prin-
ciple distinctions between simulation models and more conventional mathematical models, the output of
conventional mathematical models being a numerical comstant of constants.

2.2 Digital Versus Analog Simulation

Although the primary focus of this paper is digital simulation, an understanding of the distinction be-
tween analog and digital simulation is useful. Analog simulation is employed where the system modeled
is subject to continuous changes as a function of a continuous variable, usually time. Changes in the
status of the system modeled through analog simulation are generally represented by proportionate
changes in a continuous medium such as voltage or air pressure. Hence, the output of an analog simula-
tor is a continuum of status changes in the system model. ‘Sample output of an amalog simulation is
shown graphically in Figure 1.

A digital simulation model does not treat time in a continuous fashion, but rather models system changes
at discrete points in time. In this sense a digital simulation model of a time dependent system mimics
the operation of an analog simulation. Hence, the output of a digital simulation model is discrete.

A graphical representation of the output of a digital simulation model is shown in Figure 2.
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2.3 Advantages and Disadvantages of Simulation

Since the most frequently employed alternative to a simulation modeling i1s a mathematical model con-
sisting solely of one or a series of equations, the advantages and disadvantages of simulation will be
discussed relative to this alternative. When the system under study can be modeled with equal validity
using either modeling approach, a complete mathematical description is probably to be preferred. The
output of a mathematical model is a numerical constant or constants or perhaps an analytical function
while that of a simulation model is the value of one or more random variables. Hence the output of a
simulation model is always clouded to some degree by the presence of random error. The random component
in the output may lead to errors in conclusions concerning the effectiveness of a particular system and
may be particularly troublesome when attempting to evaluate the effectiveness of one system versus
another or several others. Since the output of a mathematical model ig deterministic these issues do
not arise.

The immediate objective of most conventional mathematical models and simulation models is estimation of
the values of one or more measures of system performance. Since the simulation process requires syn—
thetic sampling, replication of the sampling process is usually necessary to achieve acceptable preci-
sion in the estimatotr or estimators. When the system simulated is complex each replication may require
significant execution time on a digital computer. Hence the number of replicates required for suffi-
ciently precise estimation may be such that the resulting simulation experiment is quite expensive.
While a mathematical analysis may also require execution on a digital computer, the time requlred for
execution is usually not as great as that for the corresponding simulation modél.

The principle disadvantages of simulation analysis are, then, the expense involved in model execution
and the difficulty associated with the interpretation of output. However, as the complexity of the
system to be modeled increases complete or even partial mathematical analysis may prove infeasible. In
such cases simulation modéling often becomes "the only game in town" and hence the phrase "when all else
fails, simulate”. This suggests that the greatest advantage of simulation may be its versatility.

While systems of only moderate complexity may not yield to mathematical analysis, simulation models can
and have been developed for highly complex systems. In addition, even when a system can be modeled
mathematically, the level of mathematical sophistication required may be beyond the background and
training of the analyst while he/she possesses the requirements necessary for development of an adequate
simulation model. Thus the principle advantages of simulation modeling relative to mathematical mod-
eling are versatility and simplicity.

3. THE DEVELOPMENT OF SIMULATION

Some authors trace the origin of simulation to the early sampling experiments of W. A. Gosset, who pub-
lished under the name Student, (1908). However, the foundations of modern simulation techniques are
usually credited to the works of Von Neumann (1951) and Ulam (1951). Their work, conducted in the late
1940's, involved the analysis of nuclear-shielding problems through a technique termed "Monte Carlo
Analysis" which subsequently became fundamental to simulation modeling, However, it was not until the
early 1950's and the arrival of high-speed computing machinery that the horizons for application of
simulation were broadened to include the practical analysis of engineering, business, and behavioral
systems. Since that time simulation has been applied in such diverse areas as:

* Analysis of Commercial Air Transportation Systems
* Analysis of Computing Facility Operations

- Military Operations Analysis

» Evaluation of Machine Replacement Policies

* Nuclear Fuel Cycle Analysis

* Management Gaming

* War Gaming

* Environmental Impact Analysis
+ Forest Resource Management

* Corporate Planning

+ Machine Requirements Analysis
+ Evaluation of Health Care Delivery Systems
* Manpower Planning

+ Job-Shop Scheduling ‘

+ Instructional Modeling for Higher Education
- Transportation Planning

+ Communication Network Analy51s

Today simulation is one of the most powerful modeling techniques available for the analysis of a vari-
ety of complex systems. This conclusion is supported of Weston (1971) who reports that in a study of
the 1000 largest firms in the U.S., 29% indicated that simulation was employed as a tool for analysis in
corporate planning: The results of Weston's study are summarized in Table 1.
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Table 1
Frequency of Application of Simulation

Tools Most Frequently Employed in Corporate Planning

Technique Frequency Percent
Simulation 60 29
Linear Programming 43 21
Network Analysis 28 14
Inventory Theory 24 12
Nonlinear Programming 16 8
Dynamic Programming 8
Integer Programming 7 3
Queueing Theory 7 3
Other 12 _6

205 100

4. SYSTEMS ANALYSIS THROUGH SIMULATION

In many respects the steps necessary for system analysis through simulation are the same as those taken
when using any other approach to modeling and may be summarized as follows:

1. Identification of the problem,

2. Specification of the objectives of the analysis,

3. Analysis of the operating characteristics of the system and

collection of data describing the behavior of the system,

4. Formulation of the system model,

5. Estimation of the values of the parameters of the model,

6. Preliminary validation of the model,

7. Development of required computer programs,

8. Final model validation,

9. Specification of the simulation experiments to be conducted,
10. Analysis of results.

A procedural summary of the steps usually taken in analyzing a system are summarized in the flowchart in
Figure 3. While the sequence of steps indicated may not be completely exhaustive nor in the proper
chronological order for all problems, this outline may be used as a rough guide for the analysis of most
systems' problems.

Although a complete discussion of systems analysis is beyond the scope of this paper, a brief treatment
of the steps outlined above as they relate to simulation analysis may help to place the role of simula-
tion modeling in perspective. To resolve any problem one must first understand the nature of the prob-
lem. Problem situations are recognized by the symptoms which they generate. While in some cases treat-
ment of the symptoms may suitably arrest the problem, this solution may yield only short term benefits.
Thus, the analyst is likely to be more interested in identification of the root causes of the problem
and the formulation of means to resolve the problem itself rather than simply treating its symptoms.

Once the problem has been identified the analyst must outline a procedure which will hopefully lead to
its resolution. To properly amalyze the problem and develop procedures for its resolution, the objec-
tives to be achieved as a result of the analysis must be carefully specified. In addition criteria
should be defined whereby the degree of achievement of those objectives can be determined. For example,
the objective of the study might be to reduce downtime at a given machine center. A solution which
purports to achieve this objective carries little credibility unless the degree of achievement can be
forecast and measured quantitatively. Hence, the problem solution should include an estimate of the
reduction in downtime which will result from implementation of the recommendations resulting from the
study or in general, an estimate of the benefits to be derived from the proposed solution.

The development of a valid model must be founded upon a complete understanding of the system itself. To
this end the analyst should pursue a thorough investigation of the system to identify its purpose, oper-
ational characteristics, and to obtain data relevant to the behavior of the system under current and
past operating conditions and to identify system changes contemplated for the future. Once a thorough
understanding of the system and its operation has been achieved, the analyst is in a position to proceed
to formulation of the simulation model. The model developed at this point must be considered prelimi-
nary since it represents only the analyst's initial conceptualization of the system. A review of the
assumptions underlying the model and its functioning with others integrally involved with the system at
this point is the first step in model validation. Rejection of the initial model is not at all unusual.
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However, after several attempts at model formulation, the analyst will hopefully arrive at a model which
those familiar with the system accept as reasonable, at least in concept.

Final validation of the simulation model 1s a three stage process. The first step in this process,
sometimes called verification, is to make sure that the simulation model is functioning in the manner
intended by the analyst. Validation at this point consists largely of a logic check of computer programs
developed for execution of the simulation model. The second stage of validation is much more difficult
to deal with. Having ascertained that the model is functioning in its intended manner, the analyst must
determine whether or not the intended functioning of the model conforms to reality. If the simulation
model is used to represent the behavior of an operational system, the results of the simulation-model
can often be compared with those realized from the real world system where the exagoneous conditions
governing both are the same. However, even when this comparison is favorable there is no guarantee that
the simulation model will function in a manner.representatitive of the real world system under conditions
which have not yet been experienced., The problem of validation is compounded when the simulation model
is intended to represent the functioning of a system which is not in existence at the present time but
rather is planned for the future. In this case there is no system available which can be used to check
the results of the model. In the final analysis then, complete validation of a simulation model is
usually not possible. In most instances all the analyst can do is experiment with the simulation model
under a variety of conditions, past, present and expected in the future, and compare the results with
historical data, where available, and with what one might expect from the system under study should
those conditions expected in the future arise.

The third and final stage of model validation, the acceptability of the model as a predictor of the
future, can be accomplished only after the model has been accepted for implementation at least tentative-
ly or on a trial basis. In some instances the model is implemented on a limited basis and field tested
under operating conditions. Its behavior is then observed and analyzed to determine whether or not it
actually performs in an acceptable manner. The model may ailso be executed in parallel with the system
without its implementation as an aid to decision making. In this mode of validation one is simply at-
tempting to determine how well the model describes continuing system behavior without influencing that
behavior.

In essence model development and model validation are opposite sides of the same coin. At every stage
of model development the analyst asks whether or not it will work. Model validation attempts to answer
that question. Model validation should continue even after a model is implemented. There is probably -
no such thing as a model which, without modification, will continue to describe system behavior indefi-
nitely. Continuing periodic validation testing should be carried out in an attempt to identify degrada-
tion of the model and thus the need for modification. Ideally then, model development and validation
should continue in a cyclic manner until the model is retired from use.

The final stage in the analysis of a system through simulation is the specification and execution of the
simulation experiments to be carried out and the analysis of the results produced. Since simulation
can be an expensive technique for systems analysis, the analyst should exercise care in specifying the
experiments to be executed. The design of simulation experiments consists of specifying the conditions
under which the simulation model will be executed and the number of simulation runs, replicates, to be
executed under each condition. The set of conditions to be analyzed will be dictated by the objectives
of the analysis. Ideally the analyst would hope to simulate the operation of the system studied under
every condition which might be anticipated in the future. However, time and budget limitations may re-
quire a compromise in this regard.

To obtain a measure of the Variability of an estimator the analyst would normally choose to replicate
the simulation experiment under each set of conditions. The essential question to be answered here is
how many replciates are necessary to achieve the required level of precision. In general, the preci~
sion of the estimate of a measure of system performance is improved by increasing the number of repli-
cates of the simulation experiment. However, as the number of replicates is increased the cost of
executing the experiment will increase proportionately. Thus again, the analyst is usually forced into
a compromised situation.

5. SIMULATION LANGUAGES

Since most simulation experiments are carried out on a digital computer, the logic of the model must be
translated into a medium which can be interpreted by the machine. Translation of the simulation model
can be accomplished through a general purpose computer language or a special purpose language. General
purpose languages such as FORTRAN, BASIC and PL/I provide the programmer with a tool for the analysis
of a virtually limitless number of problems, of which simulation is only one. On the other hand,
special purpose simulation languages are designed to address problems to be analyzed through simulation,
although the variety of simulation probléms which can be handled by these languages is quite broad.
Included in the category of special purpose simulation languages are GPSS, SIMSCRIPT, GASP, DYNAMO and
SIMULA although there are many others.

Perhaps the principle advantage of general purpose languages lies in the fact that one of these lan-
guages is probably already known to the programmer. In addition these languages provide the analyst
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with a maximum of flexibility in the design of the analysis. However, because special purpose languages
are oriented toward the specific application of simulation, the programming time required for transla-
tion of the model is generally less than that required in the case of general purpose languages since
the time keeping mechanism and many of the subroutines normally required in any simulation model are
built into the language. In additiom, the structure of special purpose languages will often help the
analyst to formulate the model. However, in using a special purpose language the analyst is restricted
to a prescribed output format and may face increased computer run time.
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